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Abstract

In this paper, we develop a duality theory for the Apex dual in the case of primal
constraints. As suggested by Duffin in [4], the objective function in this framework is a
weighted average of the Legendre-Lagrangian function evaluated at key points. We show
that whenever this new dual is feasible there is no duality gap for this dual, and moreover,
no duality gap for both the Lagrangian and Wolfe duals too. We conclude with an outline
of an algorithm to solve constrained minimization problems in the Apex framework.

1. Introduction

In this paper, we consider the problem of estimating the minimum value of a
differentiable convex function subject to constraints by means of dual inequali-
ties. As noted in the unconstrained case [4], [5], in order to numerically estimate
the minimum value of a convex function by means of dual inequalities, the
following three properties are essential:

a) A dual program must be found.
b) All functions should be given explicitly.
c) All equality constraints should be linear.

If any of these properties do not hold, then the estimation technique would be of
little value numerically. In fact, in extending dual inequality estimation tech-
niques to the constrained case, the above properties can be very restrictive. Linear
programming duals and ordinary geometric programming duals satisfy properties
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[2 ] Apex duality for constrained optimization 135

(a, b, c) but, in general, conjugate duals (property (b)), ordinary Lagrangian duals
(property (b)) and Wolfe duals (property (c)) do not. In other words, either dual
inequality estimation techniques must be restricted to a narrow class of con-
strained optimization problems or a new dual must be developed.

Given the above, in this paper we construct a new dual program for con-
strained convex optimization problems which satisfies properties (a, b, c). The
proposed dual is based upon the Apex dual developed in [4] for the unconstrained
case. As such, the new dual is also termed the Apex dual. As seen below, this
nomenclature results in little, if any, ambiguity.

Since Apex duality is a relatively new idea, in the next section we provide a
sketch of its formulation along with the pertinent duality results. In Section 3, we
construct the Apex dual for the constrained case, while in Section 4 we derive its
duality properties. We show, for instance, under a feasibility assumption, that the
value of the Apex dual is the value of the original constrained minimization
problem. Given that the Apex dual satisfies properties (a, b,c), this implies that
constrained convex minimization problems can indeed be "solved" by means of
dual inequality techniques. In addition, under the same feasibility assumption, we
show that the value of the Apex dual equals the value of both the Lagrangian and
Wolfe duals too. We conclude this paper with a strategy for solving constrained
minimization problems on a computer, utilizing the Apex machinery.

2. Hie unconstrained case

In this section, we consider the problem of estimating the minimum value of a
convex function / on R" in the absence of constraints. Intuitively, the minimum
value of / and its minimizer x* (assume such an x* exists) can be approximated
in the following manner: first, select n + 1 distinct points in R" (label these
points xv ..., xn+1) such that the convex hull of xv..., xn+1 contains x* in its
interior. Next, for each i = 1,. . . , n + 1, form the half space Hi in Rn+l which
contains the graph / and whose boundary supports (is " tangent" to) the graph of
/ at (x,, /(*,)). The flfj"^ Ht is then a convex cone which contains the graph of / .
Moreover, in the case that this cone does not contain any "horizontal lines", the
"^-coordinate" of the cone's apex is actually a lower bound on /(x) and the
"x-coordinate" is an approximation for x*. In fact, as seen in [4], /(x*) is
actually the supremum of all such ^-coordinates, as long as one such cone exists.

In order to formalize the above, as in [4], we restrict our attention to the case
that / (x) is a differentiable convex function on R2. The differentiability restric-
tion forces each of the supporting hyperplanes #, to be unique and completely
determined by the partial derivatives of / at x,. The restriction of x to R2 is
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strictly a matter of convenience for purposes of discussion, after which the
extension to higher dimensions will be apparent.

