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Abstract. In this paper we present some results about wV (weak property V of
Pełczyński) or property wV∗ (weak property V∗ of Pełczyński) in Banach spaces. We
show that E has property wV if for any reflexive subspace F of E∗, ⊥F has property wV .
It is shown that G has property wV if under some condition Kw∗ (E∗, F∗) contains the
dual of G. Moreover, it is proved that E∗ contains a copy of c0 if and only if E contains
a copy of �1 where E has property wV∗. Finally, the identity between L(C(�, E), F)
and WP(C(�, E), F) is investigated.
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1. Introduction. In order to prevent any doubt, we shall fix some terminology.
Throughout in this article E, F , G, . . . will denote Banach spaces and E∗ the dual
of E. The term operator means a bounded linear map. A series

∑
xn in E is said to

be weakly unconditionally Cauchy (w.u.C) if for each x∗ ∈ E∗,
∑ | x∗(xn) |< ∞. An

operator T : E → F is said to be an unconditionally converging operator if T maps
w.u.C series in E into unconditionally convergent series in F . T is said to be a weakly
precompact operator if T(BE) is a weakly precompact set in F (i.e., for any bounded
sequence (xn) in E, (T(xn)) has a weakly Cauchy subsequence). Let L(E, F), K(E, F),
W (E, F), WP(E, F) and Kw∗(E∗, F) denote the Banach space of operators, compact
operators, weakly compact operators, weakly precompact operators and weak∗ to
weak continuous compact operators between two Banach spaces respectively. For a
compact Hausdorff space �, C(�, E) is the Banach space of all continuous E-valued
functions on � with the supremum norm. A subset H of E∗ is said to be a V-set if

lim
n

sup
x∗∈H

|x∗(xn)| = 0,

where
∑

xn is any w.u.C series in E. A Banach space E has the Property V if any V -set
in E∗ is relatively weakly compact. A Banach space E has the wV -property if any V -set
in E∗ is a weakly precompact set [19]. For the notions and terminology used and not
defined in this paper see [4] and [5].

One of the most important problems of Banach space theory is to recognize the
classical properties in Banach spaces. The study of V and V∗ properties go back to
Pełczyński [13]; also wV and wV∗ properties go back to E. Saab and P. Saab [19].
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A complete characterization of their equivalences and properties has been obtained
through the efforts of [2], [3], [6], [7], [8], [14], [18] and [19]. In [13] it was shown that
the Banach space E has property V if and only if every unconditionally converging
operator from E to any Banach space F is a weakly compact operator. Also E has
Property V∗ if and only if any conjugate unconditionally converging operator from E∗

into F∗ is a weakly compact operator ([6] and [7]). In the present paper we show that E
has property wV if some special subspace of it has property wV . Weakly precompact
operators from C(�, E) to F will be characterized; in fact we show that the condition
L(C(�, E), F) = WP(C(�, E), F) is equivalent to E containing a complemented copy
of �1. It is well known that E contains a complemented copy of �1 if and only if E∗

contains a copy of c0. We shall show that the complemented condition can be replaced
by the wV∗ property of E.

2. Property wV . It is well known that E has Property V if and only if E has
property wV and E∗ is weakly sequentially complete [19].

A subset H of E is said to be a V∗-set if

lim
n

sup
x∈H

|x∗
n(x)| = 0,

where
∑

x∗
n is any w.u.C series in E∗. A Banach space E has the Property V∗ if any

V∗-subset of E is relatively weakly compact. A Banach space E has the wV∗-property
if any V∗-subset of E is weakly precompact set [19]. E. Saab and P. Saab proved that
E has Property V∗ if and only if E has property wV∗ and E is weakly sequentially
complete [19].

The following result characterizes the V and V∗ properties.

PROPOSITION 2.1.
(a) [13] E∗ has Property V∗ if E has Property V.
(b) [13] E has Property V∗ if E∗ has Property V.
(c) [19] E has property wV if and only if for any Banach space F any unconditionally

converging operator T : E → F has a weakly precompact adjoint.
(d) [19] E has property wV∗ if and only if for any Banach space F any operator

T : F → E is a weakly precompact operator if its adjoint is an unconditionally converging
operator.

In the following proposition we show that E has property wV if some subspace of it
has property wV . The next lemma provides the basic criterion for weak precompactness
of bounded sequences.

