Canad. Math. Bull. Vol. 50 (1), 2007 pp. 97-104

Characterizations of Real Hypersurfaces in a Complex Space Form

In-Bae Kim, Ki Hyun Kim and Woon Ha Sohn

Abstract. We study a real hypersurface *M* in a complex space form $M_n(c)$, $c \neq 0$, whose shape operator and structure tensor commute each other on the holomorphic distribution of *M*.

1 Introduction

A complex *n*-dimensional Kaehler manifold of constant holomorphic sectional curvature *c* is called a *complex space form* and is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according to c > 0, c = 0 or c < 0. The shape operator or second fundamental tensor of a real hypersurface in $M_n(c)$ will be denoted by A, and the induced almost contact metric structure of the real hypersurface by $(\phi, \langle \cdot, \cdot \rangle, \xi, \eta)$.

R. Takagi [9] classified all homogeneous real hypersurfaces in $P_n(\mathbb{C})$ into six model spaces A_1, A_2, B, C, D and E (see also [10]). J. Berndt [3] has completed the classification of homogeneous real hypersurfaces with principal structure vector fields ξ in $H_n(\mathbb{C})$, which are divided into the model spaces A_0, A_1, A_2 and B. A real hypersurface of type A_1 or A_2 in $P_n(\mathbb{C})$ or that of A_0, A_1 or A_2 in $H_n(\mathbb{C})$ is said to be *of type* A for simplicity.

A typical characterization for a real hypersurface M of type A in a complex space form $M_n(c)$ was given under the condition

(1.1) $\langle (A\phi - \phi A)X, Y \rangle = 0$ for any tangent vector fields X and Y on M

by M. Okumura [8] for c > 0 and S. Montiel and A. Romero [6] for c < 0. Namely,

Theorem A Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \ge 3$. If it satisfies (1.1), then M is locally congruent to a real hypersurface of type A.

The *holomorphic distribution* T_0 of a real hypersurface M in $M_n(c)$ is defined by

$$T_0(p) = \{ X \in T_p(M) \mid \langle X, \xi \rangle_p = 0 \},\$$

where $T_p(M)$ is the tangent space of M at p. A (1,1) type tensor field T of M is said to be η -parallel if $\langle (\nabla_X T)Y, Z \rangle = 0$, and cyclic η -parallel if

 $\mathfrak{S}\langle (\nabla_X T)Y, Z \rangle = \langle (\nabla_X T)Y, Z \rangle + \langle (\nabla_Y T)Z, X \rangle + \langle (\nabla_Z T)X, Y \rangle = 0$

Received by the editors August 6, 2003; revised June 22, 2006.

This work was supported by the research fund of Hankuk University of Foreign Studies.

AMS subject classification: Primary: 53C40; secondary: 53C15.

[©]Canadian Mathematical Society 2007.

for any *X*, *Y* and *Z* in the holomorphic distribution T_0 . Real hypersurfaces with η -parallel or cyclic η -parallel shape operator or Ricci operator have been studied by many authors (see [7]). Of course, the condition

(1.2)
$$\langle (A\phi - \phi A)X, Y \rangle = 0$$

for any *X* and *Y* in T_0 is weaker than (1.1). It is known that a ruled real hypersurface in $M_n(c)$ satisfies (1.2) and has the η -parallel shape operator [1, 5, 7]. Recently, C. Baikoussis [2] studied real hypersurfaces in $M_n(c)$ with certain conditions related to the Ricci operator and the structure tensor ϕ . U-H. Ki and Y.-J. Suh [4] investigated a real hypersurface satisfying (1.2) and having a special η -parallel shape operator.

The purpose of this paper is to give some characterizations of a real hypersurface satisfying (1.2) and having the cyclic η -parallel shape operator or Ricci operator. We shall prove the following.

Theorem 1.1 Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M has the cyclic η -parallel shape operator and satifies (1.2), then M is locally congruent to either a real hypersurface of type A or a ruled real hypersurface.