Let f{x) be a differentiable convex function with x e R2 and, for / = 1,2, let
/ / (x ) be the partial derivative of / with respect to x,. Then, the equation of the
tangent plane to the graph of / at the point (3c1; x2) is given by the equation

x3 = xx/i'fo) + x2f2'(x2) + </>(*i> *2)
where <f> is the Legendre function of / ; that is

* = f-*lf{-X2ti-
Now, let x, y, z, be three arbitrary but fixed points in R2. Let A be the

following matrix of the partial derivatives of / evaluated at x, y, z:

A =

1 1 1
ttx) f{(y) f({z)
'(x) fi(y) fi\'

In addition, let wl,w2,w3, be the cofactors of the first row of the matrix A. In
other words, let

"3=f{(x)f2'(y)-f{(y)f2'(x).

Finally, let C be the convex cone generated by the system of inequalities

(2.1)

Note that by construction, each of the above inequalities is a supporting hyper-
plane of the graph of / .

By definition, the apex of the cone C above is the point (xlt x2, x3) which
satisfies each of the inequalities in (2.1) as an equality. Moreover, the "^-coordi-
nate" of the apex, call it i|/(;c, y, z), is precisely

*>i<t>(x) + w2<}>(y) + w3<j>(z) . .
+ w + w ' ' '

To see this, first rewrite each of the inequalities in (2.1) as an equality. Then
multiply the first, second and third equations by wv w2 and w3 respectively and
add. Finally, observe that the resulting coefficients of xl and x2 are zero, as the
cofactors of a given row of a matrix are orthogonal to any other row.

In the case that each of wvw2,w3 is positive, \j/(x, y, z) is actually a lower
bound on the minimum value of / . This follows from the fact that (x*, /(**))
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satisfies the system of inequalities given by (2.1), and the fact that the above
argument extends to the inequality case as long as each w, is positive.

Given the above, it is now possible to define a dual problem to the problem
which seeks the minimum value of / . Specifically, find

MA = sup\p(x,y,z) (A)
where x, y, z are chosen so that each of wx, w2, w3 is positive. As MA is generated
by the "^-coordinate" of the apex of the various approximating cones of / ,
program (A) is called the Apex dual. As the following example illustrates, the
Apex dual satisfies properties (a, b, c) of Section 1. In fact, since (a) and (c) are
trivially satisfied, we need only verify (b).

EXAMPLE 1. Let f(xv x2) = xx + JC|. Then <K*i> x2) = -x\ - x\.
Let x, y, z be three arbitrary but fixed points in R1. Then

" 1 1 1 '
A -2xx —2yx -2zx

-2x2 -2y2 -2z2j

from which it follows that

w2 = -Axxz2 + Ax2zx,

An explicit formula for \f/(x, y, z) is now immediate, given the above formulae for
wx,w2,w3, <t>(xx,x2), <j>(yx,y2) and 4>(zx,z2Xand (2.2).

We say that a triple of points [x, y, z] is a feasible solution for the Apex dual if
the cofactors wx,w2,w3 of the matrix A are positive. By construction, it follows
that if [x, y, z] is a feasible solution to the program (A), then \p(x, y, z) < / (**) ,
which in turn implies that MA < / (**) . In fact, as seen in [4], the following
stronger statement can be made.

THEOREM 2.1. (Duffin [4]). / / the minimum points off(x) form a bounded set,
then the Apex dual (A) is feasible. Moreover, the supremum value of program (A)
is equal to the minimum value off(x).

Conversely, if the Apex dual is feasible, then the minimum value of f(x) is
attained and the set of minimum points is bounded. Moreover, the supremum value
of program (A) is equal to the minimum value off(x).

As a consequence of the above, we note that if u, x, y,z e R2 are chosen so
that u is in the domain of / , and if [x, y, z] is feasible for the program (A), then
(f(u) + ip(x, y,z))/2 approximates f(x*) with an error of at most ( / ( « ) -
$(x, y, z))/2. Moreover, since x* is in the interior of the triangle generated by
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the points x, y, z (denoted by Ajcyz), we can approximate x* by xA, the
"x-coordinate" of the apex of cone C, and we can also estimate how far xA is
from x*.