LEMMA 2.2. [9] Let E be a Banach space, F a reflexive subspace of E and Q : E →
E/F the canonical quotient map. Let (xn) ⊆ E be a bounded sequence such that (Q(xn))
is a weakly Cauchy sequence. Then (xn) is a weakly precompact set.

PROPOSITION 2.3. Let F be a reflexive subspace of E∗. Assume that ⊥F = {x ∈ E :
y∗(x) = 0,∀y∗ ∈ F} has property wV. Then E has property wV.

Proof. Let Q : E∗ → E∗/F be the canonical quotient map and i : E∗/F → (⊥F)∗

the natural surjective isomorphism. It is well known that iQ : E∗ → (⊥F)∗ is weak∗

to weak∗ continuous [12], and so there is an operator S :⊥ F → E such that iQ = S∗.
Suppose T : E → G is any unconditionally converging operator from E to any Banach
space G. Then TS is an unconditionally converging operator too. From the assumption
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(TS)∗ = S∗T∗ = iQT∗ is weakly precompact. i is a surjective isomorphism and so QT∗

is weakly precompact. It follows that for any bounded sequence (z∗
n) ⊆ G∗ there is a

subsequence (y∗
n) of (z∗

n) such that (QT∗(y∗
n)) is a weak Cauchy sequence. According to

Lemma 2.2 (T∗(y∗
n)) has a weak Cauchy subsequence. Consequently, T∗ is a weakly

precompact operator. �
The Banach space of operators S(E, F) with theK-property is a subspace of L(E, F)

in which weak convergence and pointwise weak convergence on sequences coincide.
See [1] and [11].

DEFINITION 2.4. A ⊆ S(E, F) is said to be a quasi-V- set if the following conditions
satisfy:

(a) limn supT∈A | T(xn ⊗ y∗) |= limn supT∈A | y∗(T(xn)) |= 0,
(b) limn supT∈A | T(x ⊗ y∗

n) |= limn supT∈A | y∗
n(T(x)) |= 0, where

∑
xn and

∑
y∗

n
are w.u.C series in E and F∗ respectively.

LEMMA 2.5. Suppose that H∗ is a subspace of S(E, F). Then every V-set in H∗ is a
quasi-V-set.

Proof. Suppose that A ⊆ H∗ is a V -set.
∑

xn ⊗ y∗ is a w.u.C series in H because
H∗ ⊆ L(E, F) ⊆ (E ⊗ F∗)∗, and so

∑ | T(xn ⊗ y∗) |= ∑ | T(xn)(y∗) |< ∞. Hence,∑
xn ⊗ y∗ is a w.u.C series. Therefore, (xn ⊗ y∗) converges uniformly to zero on A.

On the other hand
∑ | T(x ⊗ y∗

n) |= ∑ | T(x)(y∗
n) |< ∞. Similarly (x ⊗ y∗

n) converges
uniformly to zero on A. �

THEOREM 2.6. Suppose that F∗ is a separable Banach space and S(E, F∗) is a space
of operators with the K-property. Suppose A ⊆ S(E, F∗) is a quasi-V-set. Then A is
weakly precompact if E and F have property V.

Proof. Let (hn) ⊆ A be an arbitrary sequence. Since F∗ is separable, one can
consider Y ⊆ F as a countable separating set for F∗. For each w.u.C series

∑
xn

and
∑

y∗
n in E and F∗ respectively, we have

(h∗
n(y))(xn) = hn(xn ⊗ y) → 0, (1)

(hn(x))(yn) = hn(x ⊗ yn) → 0. (2)

Therefore, (h∗
n(y)) is a V -set of E∗. Hence, by the countability of Y there is a subsequence

of (hn) which we denote again by (hn) such that (h∗
n(y)) is weakly convergent for each

y ∈ Y . We claim that (hn(x)) is weakly Cauchy for each x ∈ E. From (2) (hn(x)) is a
V -set in F∗ and so it has a weakly convergent subsequence. We claim that (hn(x)) has
only one weak cluster point. To see this, suppose that z∗

1 and z∗
2 are two weak cluster

points for (hn(x)). There are two subsequences (hk(n)(x)) and (hp(n)(x)) such that

z∗
1 = weak − lim hk(n)(x), z∗

2 = weak − lim hp(n)(x).