Theorem 1.2 Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. Assume that M satisfies (1.2). Then M is locally congruent to a ruled real hypersurface if and only if it satisfies one of the following:

(1.3)
$$\langle AX, Y \rangle \phi U + \langle Y, \phi U \rangle AX + \langle X, \phi U \rangle AY =$$

 $\beta \{ \langle X, U \rangle \langle Y, \phi U \rangle + \langle Y, U \rangle \langle X, \phi U \rangle \} \xi,$

(1.4)
$$(\nabla_X A)Y = \{\beta^2(\langle X, U \rangle \langle Y, \phi U \rangle + \langle Y, U \rangle \langle X, \phi U \rangle) - \frac{c}{4} \langle \phi X, Y \rangle \} \xi$$

for any X, Y in the holomorphic distribution T_0 , where $\beta \neq 0$ is the length of $\phi \nabla_{\xi} \xi$ and $U = -\frac{1}{\beta} \phi \nabla_{\xi} \xi$, ∇ being the Riemannian connection of M.

Theorem 1.3 Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M has the cyclic η -parallel Ricci operator and satifies (1.2), then M is locally congruent to a real hypersurface of type A.

2 Preliminaries

Let *M* be a real hypersurface immersed in a complex space form $(M_n(c), \langle \cdot, \cdot \rangle, J)$ of constant holomorphic sectional curvature *c*, and let *N* be a unit normal vector field on an open neighborhood in *M*. For a local tangent vector field *X* on the neighborhood, the images of *X* and *N* under the almost complex structure *J* of $M_n(c)$ can be expressed by

$$JX = \phi X + \eta(X)N, \quad JN = \xi,$$

where ϕ defines a linear transformation on the tangent space $T_p(M)$ of M at any point $p \in M$, and η and ξ denote a 1-form and a unit tangent vector field on the neighborhood, respectively. Denoting the Riemannian metric on M induced from the metric on $M_n(c)$ by the same symbol $\langle \cdot, \cdot \rangle$, it is then easy to see that

$$\langle \phi X, Y \rangle + \langle \phi Y, X \rangle = 0, \quad \langle \xi, X \rangle = \eta(X)$$

for any tangent vector field *X* and *Y* on *M*. The collection $(\phi, \langle \cdot, \cdot \rangle, \xi, \eta)$ is called an *almost contact metric structure* on *M*, and satisfies

(2.1)
$$\begin{aligned} \phi^2 X &= -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \\ \eta(\xi) &= 1, \quad \langle \phi X, \phi Y \rangle = \langle X, Y \rangle - \eta(X)\eta(Y). \end{aligned}$$

Let ∇ be the Riemannian connection with respect to the metric $\langle \cdot, \cdot \rangle$ on *M*, and *A* be the shape operator in the direction of *N* on *M*. Then we have

(2.2)
$$\nabla_X \xi = \phi AX, \quad (\nabla_X \phi)Y = \eta(Y)AX - \langle AX, Y \rangle \xi.$$

Since the ambient space is of constant holomorphic sectional curvature *c*, the equations of Gauss and Codazzi are given by

$$(2.3) \quad R(X,Y)Z = \frac{c}{4} \left\{ \langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y - 2 \langle \phi X, Y \rangle \phi Z \right\} + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY,$$

(2.4)
$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X, Y \rangle \xi \}$$

for any tangent vector fields *X*, *Y* and *Z* on *M*, where *R* is the Riemannian curvature tensor of *M*. We shall denote the Ricci operator of *M* by *S*. Then it follows from (2.3) that $SX = \frac{c}{4} \{ (2n+1)X - 3\eta(X)\xi \} + mAX - A^2X$, where m = trace A is the mean curvature of *M*. The covariant derivative of *S* is given by

(2.5)
$$(\nabla_X S)Y = -\frac{3c}{4} \{ \langle \phi AX, Y \rangle \xi + \eta(Y)\phi AX \} + (Xm)AY + m(\nabla_X A)Y - (\nabla_X A)AY - A(\nabla_X A)Y.$$

If the vector field $\phi \nabla_{\xi} \xi$ does not vanish, that is, the length β of $\phi \nabla_{\xi} \xi$ is not equal to zero, then it is easily seen from (2.1) and (2.2) that