An iterative scheme for estimating x* and / ( * * ) is now immediate. Observe
that the point xA divides Axyz above into three subtriangles, &xyxA, LxxAz and
&xAyz, one of which contains x*. In other words, except for the case discussed
below, one of the three sets of points, [x, y, xA], [x,xA,z] and [xA, y, z] is a
feasible solution for the program (A). Hence the above estimation process can be
repeated for this new feasible solution. Terminate this process when either the
diameter of the approximating triangle is sufficiently small or the functional
approximation is good enough. Note, if a uniform decrease in the diameter of the
approximating triangle is desired, then use the epicenter of Ajyz in place of xA in
the above.

The above scheme needs to be modified in the case that x* is on the boundary
of at least one of above subtriangles of kxyz. In this case, replace xA by any other
point of the interior of Axyz which is not on the line determined by x* and xA,
and continue.

The algorithm outlined above has an important pedagogical implication. Basi-
cally, such an algorithm can be implemented on a personal computer by students
in an introductory optimization course. Then, after successful implementation,
students become better motivated and certain topics, such as rates of conver-
gence, become more understandable.

3. The constrained case

In this section, we construct the Apex dual for the constrained minimization
program (P) which seeks

MP = inf/(jc) (P)

subject to

g,.(x)<0; i = l ,2 , . . . ,m

where / ( x ) and each g,(x) is a differentiate convex function on R". (Note, if /
and/or one or more of the g, is not defined on all of R", then we shall assume
that the respective domains of all the functions in the program (P) intersect.)

As a first step, we consider the ordinary Lagrangian dual (D) of the program
(P) which seeks

MD= sup inf L{x,\), (D)

where L(x, \) = f(x) + E"i *•&(*)•
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Since, for each X > 0, the function L(x, X) is a differentiable convex function
of x, it follows that for each X 3s 0, there exists an (unconstrained) Apex dual
(Ax) for the Lagrangian dual objective function inixL(x, X). This implies that
for each A > 0, the optimal value MAX of the program (Ax) is a lower bound for
MD and hence for MP also. Thus the program (A) which seeks

MA = sup MAX (A)

is a legitimate dual for the program (P). In fact Program (A) is called the Apex
dual of the program (P). Before developing this dual further, however, an example
is appropriate.

EXAMPLE 2. Find the minimum value of xf + x\ subject to xx + x2 > 1. Given
the above,

L(xx, x2,X) = xl + x\ + X(l - xl - x2).

For fixed X, we have

L\(xl,x2,X) = 2x1- X

and

L'2(xl,x2,X) = 2x2 - X.

Thus

Let x, y, z be three arbitrary but fixed points in R2. Let X be fixed. Then

' 1 1 1 '
A. = 2xl — X 2yl — X 2zl - X

\2x2-X 2y2-X 2z2-X

Let wix, w2X, and wiX be the cofactors of the first row of Av Then

and

MAX = sup>px(x,y,z),

where x, y, z are chosen so that each of wix, w2X and w3 x is positive.

Technically, as seen in the above example, the Apex dual as defined above does
not satisfy property (b) in that MAX is not given explicitly. In order to satisfy
property (b), the Apex dual (A) can be rewritten as follows: find

MA =
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where the supremum is take over A,x l t . . . , x n + 1 , where X > 0 and xv...,xn+l

represent n + 1 distinct points of R" which form a feasible solution for the
program (^A).

Since the two formulations for the Apex dual (A) are equivalent, in the proof
below we shall utilize the original formulation involving MAX while in the
computational remarks below we shall defer to the reformulation involving \j/x.

We say that a vector \ > 0 is feasible for the Apex dual (A) if and only if the
program (Ax) is feasible, that is, if and only if there exists n + 1 distinct points in
R" for which the cofactors of the first row of the matrix AA are positive. Theorem
2.1 now implies

PROPOSITION 3.1. A vector X is feasible for the Apex dual if and only if the
infxL(x, X) is finite and attained on a bounded set.

