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Abstract. The predictions of the Padoan and Nordlund IMF model are tested using the largest
simulations of supersonic hydrodynamic (HD) and magneto-hydrodynamic (MHD) turbulence to
date (∼10003 computational zones). The striking difference between the HD and MHD regimes,
predicted by the model, is recovered.
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1. Introduction
The mass distribution of prestellar cores was derived by Padoan & Nordlund (2002)

assuming that: i) the turbulence has a power law energy power spectrum; ii) cores are
formed by shocks in the turbulent flow and have size and density scaling as the postshock
layer thickness and density; iii) the number of such shocks scales self-similarly as the
inverse of the cube of their size; iv) the condition for the collapse of small cores is that
they exceed their Bonnor-Ebert mass, derived from the lognormal probability density
function (pdf) of the gas density independently of the core mass. After integrating over
the probability of exceeding the Bonnor-Ebert mass, the mass distribution is:

N(m)dm = C

[
1 + erf

(
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2
√

2σ

)]
m−xdm (1.1)

where the mass m = m/mBE,0 is in units of the average Bonnor-Ebert mass,

mBE,0 = 3.3M�
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)−1/2
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10K
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, (1.2)

σ is the standard deviation of the gas density pdf (assumed to be a lognormal) related
to the rms Mach number of the turbulence (the sonic or the Alfvénic Mach number in
the HD or MHD regime respectively, see below):

σ =
√

ln(1 + M2
0 /4) (1.3)

The coefficient C is not discussed here, but it would be important for modeling the star
formation efficiency. The power law slope, x, is determined by the power law slope of
the energy spectrum, β (β ≈ 5/3 in incompressible turbulence and β = 2 in Burgers
zero-pressure model), and by the shock jump conditions:

x = 3/(4 − β) (1.4)
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Figure 1. Logarithm of projected density from a snapshot of the Stagger-Code HD run (left)
and MHD run (right).

for B � Bcr (MHD jump conditions), and

x = 3/(5 − 2β) (1.5)

for B < Bcr (isothermal HD jump conditions). The critical magnetic field value that
separates the two regimes is given by the condition that the postshock gas pressure is of
order the postshock magnetic pressure, corresponding to an rms Alfvénic Mach number,
MA, of the order of the ratio of the mean gas and magnetic pressures, MA ∼ Pg/Pm.
This condition gives

Bcr ≈ 3µG
(

T0

10K

)(
u0

1km/s

)−1 ( n0

104cm−3

)
(1.6)

Because the Galactic magnetic field strength is locally 6±2 µG (Beck 2001; Han, Ferrière,
& Manchester 2004), and most likely larger in prestellar cores (Crutcher 1999; Bourke
et al. 2001), current star formation in the galactic disk is in the MHD regime. For a
value of β = 1.9, typical of supersonic turbulence, x = 1.4, similar to the Salpeter slope
of the stellar IMF (x = 1.35, Salpeter 1955). For very weak magnetic fields, perhaps in
protogalaxies at very large redshifts, the slope is x = 2.5, assuming again β = 1.9. At
high redshifts the temperature may also be larger, T > 100 K (e.g. Palla, Salpeter, &
Stahler 1983; Abel, Bryan & Norman 2000), giving an even larger value of Bcr.

The peak of the distribution shifts to smaller masses with increasing Mach number
and gas density, increasing the abundance of low mass stars and brown dwarfs as well.
This mass distribution matches very well the observed stellar IMF of Chabrier (2003), for
reasonable physical parameters, suggesting that the process of turbulent fragmentation
may play a major role in the origin of the stellar IMF (Padoan & Nordlund 2002), with
only minor effects due to gravitational fragmentation, accretion or merging.