(2.6)
$$A\xi = \alpha\xi + \beta U,$$

where $\alpha = \langle A\xi, \xi \rangle$ and $U = -\frac{1}{\beta} \phi \nabla_{\xi} \xi$. Therefore, *U* is a unit tangent vector field on *M* and $U \in T_0$. If the vector field *U* cannot be defined, then we may consider $\beta = 0$ identically. Therefore $A\xi$ is always given in (2.6)

From now on, we assume that the condition (1.2) holds on M, that is,

$$\langle (A\phi - \phi A)Y, Z \rangle = 0$$

for any *Y* and $Z \in T_0$. With respect to any tangent vector field *X* on *M*, if we differentiate this relation covariantly in the direction of *X* and make use of (1.2), (2.1), (2.2) and (2.6), we obtain (2.7)

$$\langle (\nabla_X A)Y, \phi Z \rangle + \langle (\nabla_X A)Z, \phi Y \rangle = \beta \left\{ \langle Y, U \rangle \langle AX, Z \rangle + \langle Z, U \rangle \langle AX, Y \rangle - \langle Y, \phi U \rangle \langle \phi AX, Z \rangle - \langle Z, \phi U \rangle \langle \phi AX, Y \rangle \right\},$$

where we have used the equation

$$\nabla_X Y = \langle \nabla_X Y, \xi \rangle \xi + (\nabla_X Y)_0 = -\langle \phi AX, Y \rangle \xi + (\nabla_X Y)_0, \quad (\nabla_X Y)_0 \in T_0.$$

Putting Y = Z into (2.7) and using the Codazzi equation (2.4), we have

$$\langle (\nabla_Y A)\phi Y, X \rangle = \langle \beta \{ \langle Y, U \rangle AY + \langle Y, \phi U \rangle A\phi Y \} - \frac{c}{4} \langle Y, Y \rangle \xi, X \rangle$$

for any tangent vector field *X* on *M* and $Y \in T_0$, which implies

(2.8)
$$(\nabla_X A)\phi X = \beta\{\langle X, U\rangle AX + \langle X, \phi U\rangle A\phi X\} - \frac{c}{4}\langle X, X\rangle \xi,$$

(2.9)
$$(\nabla_{\phi X} A)X = \beta\{\langle X, U \rangle AX + \langle X, \phi U \rangle A\phi X\} + \frac{c}{4} \langle X, X \rangle \xi$$

for any $X \in T_0$.

Next we consider that the vector fields *X*, *Y* and *Z* in (2.7) belong to the holomorphic distribution T_0 . In the equation (2.7), we shall replace *X*, *Y* and *Z* cyclically and then add the equation to (2.7), from which we subtract the third one. By use of the Codazzi equation and the relation (1.2), we have (see also [4])

$$\langle (\nabla_X A)Y, \phi Z \rangle = \beta \{ \langle AX, Y \rangle \langle Z, U \rangle - \langle A\phi X, Z \rangle \langle Y, \phi U \rangle - \langle A\phi Y, Z \rangle \langle X, \phi U \rangle \}.$$

Putting $Z = \phi Z$ into the above equation and using (1.2), we obtain

(2.10)
$$\langle (\nabla_X A)Y, Z \rangle = \beta \mathfrak{S} \langle AX, Y \rangle \langle Z, \phi U \rangle$$

for any *X*, *Y* and *Z* in T_0 , or equivalently

$$(2.11) \quad (\nabla_X A)Y = \beta \{ \langle AX, Y \rangle \phi U + \langle Y, \phi U \rangle AX + \langle X, \phi U \rangle AY \} \\ + \{ \langle (\nabla_X A)Y, \xi \rangle - \beta^2 (\langle X, U \rangle \langle Y, \phi U \rangle + \langle X, \phi U \rangle \langle Y, U \rangle) \} \xi.$$

3 Proofs of Theorems

In this section, we shall prove Theorems 1.1, 1.2 and 1.3. Let *M* be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. We first prove some lemmas.