Let the set of feasible solutions to program (A) be denoted by dom(A), with a
similar notation for the feasible solutions of program (D). Then by construction,

dom(^) c dom(P) (3.1)

and

MA < MD < MP. (3.2)

In the next section, we show that MA = MP whenever the Apex dual is feasible.
Given this, the above inequality now implies that the Apex dual is not feasible
whenever there is a Lagrangian duality gap, that is, whenever MD < MP. As the
next example illustrates, it can happen that the Apex dual is not feasible even
when MD = MP.

EXAMPLE 3. Consider the problem

infexp(x)

subject to x < 0.

By construction, MP = MD = 0 and MA = -oo. To see the second claim, first
let X = 0. Then infx L(x, 0) = 0. However this infimum is not attained. Thus
Theorem 2.1 implies that the program (Ao) is not feasible. Now let X > 0 be
arbitrary but fixed. Then infx L(x, X) = -oo. Again, Theorem 2.1 implies that the
program (Ax) is not feasible. Hence (A) is not feasible and MA = -oo.

In order to characterize when the Apex dual is feasible, we need to study the
behavior of / on unbounded sequences. Specifically, we say that the function / is
unbounded at infinity if f(xk) -» + oo whenever (xk) is a sequence with \\xk\\ -»
+ 00.
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LEMMA 3.2. Let f(x) be a continuous convex function on R". Then f is unbounded
at infinity if and only if the minimum set off is nonempty and bounded.

PROOF. Assume that / is unbounded at infinity and let (xk) be a minimizing
sequence of / . Then by assumption (xk) is bounded from which it follows that
(xk) has a cluster point x*. Without loss of generality we may assume that x* is
a limit point. Now f(x*) = inf/ since (xk) is a minimizing sequence and / is
continuous. Thus the minimum of / is attained. Moreover the minimum set of /
is bounded since, by assumption, f(xk) -* + oo whenever \\xk\\ -* + oo.

Assume now that the minimum set of / is nonempty and bounded. In addition
assume that / is not unbounded at infinity. Then there exists a sequence (xk) in
R" with \\xk\\ -» + oo for which f{xk) -* M < + oo. Let y be a cluster point of
the sequence (jcfc/||jct||). Without loss of generality, we may assume that y is a
limit point. Moreover, without loss of generality, we may also assume that the
origin minimizes / . Then, for all a > 0, ay is a minimizer of / . To see this, let a
be an arbitrary but fixed positive number. Then, for all k sufficiently large,
||xA|| > a. Thus, by convexity, for these k

f(axk/\\xk\\) < (1 - a/\\xk\\)f(0)+(a/\\xk\\)f(xk).

Now, by continuity, the left hand side of the above inequality converges to f(ay)
as k tends to infinity and, by construction, the right hand side converges to /(0).
Thus

for all a > 0.

But /(0) is the minimum value of / . Thus

f(ay)=f(0) foralla^O

from which it follows that the minimum set of / is unbounded, a contradiction.
In other words, / is unbounded at infinity whenever the minimum set of / is
nonempty and bounded.

As an immediate consequence to the above lemma, we can now characterize
when the Apex dual is feasible.

COROLLARY 3.3. The vector X is feasible for the Apex dual if and only if the
function L(x,\) is unbounded at infinity.

PROOF. By Proposition 3.1, X is feasible for the Apex dual if and only if the
minimizing set of L(x,\) is nonempty and bounded. By Lemma 3.2, the
minimizing set of L(x, X) is nonempty and bounded if and only if L(x, X) is
unbounded at infinity.
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Note that the above lemma and its corollary imply that the Apex dual is
feasible whenever the function / is unbounded at infinity. This follows from the
fact that L(x, 0) = / (x) . Thus Theorem 4.4 below implies that there is no Apex
duality gap whenever the objective function / is unbounded at infinity.