Now for any y ∈ Y we have

z∗
1(y) = lim hk(n)(x)(y)

= lim h∗
k(n)(y)(x)

= lim h∗
n(y)(x)

= lim h∗
p(n)(y)(x)

= lim hp(n)(x)(y)

= z∗
2(y).
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Then z∗
1 = z∗

2 since Y is a separating set. According to the definition of S(E, F∗), the
sequence (hn) is a weakly Cauchy sequence which proves that A is a weakly precompact
set. �

COROLLARY 2.7. Suppose that E∗ and F have property V. Then any quasi-V-set of
Kw∗(E∗, F∗) is weakly precompact.

Proof. We recall that Kw∗(E∗, F∗) has the K-property [11]. Consider a quasi-V -set
H of Kw∗(E∗, F∗). According to the Eberlein-Smulian theorem [4] we consider the case
H = (hn), and so we can assume that F∗ is separable. Then Theorem 2.6 completes the
proof. �

COROLLARY 2.8. Let E∗ and F have property V and let Kw∗ (E∗, F∗) contain the dual
of a Banach space G. Then G has property wV.

Proof. Suppose that (hn) ⊆ G∗ is a V -set. Similar to what is done in the proof of
Theorem 2.6 one can assume that (h∗

n(y)) is a weakly convergent sequence for each
y ∈ Y where Y is a countably separating set for H and H is a separable subspace of
F∗ containing all the ranges of the hn’s. The rest of the proof is similar to the proof of
Theorem 2.6. �

3. Property wV∗. The concept of V∗-set was introduced, as a dual concept to
that of V -set which was first studied by A. Pełczyński in his fundamental paper [13]. F.
Bombal in [3] proved that every closed subspace of an order continuous Banach lattice
has property wV∗. We should like to extend this result to Banach spaces from the case
of an order continuous Banach lattice.

PROPOSITION 3.1. Suppose that E has property wV∗. Then any closed subspace F of
E has property wV∗.

Proof. Let H ⊆ F be a V∗-set. Consider a w.u.C series
∑

x∗
n in E∗. It is easy to

see that
∑

x̃∗
n is a w.u.C series, where x̃∗

n is the restriction of x∗
n to F . Therefore (x̃∗

n)
converges uniformly to zero on H. Then (x∗

n) converges uniformly to zero on H. That
H is a weakly precompact set in F follows directly from this and the fact that H is a
V∗-set in E. �

A key ingredient in the proof of the next proposition will be the isometric
embedding occurring in the following lemma.

LEMMA 3.2 [10]. Let E0 be a separable subspace of E. Then there is a separable
subspace Z of E that contains E0 and an isometric embedding J : Z∗ → E∗ such that
J(z∗)(z) = z∗(z) for each z in Z and z∗ in Z∗. In particular J(Z∗) is 1-complemented
in E∗.

In [3] it is shown that E has property wV∗ if and only if every closed separable
subspace of E has property wV∗, where E has the separable complementation property.
Here, we prove this result without the separable complementation property.

PROPOSITION 3.3. E has property wV∗ if and only if any closed separable subspace
of E has property wV∗.

Proof. (⇒). This follows from Proposition 3.1.
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(⇐). Suppose H ⊆ F is a bounded subset that is not weakly precompact. We shall
show that H is not a V∗-set in E. From Rosenthal’s �1 Theorem [15], H contains
a subsequence (xn) as a copy of �1. Let F = [xn] be the closed linear span of (xn)
which is certainly a separable subspace of E. There is a separable subspace Z of E
and an isometric embedding J which satisfies the conditions of Lemma 3.2. That (xn)
is not a V∗-set in E follows from this and the assumption that Z has property wV∗.
Consequently, there is a (w.u.C.) series

∑
x∗

n in Z∗ such that

lim
n

sup
k

|z∗
n(xk)| �= 0.

Choose x∗
k = Jz∗

k. Then it is easy to see that
∑

x∗
k is a w.u.C series in E∗ and

lim
k

sup
n

|x∗
k(xn)| = lim

k
sup

n
|Jz∗

k(xn)|
= lim

k
sup

n
|z∗

k(xn)|
�= 0

and the proof is complete. �
The following result provides us with a criterion for non-weakly precompactness

of an operator. To get started, we first provide a way of characterizing a V∗-set.