Lemma 3.1 Assume that M has the cyclic η -parallel shape operator and satisfies (1.2). If (1.3) does not hold, then ξ is principal, that is $A\xi = \alpha \xi$.

Proof Assume that there is a point p of M such that the scalar field β given in (2.6) is not equal to zero at p. Then there exists an open neighborhood \mathcal{U} of p such that $\beta \neq 0$ on \mathcal{U} , that is, ξ is not principal on \mathcal{U} . Since we have $\langle AU, \phi U \rangle = 0$ and $A\phi U = \phi AU$ from (1.2) and $n \geq 3$, we see from (2.6) that there are scalar fields γ and δ on \mathcal{U} and a unit tangent vector field V orthogonal to ξ , U and ϕU such that

(3.1)
$$AU = \beta \xi + \gamma U + \delta V, \quad A\phi U = \gamma \phi U + \delta \phi V$$

Under the assumption (1.2), it is easy to see from (2.10) that the shape operator A is cyclic η -parallel if and only if A is η -parallel. Multiplying (2.11) by ϕU and using (3.1) and the η -parallel shape operator, we have

$$(3.2) \quad \langle AX, Y \rangle + 2\gamma \langle X, \phi U \rangle \langle Y, \phi U \rangle + \delta \{ \langle X, \phi U \rangle \langle Y, \phi V \rangle + \langle X, \phi V \rangle \langle Y, \phi U \rangle \} = 0.$$

If we put X = Y = U, or X = U and Y = V into (3.2) and make use of (3.1), then we see that

(3.3)
$$\gamma = \delta = 0$$

on \mathcal{U} , and hence (3.2) is reduced to

$$(3.4) \qquad \langle AX, Y \rangle = 0.$$

It follows from (2.6), (3.1), (3.3) and (3.4) that

for any $X \in T_0$, which shows that *M* is locally congruent to a ruled real hypersurface (see [1, 5]).

Since *M* does not satisfy (1.3), there are some vector fields *X* and *Y* in T_0 such that

$$(3.6) \quad \langle AX, Y \rangle \phi U + \langle Y, \phi U \rangle AX + \langle X, \phi U \rangle AY \\ \neq \beta \{ \langle X, U \rangle \langle Y, \phi U \rangle + \langle Y, U \rangle \langle X, \phi U \rangle \} \xi.$$

It is easily seen from (3.5) that (3.6) gives a contradiction. Therefore ξ must be principal.

Lemma 3.2 M is locally congruent to a ruled real hypersurface if and only if it satisfies (1.3).

Proof If *M* is locally congruent to a ruled real hypersurface, then the scalar field β does not vanish and *M* satisfies (3.5). It is clear that (1.3) is given by (3.5).

Conversely, we assume that (1.3) holds on *M*. Putting $Y = \phi U$ into (1.3), we have

(3.7)
$$\langle A\phi U, X \rangle \phi U + AX + \langle X, \phi U \rangle A\phi U = \beta \langle X, U \rangle \xi$$

for any $X \in T_0$. If we put $X = \phi U$ into (3.7) and multiply it by ϕU , then we see that $A\phi U = 0$. Therefore (3.7) is reduced to $AX = \beta \langle X, U \rangle \xi$ for any $X \in T_0$, which together with (2.6) means that M is locally congruent to a ruled real hypersurface.

Lemma 3.3 Assume that M satisfies (1.2). Then the equations (1.3) and (1.4) are equivalent.

Proof If (1.3) is given on *M*, then we see from Lemma 3.2 that (3.5) holds on *M*. Differentiating the first equation of (3.5) covariantly along $X (\in T_0)$ and using (2.2) and (3.5), we have

(3.8)
$$(\nabla_X A)\xi = (X\alpha)\xi + (X\beta)U + \beta\nabla_X U,$$

and, from the second of (3.5), we get

$$(\nabla_{\xi}A)X = -A\nabla_{\xi}X + \beta^2 \langle X, U \rangle \phi U + \xi (\beta \langle X, U \rangle) \xi.$$