We must stress the statistical nature of the origin of the mass distribution. The present
model is based on the statistics of turbulence, and the scaling laws are averages over a
large sample. But massive stars originate from shocks on the largest scales, and are rare
because such large scale shocks are rare. Being rare, these shocks may deviate from the
average properties of the turbulence, resulting in fluctuations of the number of massive
stars in different star-forming environments, in excess of the Poisson variance. Large
variations of observed mass distributions from place to place are evidence of the stochastic
nature of the process of star formation, although this process is universal.
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Figure 2. Left: Compensated power spectra of the main four runs and least square fits in the
range of wavenumbers 3 � k � 20. Right: Mass distributions of gravitationally unstable cores
above 1 M�, for the main four experiments scaled to a mean density of 104 cm−3, a box size of
6 pc, and a clumpfind density resolution f = 8%. The dashed lines show the power law derived
from the power spectrum slope and the shock jump conditions of the corresponding simulations,
according to the turbulent fragmentation model. The histograms are arbitrarily offset in the
vertical direction for clarity.

2. The simulations
Our turbulent fragmentation model outlined in the previous section neglects gravity, so

we test it with numerical simulations of supersonic MHD turbulence without self-gravity.
The main comparison between the MHD and HD regimes is carried out with the Stagger
Code, on a numerical mesh of 1, 0003 computational zones. We also simulated the HD
regime with the Enzo code (Norman & Bryan 1999), and the MHD regime with the Zeus
code (Stone & Norman 1992), in both cases on a numerical mesh of 1, 0243 computational
zones.

In all simulations we used periodic boundary conditions, isothermal equation of state,
random forcing in Fourier space at wavenumbers k � 2 (k = 1 correspond to the compu-
tational box size), uniform initial density and magnetic field (in the MHD runs), random
initial velocity field with power only at wavenumbers k � 2. The results of this work are
for rms Mach number 10, unless otherwise specified . In Figure 1 we show two projections
of the density field, from the HD and MHD Stagger Code runs. The density field in the
HD run appears to be significantly more fragmented than its MHD counterpart. This is
due to the fact that i) The density contrast in the HD shocks is larger than in the MHD
shocks, creating thinner postshock layers from shocks with equal sonic Mach number;
ii) the HD postshock layers are Kelvin-Helmholtz unstable, due to the strong shear flow
that originates in oblique shocks, while in most of the MHD layers the same instability
is suppressed by the magnetic field that is amplified in the compression.

Figure 2 (left panel) shows the compensated power spectra of the four main simulations.
The power spectra are defined as the squared of the modulus of the Fourier transform
of the velocity, integrated over a wave-number shell. If ûi(k) is the Fourier transform of
the i velocity component, ui(r), the power spectrum is Pi(k) =

∑
ûiû∗

i , where the sum
is over all i and all wave-numbers k in the shell k � |k| < k + dk. P (k) is proportional
to the contribution to the mean square velocity from all wave-numbers in the shell k �
|k| < k + dk.

The plots in Figure 2 have been arbitrarily shifted in the vertical direction. Devia-
tions of more than a factor of two from a power law fit are found only at wavenumbers
k > 100, so the turbulence is roughly scale-free for almost two orders of magnitude
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Figure 3. Left: Mass distributions of gravitationally unstable cores from the HD and MHD
regimes (Enzo and Stagger Code respectively), computed with f = 16% and assuming a mean
gas density of 104 cm−3. Each mass distribution is the result of matching two mass distributions,
computed for a computational box size of 1 pc and 6 pc. The Chabrier IMF (Chabrier 2003)
and the fragmentation model predictions for the power law mass distributions of each run are
also plotted. Right: Same as left, but for the Zeus MHD run. Notice how the steeper Zeus mass
distribution is recovered. The model predicts the Zeus mass distribution to be steeper than the
Stagger-Code one, as a result of the steeper turbulence power spectrum in the more diffusive
Zeus run.

in wavenumbers. We have chosen to measure the power spectrum slope in the range
3 � k � 20, because larger wavenumbers are affected by the bottleneck effect (e.g.
Falkovich 1994; Dobler et al. 2003; Haugen & Brandenburg 2004). We get β = 1.9 and
2.0 from the Stagger code in the MHD and HD regimes respectively. The Enzo code in
the HD regime gives β = 1.9, and Zeus in the MHD regime β = 2.2. The corresponding
values of the exponent of the power law range of the mass distribution of unstable cores
are, according to the model of turbulent fragmentation, x = 1.4 and 3 for the MHD and
HD regimes of the Stagger code, and x = 1.7 and 2.5 for the MHD and HD regimes of
Zeus and Enzo respectively.

