
Invited commentary

Utilization of essential amino acids synthesized in the intestinal microbiota

of monogastric mammals

The amino acid supply of ruminants eating poorly digestible low-

protein diets depends on the microbial activities in their foresto-

machs. However, it is insufficiently understood whether and to

what extent microbially synthesized essential amino acids

(EAA) might be used to support growth and protein homeostasis

of the monogastric host. In various monogastric mammals such as

rats (Torrallardona et al. 1996a, 1996b), pigs (Metges et al. 1996;

Backes et al. 2002; Torrallardona et al. 2003a, 2003b), man

(Metges et al. 1999a, 1999b; Millward et al. 2000) and now

also rabbits, as a paper in the present issue of British Journal of

Nutrition demonstrates (Belenguer et al. 2005), microbial syn-

thesis of EAA in the gastrointestinal tract (GIT) and their utiliz-

ation have been demonstrated. Experimental evidence comes

from the ‘15N labelling paradigm’ (Metges, 2000), which involves

the administration of an 15N-labelled inorganic N source (e.g.
15NH4Cl,

15N[urea]) as a precursor of microbial amino acid-N.

Since lysine and threonine do not undergo transamination in

mammalian tissues (Torrallardona et al. 1996a), the appearance

of 15N-labelled lysine and threonine in the host tissues indicates

their microbial origin. Enrichment of 15N-labelled lysine and

threonine is very low (below 0.1 atom% excess 15N) and its detec-

tion requires a highly sensitive and precise mass spectrometric

technique (e.g. Metges et al. 1996; Metges & Petzke, 1997;

Belenguer et al. 2005).

With regard to the biological significance of the intestinal

microbial amino acid contribution there are still open questions

because the values given in the literature so far are based on

many assumptions. First, it would be important to know whether

microbial amino acids contribute to the amino acid homeostasis

of the host in a net way. This would require that the material

utilized to produce microbial EAA be of no further value for

the body. Quantification is further complicated by the constant

N recycling in the gut (Fuller & Reeds, 1998; Metges et al.

1999a) and the broad variety of N sources used by the microbiota

in the GIT (Metges & Loh, 2003). On the other hand, it has been

shown that carbohydrates that cannot be degraded by mammalian

enzymes are used to produce microbial amino acids utilized by

the host (Torrallardona et al. 2003b).

Second, it is still not certain at which intestinal sites microbial

amino acid absorption occurs, and there are differences in the

various monogastric species (Metges, 2000). Further, quantifi-

cation of the microbial amino acid contribution relies on the pro-

duct–precursor relationship. However, the nature of the pool of

microbial lysine absorption to be sampled is unclear (e.g. lumenal

microbial protein, microbial peptides or free amino acids, bacteria

adherent to the mucus overlaying the villi; Metges, 2000). Among

monogastric animals (pig, rabbit, rat, mouse) and man there are

distinct differences in the anatomical and physiological properties

of the intestine (Metges & Loh, 2003). Rats are coprophagic,

which also occurs in the young pig if not prevented by housing

in metabolic cages. As compared with man, mice and rats have

large caeca relative to the overall size of their GIT. One of the

major differences between the GIT microbiota in man and pigs

is the high number of bacteria in the porcine small intestine and

stomach (pars oesophagea). Torrallardona et al. (2003a,b) demon-

strated by digesta exchange experiments that the majority of

microbial lysine is absorbed in the small intestine of the pig.

Earlier results in pigs with ileo-rectal anastomosis also suggest

absorption of microbial amino acids by the small intestine

(Metges et al. 1996). That small intestinal absorption might be

the major route for microbial amino acids also in man comes

from studies with ileostomates (Metges et al. 1999a). The ratio

of 15N enrichment in plasma free lysine and ileal microbial

lysine in ileostomates was higher than the 15N enrichment in

plasma free lysine and faecal microbial lysine in subjects with

an intact GIT. In contrast, it appears that rats cannot utilize

microbial amino acids directly via absorption from sites of

synthesis in the GIT, and incorporation of microbial amino

acids in body proteins entirely relies on coprophagy

(Torrallardona et al. 1996b). Whether this is because of no or

very low microbial amino acid synthesis in the small intestine,

or low proteolytic activity in the lower parts of the small intestine,

is unclear. Belenguer et al. (2005), in their study in the present

issue, compared the 15N enrichment of lysine incorporated in

liver protein of rabbits prevented to re-ingest caecotrophes by

neck collars with that of unrestricted control animals, concluding

that 97% of microbial lysine utilization in the rabbit originates

from the caecotrophy process and thus direct intestinal absorption

is very low. Whether uptake of caecotrophes is crucial for the

EAA supply for growth in rabbits remains to be determined.

Third, it is incompletely understood whether different dietary

or physiological conditions affect the availability of microbial

amino acids to the host (Metges & Loh, 2003). Dietary constitu-

ents such as non-digestible oligosaccharides affect intestinal

microbiota composition and thus perhaps also microbial amino

acid synthesis. Also, low-protein diets known to alter amino

acid utilization of the gut might influence systemic availability

of microbial amino acids in pigs (Van Goudoever et al. 2000;

Van der Schoor et al. 2001). We have recently shown that

minipigs fed a diet low in lysine do not adapt by showing an

enhanced availability of microbial lysine to the extrasplanchnic

tissues (Backes et al. 2002). This is presumably because microbial

lysine continues to be used for splanchnic protein synthesis with

high priority.
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In conclusion, the available evidence indicates that microbial

lysine absorption in man and pigs is located in the small intestine,

but requires re-ingestion of faecal or caecal microbial protein in

rats and rabbits. Whether intestinal microbial EAA make a net

addition to meet the metabolic EAA demand is still unclear.
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