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Abstract

There are some well-known laws that the commutator satisfies in groups, and that go by some
or all of the names Jacobi, Witt, Hall; and there are also some lesser-known laws. This is an
attempt at an axiomatic study of the interdependence and independence of these laws.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 20 A 05;
secondary 08 A 99.

1. Introduction

Luise-Charlotte Kappe had some time ago asked one of us (IDM) whether there
are any commutator laws in 4 variables that do not "follow" from those in 3
variables and that are valid in all groups. The present investigation has arisen out
of an attempt ot answer this question. We try here to find out something about
the logical interdependence of the various commutator laws that are known.
Forming the commutator can be looked upon as a binary operation; as we wish
to study the laws this operation satisfies, and how they imply or do not imply
each other, we introduce a symbol, K (no pun intended), for this operation. We
write it as a right-hand operator: xyn, and we call the result a "/c-tator". As
we are working in groups, we need the group operations, too. These should, for
the sake of consistency, also be denoted by lower case Greek letters and written
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as right-hand operators. However, we instead adopt a hybrid system, using the
usual group operation symbols: x • y for the product, x"1 for the inverse, e for
the unit element. (Note that the dot • will always be used for multiplication, not
just juxtaposition.) The "real" commutator is

[x,y] :=x" x -jT1 xy.

The notation for left-normed higher commutators is conventional:

[x,y,z] := [[z,j/],z].

We also use the usual notation for conjugation

xy := y~x • x • y, x~y : = y~l • z " 1 • y.

A number of laws involving the commutator are well known. Some, like

[x, e] = e,

are trivial. Others, like
[x-y,z] = [ x , z ) y -\y,z\,

are immediately verified, but will in the sequel be looked at more closely. Then
there are the laws that go by several of the names Jacobi, Witt, Hall. There is
no unanimity about what they are; probably the best-known is

which is certainly not due to Jacobi, whose concern was what is now called Lie
rings; nor is it due, as far as we have been able to find out, to either Ernst Witt
or Philip Hall in this form. There are a number of such laws, almost all of the
form

w(x, y, z) • w(y, z, x) • w(z, x, y) = e,

where w is some commutator word; and there are corresponding laws in four or
more variables. Some of them will be described in the next section. It is their
interdependence or independence that we wish to study. The algebraic systems
we consider will be called "kappa-groups".

The first author records his thanks to David W. Rosenthal for stimulating
discussions.

2. The laws

We group the laws we want to consider into several sets; the first set contains
a single law, which will never be assumed, and an equivalent:

(Nl) xyn = [x,y].
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This is equivalent to

(N2) z-xyn = xy.

The second set consists of the "trivial" laws which will always be assumed:

(Al) xe/c = e,

(A2) exK = e,

(A3) XXK = e,

(A4) xyK • yxK = e,

or, equivalently,

The third set consists of laws whose counterparts (that is to say the laws that
result by replacing xyK by [x, y\) are not satisfied in all groups, but that will
sometimes be used

(51) xyK = e,

(52) xyKZK — e,

(53) xyKztK2 — e,

(54) (x • y)zK = XZK • yzK,

(55) x(y • Z)K = xyK • XZK.

A kappa-group in which SI is satisfied will be called "kappa-abelian", one in
which S2 is satisfied "kappa-nilpotent of class 2", one in which S3 is satisfied
"kappa-metabelian", and so on. If S4 is satisfied, we shall call kappa "left linear";
and "bilinear" if both S4 and S5 are satisfied. In a nilpotent group of class 2,
the commutator is bilinear, and conversely, but for /c-tators this is not always
the case.

The fourth and fifth sets are more important: they consist of those whose
counterparts are satisfied in all groups (except for J8 and J9, which require the
kappa-group to be kappa-metabelian), and whose interdependence or indepen-
dence will be investigated.