If the power spectrum is not converged to its correct slope, due to a lack of dynamic
range of scales or an excess of numerical diffusivity, the slope of the mass distribution
may be strongly affected. For example, in the MHD case we get x = 1.4 from the Stagger
code, and x = 1.7 from the Zeus code. Padoan et al. (2006) have recently obtained a
measurement of the velocity power spectrum in the Perseus molecular cloud complex.
Their result is β = 1.81±0.10, which rules out the larger power spectrum slopes generated
by more dissipative SPH simulations (see § 4).

3. Mass distributions
We compute the mass distribution of gravitationally unstable cores formed in turbu-

lence simulations without self-gravity in order to learn about the effect of turbulence,
and to compare with the predictions of the turbulent fragmentation model. Our results
are obtained after the driven turbulence has statistically relaxed, which could not be
achieved with self-gravity. The mass distributions derived in this work and the mass dis-
tribution predicted by Padoan & Nordlund (2002), should be considered as a guess of
the final outcome of more realistic simulations with self-gravity. In simulations including
self-gravity the mass distribution of unstable cores may initially vary with time, as the
most massive cores are still being assembled by converging turbulent flows while their
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Figure 4. Left: Test of convergence of the mass distribution with decreasing value of the
density resolution parameter, f , from the Stagger-Code MHD run. The mass distribution is well
converged at f = 8%. Right: Same as left, but from the Zeus MHD run.

central part has already collapsed, while in the present study the mass distribution has
no time dependence.

Cores are defined as connected overdensities that cannot be split into two or more
overdensities of amplitude δρ/ρ > f . The unstable cores are the cores with mass larger
than their Bonnor-Ebert mass. Our clumpfind algorithm scans the density field with
discrete density levels, each of amplitude f relative to the previous one. Only the con-
nected regions above each density level that are larger than their Bonnor-Ebert mass are
selected as unstable cores. After this selection, the unstable cores from all levels form a
hierarchy tree. Only the final (unsplit) core of each branch is retained.

Different clumpfind algorithms treat the mass surrounding the cores in different ways.
The algorithm by Williams, de Geus, & Blitz (1994) uses up all the available mass (see
their Figure 2). This results in a core formation efficiency of 100% above the threshold
density. Our algorithm, instead, assigns to each core only the mass within the density
isosurface that defines the core (below that density level the core would be merged with
its next neighbor). With our choice, the smallest possible mass is assigned to each core.
With this algorithm, and with conditions typical of molecular clouds, the unstable cores
contain a few percent of the total mass, in agreement with the star formation efficiency
in molecular clouds.

In the right panel of Figure 2, the mass distributions above 1 M� are plotted for the
main four experiments scaled to a mean density of 104 cm−3, a box size of 6 pc, and
a clumpfind density resolution f = 8%. Overplotted on the corresponding power law
section of each mass distribution, the dashed lines show the power law derived from the
power spectrum slope and the shock jump conditions of each simulation, according to the
turbulent fragmentation model, x = 3/(4 − β) in the MHD regime, and x = 3/(5 − 2β)
in the HD regime. The general trend is recovered well, despite deviations to be expected
because this mass distributions are from single snapshots, not time averages.

Figure 3 shows the mass distributions of the HD and MHD regimes, computed with
f = 16% and assuming a mean gas density of 104 cm−3. Each mass distribution is the
result of matching two mass distributions, computed for a box size of 1 pc and 6 pc. In
the 6 pc case we can sample masses in the range 1 − 10 M�, and probe the effect of the
turbulence power spectrum and shock jump conditions on the mass distribution, but the
mass distribution is incomplete for stars below 1 M�. The 1 pc case samples well the
turnover region, defining the peak mass for that mean density and rms Mach number,
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Figure 5. Left: Power spectra compensated for the slope of the Stagger-Code HD run, β = 1.9.
The TVD and SPH power spectra are the same as in Figure 2 of Ballesteros-Paredes et al. (2006),
for the Mach numbers 3 and 6. Right: Mass distributions of gravitationally unstable cores from
the Enzo HD runs with MS = 6 and MS = 10, f = 8% and assuming a mean gas density
of 104 cm−3 and a box size of 6 pc. Each mass distribution contains unstable cores from two
snapshots. The Chabrier (2003) IMF (dashed line) and the power law predicted by the turbulent
fragmentation model (solid line) are also plotted.

but does not yield intermediate and high mass stars. The numerical mass distributions
reproduce the difference between the HD and MHD regimes predicted by the analytical
model. The steeper mass distribution expected from the Zeus run, compared with the
Stagger Code run, due to the steeper Zeus turbulence power spectrum, is also recovered.
Furthermore, the mass distribution of the MHD regime is consistent with Chabrier’s
stellar IMF (Chabrier 2003).