We now conclude this section with the following Lagrangian duality result for
canonical programs, which is utilized in the proof of Theorem 4.4 and found in
[1], [2]. At this time we note that program (P) is called canonical if there exists a
real number a and a positive number 8 such that

a) n

is nonempty and bounded.

THEOREM 3.4. (Duffirt^l]). Assume that the program (P) is canonical. If either of
the programs (P) or (D) has a feasible solution then MP = MD with MP attained.

For the benefit of the readers who are interested in abstract spaces, we now
note that Theorem 3.4 holds in the case that the domain of each of the functions
/ , gx,..., gm is a reflexive Banach space(see [1]) and in the case that / and each g,
are continuous on a closed convex subset of the reflexive Banach space, perhaps
taking the value + oo on the boundary of the set (see [2]). Finally, we note that in
finite dimensions Theorem 3.4 holds as long as the functions / and all the g, are
lower semi-continuous [7].

4. Duality results

Given the above notation, assumptions and constructions, we are now ready to
develop a duality theory for the Apex dual (A). As a first step, we prove the
following type of accessibility lemma for Apex programs.

LEMMA 4.1. / / XA is feasible for the Apex dual and XD is feasible for the
Lagrangian dual then X is feasible for the Apex dual whenever \ e [XA, \D).

PROOF. Let 0 < e < 1 and let X = (1 - e)\D + e\A. The result follows from
Corollary 3.3 once we show that L(x, X) is unbounded at infinity.

Let (xk) be a sequence in R" with \\xk\\ -* + oo. Then for each k,

L(xk, X) = (1 - e)L(xk, XD) + eL(xk, XA)

>(1- e)inf L(x, XD) + eL(xk, XA).
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Now infxL(x,\D) is finite since \D is feasible for the Lagrangian dual. In
addition, L(xk, \A) -* +ooasfc-» +00 by Corollary 3.3 since X,, is feasible for
the Apex dual. Thus the above inequality implies that L(xk, X) -» + 00 as
k -* + 00. Hence L(x, X) is unbounded at infinity and as reasoned above, X is
feasible for the Apex dual.

The following corollary is now immediate. In its statement ri( ) denotes the
relative interior of the set in ( ).

COROLLARY 4.2. / / the Apex dual is feasible, then r/(dom(D)) c dom(^4) c
dom(D).

PROOF. Let X^ be feasible for the Apex dual, that is X^ e dom(A). Then
X^ e dom(D) by construction (3.1). Thus dom(v4) c dom(D).

Let XD G ri(dom(D)). Then, by definition, there exists an e > 0 with [X^, XD

+ e(XD - X^)] e dom(D). Lemma 4.1 now implies that XD e dom(A). Hence,
W(dom(D)) c dom(A).

The above corollary implies that whenever the Apex dual is feasible, the
feasible regions for the Apex and Lagrangian duals differ at most on the
boundary of the feasible region of the Lagrangian. As the next example il-
lustrates, this difference can indeed occur.

EXAMPLE 4. Let f(x) = (1 + x2)1/2 and let g(x) = -(x2 - 1)1/2 for x > 1;
+ 00 otherwise. Then a straightforward calculation shows that infxL(x, X) = (2
— 2X2)1/2 for 0 < X < 1; -00 otherwise, with attainment of the infimum at
x = [(1 + X2)/(l - X2)]1/2 for 0 < X < 1. Since this attainment is unique, Pro-
position 3.1 implies that X is feasible for the Apex dual whenever 0 < X < 1.
However, since mixL{x, 1), which is 0, is not attained, Proposition 3.1 implies
that X = 1 is not feasible for the Apex dual. In other words, X = 1 is feasible for
the Lagrangian dual but not the Apex dual.