(11) xyKZK = [xyK, z],

(12) (x • y)zK — XZK • xzKyK • yzK,

(13) x(y • Z)K — XZK • xyK • xyKZK,

(14) x • y • (x • y)zK = x • XZK • y • yzK,

(15) x • x(y • Z)K — x • xyK • (x • xyK)zK,

(16) z~l xyK-z = {z'1 • x • z)(z~l • y • Z)K,

(17) xyK • xyKZK = {x • xzK){y • yzK)K,

(18) xy-1K ' \
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(19) xy~1K — yxK • yxny~lK,

(110) x~xyK = xyn~x ' ,

(111) x~lyK = yxK •yxKX~1K.

II says that if the first argument in a /c-tator is itself a /c-tator, then the whole
/c-tator coincides with the commutator; and it is easy to see that because of A4,
the same is then true also if the second argument of the outside /c-tator is itself
a /c-tator. 12 and 13 give the connection between multiplication and /c-tation.
The next four laws deal with the connection between /c-tation and conjugation
in various ways. In 14 and 15, the first factor x can, of course, be cancelled on
both sides; this we have refrained from doing in order to show more clearly that
these laws are a translation of the "index laws" of conjugation. The last four
express the connection between /c-tation and inversion; 19 and 111 can be applied
to themselves again and again, ad infinitum. The next set of laws consists of the
Jacobi-Witt-Hall type laws; they are all of the form

w(x, y, z) • w{y, z, x) • w(z, x, y) = e

if they involve 3 variables, or

w(x, y, z, t) • w(y, z, t, x) • w(z, t, x, y) • w(t, x, y,z) = e

if they involve 4 variables (and analogously for more than 4 variables—the cor-
responding laws in 5 and more variables will not enter this discussion). We list
only the words w,

(31) w(x,y,z) = xy~1KZK • xy~1KZK,yK,

(32) w(x, y, z) = (yxn)(z • zyn)*,,

(J3) w(x,y,z) = (x-y)zK,

(34) w(x, y, z) — XZK • xznyn • yzK,

(J5) w{x,y,z,t) = (x-y-z)tK,

(36) w(x, y, z, t) = xtK • xtnyK • ytn • (xtK • xt/cj//c • ytn)zK • ztK.

The first of these is a translation of the best-known form of the Jacobi-Witt-Hall
identity or identities; so is the second. The commutator analogues of J3 and
J5 first occurred in the (unpublished part of the) Cambridge PhD thesis of one
of us (BHN); J4 and J6 are essentially the same as J3 and J5, respectively, but
making use of 12, which will only rarely be valid in the kappa-groups we shall later
exhibit. J6 could be further expanded by repeatedly using 12, but we refrain from
making it even more complicated. There are, however, two more laws that arise
from J3 and J5 and that we wish to look at; they are formed in the following way:
In the commutator analogue of J3 (or J5), collect all commutators of weight 2 to
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the left until they cancel; this introduces commutators of higher weight, making

a long and complicated product , in which we replace commutators by kappas.

This gives

XZKXJK • xzKyKZXK? • yzKZXK? • yzKZXK?zyn2 • yxiszxK?

• yxmxK2zyn2 • yxKZXK2xyK2 • yxKZXK2xyn2zyK2

(37) • yxKZKzyr? • yxKZKxyx,2 • yxKZKxyn2 zyx? • yxKZKZXK2

• yxKZKZXK2zyK2 • yxKZKZXK2xyn2 • yxKZKZXK2xy&2

• zyuxyn2 • zyKXK • zyKXKxyK2 = e.

This is, of course, a quite unmanageable expression, but in a kappa-metabelian
kappa-group, that is to say under the assumption that S3 is satisfied, it simplifies
considerably, namely to

(J8) xzKyK • yxKZK • zyKXK = e.

We refrain from writing the law that corresponds to J6 out in full; in a kappa-
metabelian kappa-group it again simplifies, and becomes, with the same conven-
tion as in J5 and J6,

(J9) w(x, y, z, t) — xtnyK • xtKZK • xtnyKZK • ytKZK.