Once the physical size and mean density of the system are chosen, the clumpfind
algorithm depends only on two parameters: i) The spacing of the discrete density levels,
f , and ii) the minimum density above which cores are selected, ρmin. Our results do not
change significantly for values of ρmin below the mean gas density, so we scan the density
field only above the mean density. We have also verified the convergence of the mass
distribution with decreasing values of f . The convergence is typically obtained already
at a value of f ≈ 16%. In Figure 4 we plot the mass distributions of the MHD regime
assuming a mean gas density of 104 cm−3 and a 6 pc size. Between f = 32% and f = 8%
there is a tendency to fragment the largest cores and create a larger number of small
cores. However, the differences between f = 8% and f = 2% are small and the slope of
the mass distribution above 2-3 M� is independent of resolution.

4. Discussion
Using TVD and SPH simulations, Ballesteros-Paredes et al. (2006) conclude that i)

the core mass distribution depends on the rms Mach number and ii) it is not a power law,
even at large masses. The first statement is in part correct. The Padoan and Nordlund
model contains a Mach number dependence, with the peak of the mass distribution
shifting to lower masses as the Mach number increases, in agreement with the numerical
results in Ballesteros-Paredes et al. (2006). However, in the model the mass distribution
above the peak is a power law with slope independent of the Mach number. Based only
on the TVD simulations of Ballesteros-Paredes et al. (2002), and accounting for their
relative low numerical resolution, there is actually no contradiction with our results (see
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their Figure 4). Significant differences arises only from their SPH simulations (see their
Figure 5), but these simulations fail to produce a realistic velocity power spectrum.

The left panel of Figure 5 compares the power spectrum from the Stagger-Code HD
run with two TVD and two SPH power spectra from Ballesteros-Paredes et al. (2006),
for Mach numbers 3 and 6. The inertial range in both the TVD and SPH cases is not very
extended, due to the low numerical resolution. The TVD code gives a slope of β ≈ 2.2,
as in our Zeus run, for both Mach numbers. The extent of the inertial range in the TVD
run is also comparable to that in Zeus at the same resolution. The power spectra of
the SPH runs are instead much steeper, and their slope increases with decreasing Mach
number, β ≈ 2.7 for MS ≈ 6 and β ≈ 2.9 for MS ≈ 3. As confirmed by the TVD runs,
the power spectrum should not vary much with Mach number between MS = 6 and
MS = 3. For even lower Mach numbers, the power spectrum should become shallower,
and converge to the Kolmogorov value of β ≈ 5/3 for MS < 1. The dependence of the
slope of the SPH power spectrum on the Mach number is therefore both too strong and
in the wrong direction. The absence of an inertial range with a reasonable slope or with
the correct Mach number dependence, makes the SPH simulations inadequate for testing
the turbulent fragmentation model, because the model relies on the scale-free nature of
turbulent flows.

The issue of the Mach number dependence, is tested in the right panel of Figure 5,
showing the mass distributions from the Enzo HD runs with MS = 6 and MS = 10 and
with f = 8%, assuming a mean gas density of 104 cm−3 and a box size of 6 pc. The Figure
shows that the power law part of the mass distribution, above 1-2 M�, is independent
of the Mach number and matches the prediction of the turbulent fragmentation model,
that is k−2.5 for the power spectrum slope β = 1.9 of the HD Enzo runs.