From the above two equations and the Codazzi equation (2.4), we obtain

(3.9)
$$(X\beta)U + \beta \nabla_X U = \{\xi(\beta \langle X, U \rangle) - X\alpha\}\xi + \beta^2 \langle X, U \rangle \phi U - \frac{c}{4}\phi X - A \nabla_\xi X.$$

Since we have $\langle (\nabla_X A)Y, \xi \rangle = \langle (X\beta)U + \beta \nabla_X U, Y \rangle$ from (3.8), it is easily seen from (2.1), (2.2), (3.5) and (3.9) that

(3.10)
$$\langle (\nabla_X A)Y, \xi \rangle = \beta^2 (\langle X, U \rangle \langle Y, \phi U \rangle + \langle X, \phi U \rangle \langle Y, U \rangle) - \frac{c}{4} \langle \phi X, Y \rangle$$

for any X and Y in T_0 . Substituting (3.5) and (3.10) into (2.11), we then have (1.4).

Conversely, we assume that (1.4) is given on M. Then it follows from (1.4) and (2.11) that

$$\begin{split} \beta \{ \langle AX, Y \rangle \phi U + \langle Y, \phi U \rangle AX + \langle X, \phi U \rangle AY \} \\ &= \{ 2\beta^2 (\langle X, U \rangle \langle Y, \phi U \rangle + \langle X, \phi U \rangle \langle Y, U \rangle) - \frac{c}{4} \langle \phi X, Y \rangle - \langle (\nabla_X A)Y, \xi \rangle \} \xi, \end{split}$$

which implies

(3.11)
$$\langle AX, Y \rangle \langle Z, \phi U \rangle + \langle Y, \phi U \rangle \langle AX, Z \rangle + \langle X, \phi U \rangle \langle AY, Z \rangle = 0$$

Characterizations of Real Hypersurfaces in a Complex Space Form

for any *X*, *Y* and *Z* in T_0 . If we put $Y = Z = \phi U$ into (3.11), then we see that

$$2\langle AX, \phi U \rangle + \langle X, \phi U \rangle \langle A\phi U, \phi U \rangle = 0.$$

Putting $X = \phi U$ into the above, we get $\langle A\phi U, \phi U \rangle = 0$ and hence the above is given by

(3.12)
$$\langle AX, \phi U \rangle = 0$$
 for any $X \in T_0$.

By putting $Z = \phi U$ into (3.11) and using (3.12), we obtain $\langle AX, Y \rangle = 0$, which implies that (3.5) holds on *M*. The equation (1.3) is induced from (3.5) by Lemma 3.2.

Proof of Theorem 1.1 If *M* satisfies (1.3), then *M* is locally congruent to a ruled real hypersurface by Lemma 3.2.

If (1.3) does not hold on M, then the scalar field β vanishes identically on M, that is, ξ is principal by Lemma 3.1. We see from (2.1) and (2.6) that $(A\phi - \phi A)\xi = 0$, which together with our assumption (1.2) implies (1.1), that is, $A\phi = \phi A$ on M. Thus, Theorem A shows that M is locally congruent to a real hypersurface of type A.

Proof of Theorem 1.2 If M is a ruled real hypersurface, then we have (1.3) by Lemma 3.2. Under the assumption (1.2), we also have (1.4) by Lemma 3.3.

If *M* satisfies (1.3) or (1.4), then we have $AX = \beta \langle X, U \rangle \xi$ for any *X* in T_0 as seen in the proof of Lemmas 3.2 and 3.3, which means that *M* is locally congruent to a ruled real hypersurface.

The following is due to Ki and Suh [4] and immediate from Theorems 1.1 and 1.2.

Corollary 3.4 ([4]) If a real hypersurface M in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$ satisfies (1.2) and $(\nabla_X A)Y = -\frac{c}{4} \langle \phi X, Y \rangle \xi$ for $X, Y \in T_0$, then M is locally congruent to a real hypersurface of type A.