3. Some positive results

Here we list some interdependences of the various laws (not by any means all
of them: there are too many). Recall that we assume kappa to satisfy the laws
Al-4: they will be used without further mention. They are not independent: it
is easily seen that Al and A4 together imply A2, and A2 and A4 together imply
Al.

LEMMA 3.1. O/Il, 12, 14, any two imply the third.

PROOF. Assume II and 12. Observe that 14 can be rewritten in the form

(3.11) (x •y)zK = y~1 • XZK y-yzK,

with the same left-hand side as 12. Now use II to rewrite the middle /c-tator on
the right-hand side of 12, to get

(3.12) (x • y)zK = XZK • (ZXK)~1 • y~l • XZK • y • yzK,

which, after cancellation on the right-hand side, gives 3.11, and thus 14. To
derive 12 from II and 14, the same steps can be reversed. Finally assume 12 and
14, the latter in the equivalent form 3.12. As the left-hand sides are equal, we

https://doi.org/10.1017/S1446788700032304 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032304


100 I. D. Macdonald and B. H. Neumann [6]

equate the right-hand sides, then cancel the first and last factors to get II (with
y and z interchanged).

LEMMA 3.2. 14 and 15 together are equivalent to II, 12, and 13 together.

PROOF. Begin with 15 and apply 14 to the right-hand side, with xyn substi-
tuted for y. This gives

(3.21) x • x(y • Z)K — x • XZK • xyK • xyKZK,

which, after cancelling the factor x on the left, becomes 13. Now use 3.11, which
is equivalent to 14, and invert both sides to get

(3.22) z(x • y)K = zyK • y~* • ZXK • y,

where we have used A4 repeatedly. Changing x to y, y to z, z to x gives

(3.23) x(y • Z)K — XZK • z~x • xyK • z,

and comparison with 13 then leads to

(3.24) xyK • xyKZK = z~l • xyK • z,

which finally, after dividing by xyK on the left, becomes II. Now 12 follows from
Lemma 3.1. All the steps are reversible, to give the converse (in fact only 15
needs to be derived, as the validity of 14 follows from Lemma 3.1).

LEMMA 3 . 3 . J3 and 35 are equivalent.

PROOF. TO derive J3 from J5, put one of the variables, say t, equal to e. For
the converse, replace z in J3 by u • v, say. This gives

(3.31) (a: • y)(u • V)K • (y • u • V)XK • (u • v • x)yK = e.

In this, interchange x with u and y with v, to get

(3.32) (u • v)(x • y)K • (v • x • y)uK • (x • y • U)VK = e.

Transform the two sides of 3.31 by (x • y)(u • V)K, then multiply the left-hand
side of 3.31 (thus transformed) from the left into the left-hand side of 3.32. The
result is, but for the names of the variables, J5.

4. Independence results

To show the independence of certain of the above laws from some of the
others, we consider models of kappa-groups. For example, to show that Nl
is independent of all the rest, we take a strictly non-abelian group, say the
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symmetric group of degree 3, and we define K as trivial, t h a t is to say so t h a t it
satisfied SI , and the kappa-group becomes kappa-abelian: it is easy to see tha t
in a kappa-abelian kappa-group all laws An , Sn, In, in are trivially satisfied.

Ideally there should be to every law a model which fails t o satisfy tha t law,
bu t satisfied all the others; bu t this is too much to hope for, as we already
know t h a t some of the laws or groups of laws imply others . In any case we have
far too many laws in our list to be able to survey their interdependences and
independences completely.

For the present our aim is very much more modest : we shall, out of a consid-
erable number we have investigated, present jus t 3, with a list of the laws they
satisfy and those they fail t o satisfy: we call this their "profile".

Our first model is quite small: the underlying group is the 4-group. As a
group it is generated by two elements, say a and b, which satisfy t he (defining)
relations

We define K by

xyK — a unless x = e or y = e or x = y.

The computations in this kappa-group, which we call Ml, are not difficult, but
we omit them and just state the result.