LEMMA 3.4 [6]. A subset H of E is a V∗-set if and only if the image of any operator
T : E → �1 on H is relatively compact.

THEOREM 3.5. T : E → F is not a weakly precompact operator if and only if T fixes
a copy of �1.

Proof. (⇐). Without loss of generality we can assume that T : �1 → �1 is an
isomorphism. We claim that {en : n ∈ N} is a bounded sequence in �1 but (T(en)) has
no weak Cauchy subsequence. On the contrary, from the Schur property of �1 [4, p. 85],
it has a norm Cauchy subsequence and thus a norm convergent subsequence. Now T
is an isomorphism and thus (en)n has a norm convergence subsequence in �1, which is
a contradiction.

(⇒). Since T is not weakly precompact there is a bounded sequence (xn) in E
such that (T(xn)) has no weak Cauchy subsequence. From Rosenthal’s �1 Theorem,
there is a subsequence (T(xnk )) equivalent to the unit vector basis of �1. (xnk ) cannot
have a weak Cauchy subsequence. Again using Rosenthal’s �1 Theorem there is a
subsequence (xn′ ) such that (xn′ ) and (T(xn′)) are equivalent to the unit vector basis of
�1. Then T̃ : [xn′ ] → [Txn′ ] is an isomorphism, where T̃ is the restriction of T to [xn′ ].
Therefore, T fixes a copy of �1. �

THEOREM 3.6. Suppose that E has property wV∗ and (xn) is a bounded but not
weakly precompact sequence in E. Then there is a subsequence (xnk ) equivalent to the
unit vector basis of �1 such that [xnk ] is complemented in E.

Proof. From the assumption (xn) is not a V∗-set in E. According to Lemma 3.4,
there is an operator T : E → �1 such that (Txn) is not relatively compact in �1. Hence,
T is not a weakly precompact operator. Now according to Theorem 3.5, T fixes a copy
of �1 and so [Txnk ] is complemented in �1 by a projection Q : �1 → [Txnk ] [4, p. 55].
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Now consider the following compositions

E
T→ �1

Q→ [T(xnk )]
T̃−1

→ [xnk ],

where T̃ is the restriction of T on [xnk ]. Now T̃
−1

QT is the required projection. �
We recall that E∗ has a copy of c0 if and only if E has a complemented copy of �1

[4, 48]. This leads to our next result.

COROLLARY 3.7. Suppose E has property wV∗. Then E∗ contains a copy of c0 if and
only if E contains a copy of �1.

Proof. (⇒). This follows from the previous paragraph.
(⇐). Since E contains a copy of �1 there is a sequence (xn) ⊆ E equivalent to the

unit vector basis of �1. Therefore, it is not a weakly precompact set in E. The assertion
we are after follows quickly from Theorem 3.6. �

Our final result now follows.

THEOREM 3.8. Suppose F has property wV∗. Then one of the two following
statements holds.

(a) E contains a complemented copy of �1.
(b) L(C(�, E), F) = WP(C(�, E), F).

Proof. Suppose that (b) does not hold. Then there is a bounded operator T :
C(�, E) → F which is not weakly precompact. According to Theorem 3.5, T fixes
a copy of �1; i.e., there is a sequence (fn) in C(�, E) such that (fn) and (T(fn)) are
equivalent to the unit vector basis of �1. (T(fn)) is not weakly precompact in F , where
F has property wV∗. Hence, according to Theorem 3.6, [Tfn] is complemented in F by
a projection P. Then the following composition.

C(�, E)
T→ F

P→ [T(fn)]
T̃−1→ [fn],

is a projection, where T̃ is the restriction of T to [fn]. Also T̃−1PT is a projection from
C(�, E) to [fn]. This means that C(�, E) has a complemented copy of �1. Consequently,
E has a complemented copy of �1 [17]. �
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3. F. Bombal, On V∗ sets and Pełczyński’s property V∗, Glasgow Math. J. 32 (1990),
109–120.

4. J. Diestel, Sequences and series in Banach spaces, Graduate texts in Mathematics,
(Springer-Verlag, 1984).

5. J. Diestel and J. J. Uhl Jr, Vector measures, Math. Surveys, 15 (Amer. Math. Soc., 1977).
6. G. Emmanuele, On Banach spaces with the property V∗ of Pełczyński, Annali Mat.
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