Proof of Theorem 1.3 We assume that there is a point p of M such that $\beta(p) \neq 0$. Then there exists an open neighborhood \mathcal{U} of p such that $\beta \neq 0$ on \mathcal{U} . We see from (1.2) and (2.6) that there are scalar fields γ and δ on \mathcal{U} and a unit tangent vector field V orthogonal to ξ , U and ϕU satisfying (3.1).

Putting X = Y = U, $Z = \phi U$ and X = Y = U, $Z = \phi V$ into (2.10) and taking account of (3.1), we have

(3.13)
$$\langle (\nabla_U A)U, \phi U \rangle = \beta \gamma, \quad \langle (\nabla_U A)U, \phi V \rangle = 0$$

on \mathcal{U} , respectively. As a similar argument as the above, by putting $X = Y = \phi U$, $Z = \phi U$ or $Z = \phi V$ into (2.10), we also obtain

(3.14)
$$\langle (\nabla_{\phi U} A)\phi U, \phi U \rangle = 3\beta\gamma, \quad \langle (\nabla_{\phi U} A)\phi U, \phi V \rangle = 2\beta\delta.$$

If we substitute X = U into (2.8) and (2.9) and make use of (3.1), we get

(3.15)
$$(\nabla_U A)\phi U = (\beta^2 - \frac{c}{4})\xi + \beta\gamma U + \beta\delta V, \quad (\nabla_{\phi U} A)U = (\beta^2 + \frac{c}{4})\xi + \beta\gamma U + \beta\delta V,$$

respectively.

Since the Ricci operator S is cyclic η -parallel, it follows from (2.5) and (2.10) that

$$(3.16) \quad \mathfrak{S}\{(Xm)\langle AY, Z\rangle + 3m\beta\langle AX, Y\rangle\langle Z, \phi U\rangle - \langle (\nabla_X A)Z + (\nabla_Z A)X, AY\rangle\} = 0$$

for any vector fields X, Y and Z in T_0 . Putting X = Y = U and $Z = \phi U$ into (3.16) and taking account of (3.1), (3.13) and (3.15), we get

(3.17)
$$\gamma((\phi U)m) + 3m\beta\gamma - 4\beta^3 - 6\beta\gamma^2 - 4\beta\delta^2 = 0.$$

Moreover, if we put $X = Y = Z = \phi U$ into (3.16) and make use of (3.1) and (3.14), we have $\gamma((\phi U)m) + 3m\beta\gamma - 6\beta\gamma^2 - 4\beta\delta^2 = 0$, which together with (3.17) gives a contradiction.

Therefore ξ must be principal and our conclusion follows from Theorem A.

References

- S. S. Ahn, S. B. Lee, and Y. J. Suh, On ruled real hypersurfaces in a complex space form. Tsukuba J. Math. 17(1993), no. 2, 311–322.
- [2] C. Baikoussis, A characterization of real hypersurfaces in complex space form in terms of the Ricci tensor. Canad. Math. Bull. **40**(1997), no. 3, 257–265.
- [3] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space. J. Reine Angew Math. 359(1989), 132–141.
- [4] U-H. Ki and Y. J. Suh, On a characterization of real hypersurfaces of type A in a complex space form. Canad. Math. Bull. **37**(1994), no. 2, 238–244.
- [5] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space. Math. Z. 202(1989), no. 3, 299-311.
- [6] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20(1986), no. 2, 245–261.
- [7] R. Niebergall and P. J. Ryan, *Real hypersurfaces in complex space forms*. In: Tight and Taut Submanifolds, Math. Sci. Res. Inst. Publ. 32, Cambridge Univiversity Press, Cambridge, 1997, pp. 233–305.
- [8] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355–364.
- [9] R. Takagi, On homogeneous real hypersurfaces of a complex projective space. Osaka J. Math. 10(1973), 495–506.
- [10] R. Takagi, I.-B. Kim and B. H. Kim, *The rigidity for real hypersurfaces in a complex projective space*. Tohoku Math. J. **50**(1998), no. 4, 531–536.

Department of Mathematics Hankuk University of Foreign Studies Seoul 130-791 Korea e-mail: ibkim@hufs.ac.kr rlgusm@hanmail.net mathsohn@hufs.ac.kr

104