5. Conclusions
We have tested the turbulent fragmentation model of Padoan and Nordlund (2002)

with the largest numerical simulations of supersonic MHD and HD turbulence to date.
The simulations have confirmed the theoretical prediction that the HD regime should
yield a much steeper mass distribution of unstable cores than the MHD regime. This
result shows that even rather weak magnetic fields (super-Alfvénic turbulence) can be
crucial in setting the initial conditions for star formation. Furthermore, star formation
at very high redshift may occur in the HD regime, due to the weak magnetic field and
to the larger value of the critical magnetic field strength at larger temperatures. If so,
the stellar IMF at high redshift may have a much steeper slope above the peak than in
present-day star formation.

Numerical simulations can quantitatively account for the role of the turbulence in
setting the initial conditions for star formation only if they generate an inertial range of
turbulence. This requires both low numerical diffusivity and large numerical resolution.
To model present-day star formation that occurs in the MHD regime, the magnetic
field cannot be neglected, even if the turbulence is assumed to be super-Alfvénic. SPH
simulations of star formation have too large numerical diffusivity, too low numerical
resolution and no magnetic fields. This should cast doubts on the value of comparing
their predictions with observational data (see also Agertz et al. 2006).

The mass distribution of unstable cores found in the MHD simulations is indistinguish-
able from the Chabrier stellar IMF (Chabrier 2003) and in agreement with the observed
mass distributions of prestellar cores. Such a coincidence may indicate that gravitational
fragmentation, competitive accretion or merging, all absent in these turbulence simula-
tions, may not play a major role in the origin of the stellar IMF.
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Discussion

Blitz: The agreement of the slope and mass range of your simulations with observations
is impressive. How good is the normalization? That is, how much gas do you need to
form a certain integrated mass of stars?

Padoan: Yes! The typical star formation efficiency we get with the clump find algorithm
is ∼5%, similar to the value in molecular clouds. This results from the fact that turbulence
puts a fraction of the mass at high density in a small volume (the log normal pdf of gas
density), and that mass fraction is a few per cent. The rest of the mass is kept at lower
density and higher velocity (until it hits a shock), and cannot take part to the process of
star formation.

Ostriker: You emphasized that observed structure as well as structure in simulations is
hierarchical, in the sense that cores form within clumps within filaments within larger fil-
aments. But your model for the power spectrum does not include any aspects of hierarchy
in density structure. Could you comment?

Padoan: The hierarchical structure is included (albeit in a simple fashion) in the hy-
pothesis of self-similarity. Also, the model does not exclude that a small filament is
inside a larger one; it does not take advantage of that, because it more simply assumes
self-similarity.

Whitworth: (i) How does nature choose the correct combination of MA and average
density to give an approximately universal ratio of brown dwarfs to H-burning stars; (ii)
If all massive cores collapse (both compact and extended ones), one would expect high
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mass stars to be more widely distributed, but this is not what we see. We need some
predictions of the distribution of stars as a function of mass.

Padoan: (i) If you assume Larson’s scaling relations you find that the turbulent frag-
mentation model produces a mass distribution weakly varying with environment. From
this point of view, your question may be: what produces the Larson relation? (ii) I don’t
think this is necessarily the implication of the model but we are starting simulations with
sink particles to address this question.

Bonnell: If turbulence gives the upper-mass IMF, then your massive clumps should
show the clustering properties of massive stars. This can be used as a strong test of
turbulent driven IMFs.

Padoan: In principle this is a good test. However, observed stellar populations are
always dynamically evolved relative to the original star-forming cores, so we will do this
comparison as soon as we will follow the collapse of the cores and capture the stars
numerically with sink particles. In other words, we will compare stars with stars, not
cores with stars.

Andre: In a recent paper, Tilly & Pudritz (2004) published purely hydrodynamical sim-
ulations of cluster formation and claimed to find a core mass spectrum with a Salpeter
slope at the high-mass end. This is in apparent contradiction with your point that turbu-
lent fragmentation leads to a Salpeter core mass spectrum only in the MHD case and to
a steeper spectrum in the HD case. Would you care to comment on what might explain
this apparent contradiction?

Padoan: These were much lower resolution simulations than ours. At that resolution,
you cannot resolve well the Salpeter range. In fact, you can see from their IMF plots that
the statistical significance of the IMF power law fit in the Salpeter range is very low.

https://doi.org/10.1017/S1743921307001615 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307001615