In the example given above, it is easy to show that MA = MD = MP. As
Theorem 4.4 below shows, this is not surprising. However before proving Theo-
rem 4.4 we need the following technical result:

LEMMA 4.3. Assume that the Apex dual is feasible. Let (xk) be a sequence in the
set nr_i{*|g,(*) < 8} where 8 > 0 with \\xk\\ -> + 00 as k -* +00. Thenf(xk)
—» + 00 as k -* +00.
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PROOF. Let the sequence (xk) be as above. Since the Apex dual is feasible,
Corollary 3.3 imply that there exists a X > 0 with

m

/ (**)+ E *,*,(**) -» +oo as k -> +oo.
/ = i

Now for each k,

since each X, > 0. It now follows from the above that f(xk) -» + o o a s / c - » +oo,
since 8T.™=1 X, is a constant.

We now note that the above lemma implies that if the Apex dual is feasible,
then the program (P) is canonical. This observation will be important in the proof
of the next theorem.

THEOREM 4.4. / / the Apex dual is feasible, then MA = MD = MP with MP
attained.

PROOF. A S noted in the discussion following Lemma 4.3, the program (P) is
canonical since the Apex dual is feasible. Moreover, since the Apex dual is
feasible, Lemma 3.2 and Corollary 3.3 imply that (D) has a feasible solution.
Thus Theorem 3.4 implies that MP = MD with MP attained. The result will
follow once we show that MA = MD.

Let X^ be feasible for (A) and let (Xm) be a maximizing sequence for (D). Let
m be arbitrary but fixed. Since 9(X) = infxL(x, X) is a concave function, there
exists a X(m) e [X^, Xm) such that 8(\(m)) > 0(Xm) - \/m. Now, Lemma 4.1
implies that \(m) is feasible for (A) which in turn implies, by Theorem 2.1, that
MAX(m) = 0(\(m)). Since by construction 0(\m) -» MD, the above inequality
implies that MAX{m) -» N > MD. Since, for each m, MAX(m) < MA, it now
follows that MA > MD. But by construction (3.2), MA < MD. Thus MA = MD
and the result follows as reasoned above.

If the Wolfe dual (W) to (P) is used as a dual, then we can prove results similar
to Corollary 4.2 and Theorem 4.4 for the feasible regions of the Apex and Wolfe
duals and their respective optimal values. This follows, for instance, from the fact
that

&om(A) c dom(H^) c d o m ( D ) .

To see the first inclusion, let X be feasible for Apex dual. Then by Lemma 3.4 and
Corollary 3.3 there exists an x(X) with L(x(X), X) = infx L(x, X). Moreover

where v / is the gradient of / . In other words, X is feasible for the Wolfe dual.
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Now the above inclusions in conjunction with Corollary 4.2 imply that if the
Apex dual is feasible, then the feasible regions of the Wolfe and Lagrangian dual
differ on at most the boundary of the feasible region of the Lagrangian dual. In
addition, the above inclusions in conjunction with Theorem 4.4 imply that if the
Apex dual is feasible, then MA = MW = MD = MP. This extends the duality
results derived by Falk in [6] concerning the Wolfe dual (see for example [9]).

5. Computational remarks

We conclude with a few remarks outlining the implementation of the Apex
framework on a personal computer.

As suggested in [5], first find a feasible solution to the Apex dual problem by
means of a grid or Monte Carlo search. Include in this search the multiplier X as
a variable. Once a feasible solution and multiplier are found, fix the multiplier X
and generate the approximation to the Lagrangian L(x, X) by the iterative
scheme suggested at the end of Section 2.

Finally, update the multiplier by either a penalty or first order multiplier
update as discussed, for instance, in [8].

It follows from Theorem 4.4 that the above algorithm will converge to the
optimal value of program (P) as long as the Apex dual is feasible. In addition,
since the above algorithm can be implemented on a personal computer, the
pedagogical benefits noted in Section 2 for the unconstrained case can now also
be realized in the constrained case.
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