THEOREM 4.1 . The kappa-group Ml satisfies S3, S4, S5, 14, 16-8, 110, and
J2-9; it fails to satisfy SI, S2, 11-3, 15, 19, 111, and J l .

This model illustrates the fact that K can be bilinear without the kappa-group
being kappa-nilpotent of class 2 (Ml is, in fact, not kappa-nilpotent of any class).
It also shows that 14 by itself does not imply any of II, 12, or 13.

The second model, which we denote by M2, has as its underlying group the
direct product of a free nilpotent-of-class-2 group of rank 2 with an infinite cyclic
group. We generate it by four elements a, b, c, d with the defining relations,

[a,b] = c, [a,c] = [o,d] = M = [b,d] = [c,d] = e.

If

x = a
Xl • bX2 • c * 3 • dXi

and

y = a
yi -byi2 -cV3 -d?4,
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we p u t

where
«i2 -x2-yi- (2/1 - l ) / 2 - xi • (xi - 1) • y2/2.

This makes M2 kappa-ni lpotent of class (strictly) 3. Here the verification of the

profile is quite laborious; we omit it, bu t jus t s ta te the result:

THEOREM 4 . 2 . The kappa-group M2 satisfies S3, 12, 13, 15, 17, J1-J9, and

fails to satisfy S i , S2, S4, S5, II, 14, 16, 18-111.

This model shows, inter alia, t h a t 12 and 13 together do not imply I I , nor

14. T h e model can be modified by giving a, b, c, d finite order, say p, so t h a t the

whole kappa-group becomes finite of order p4.

Th e last model we exhibit, M3, has as underlying group the free abelian group

of rank 10. We write the elements as vectors and the z'th component of an element

x as X{, where i ranges from 1 to 10, and Xj is an integer; the group operation is

(vector) addit ion, and kappa is defined by

)i=Q for i = 1 , 2 , 3 , 4 ,

= n • 2/2 - x 2 - y i ,

— x2 • V3 - x3 • 2/2,

(xyn)7 = x3-y4-x4-y3,

xi • y6 - x6 • yi + x5 • y3 - x3 • yb,

x2 • y7 - x7 • y2 + x6 • y4 - x4 • y6,

= X! 2/9 - x9 • yx + x5 • y7 - x7 • y5 + x8 • y4 - x4 • y»-

Again the checking of the various laws is laborious and not very interesting, and
we omit the details, but just state the result:

THEOREM 4.3. The profile o/M3 is as follows: S4, S5, 14, 16, J3-5, J8 are
satisfied, and Si, S2, S3, 11-3, 15, 17-11, Jl , J2, J6, J7, J9 are not.

This model shows that J6 and J9 do not follow from J3, J4, J5, J8, and thus
at least partially answers Luise-Charlotte Kappe's question; however, it is not
yet the answer we are aiming at, as the model also fails to satisfy 37. We have
at various times thought that we could make models that satisfied J7 but not
J9, nor the long and elaborate law in 4 variables that corresponds to J5 in the
way J7 corresponds to J3, and that we have refrained from writing down, but
careful checking has always disappointed our hopes.
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We conclude by tabula t ing, for comparison, the profiles of the three models
of kappa-groups we have exhibited

Ml
M2
M3

1
0
0
0

2
0
0
0

S
3
1
1
0

4
1
0
1

5
1
0
1

1
0
0
0

2
0
1
0

3
0
1
0

4
1
0
1

5
0
1
0

I
6
1
0
1

7
1
1
0

8
1
0
0

9
0
0
0

10
1
0
0

11
0
0
0

Ml
M2
M3

0
1
0

1
1
0

1
1
1

1
1
1

J
1 1 3 4 5 6 7 8 9

1 1 1 1 1
1 1 1 1 1
1 0 0 1 0

—(the entries are, of course, the boolean values, that is to say, a 1 means that
the law is satisfied, a 0 that it is not satisfied, in the model).
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