ON THE WEAKLY PRECOMPACT AND UNCONDITIONALLY CONVERGING OPERATORS

MOHSEN ALIMOHAMMADY

Department of Mathematics, Mazandaran University, Babolsar, Iran e-mail: amohsen@umz.ac.ir

and MEHDI ROOHI

Islamic Azad University, Sari Branch, Iran e-mail: mehdi.roohi@gmail.com

(Received 5 February, 2005; accepted 3 August, 2005)

Abstract. In this paper we present some results about wV (weak property V of Pełczyński) or property wV^* (weak property V^* of Pełczyński) in Banach spaces. We show that E has property wV if for any reflexive subspace F of E^* , $^{\perp}F$ has property wV. It is shown that G has property wV if under some condition $K_{w^*}(E^*, F^*)$ contains the dual of G. Moreover, it is proved that E^* contains a copy of c_0 if and only if E contains a copy of ℓ_1 where E has property wV^* . Finally, the identity between $L(C(\Omega, E), F)$ and $WP(C(\Omega, E), F)$ is investigated.

2000 Mathematics Subject Classification. 46B25, 46B28.

1. Introduction. In order to prevent any doubt, we shall fix some terminology. Throughout in this article E, F, G, \ldots will denote Banach spaces and E^* the dual of E. The term operator means a bounded linear map. A series $\sum x_n$ in E is said to be *weakly unconditionally Cauchy* (w.u.C) if for each $x^* \in E^*$, $\sum |x^*(x_n)| < \infty$. An operator $T : E \to F$ is said to be an *unconditionally converging operator* if T maps w.u.C series in E into unconditionally convergent series in F. T is said to be a *weakly precompact operator* if $T(B_E)$ is a weakly precompact set in F (i.e., for any bounded sequence (x_n) in $E, (T(x_n))$ has a weakly Cauchy subsequence). Let L(E, F), K(E, F),W(E, F), WP(E, F) and $K_{w^*}(E^*, F)$ denote the Banach space of operators, compact operators, weakly compact operators between two Banach spaces respectively. For a compact Hausdorff space $\Omega, C(\Omega, E)$ is the Banach space of all continuous E-valued functions on Ω with the supremum norm. A subset H of E^* is said to be a V-set if

$$\lim_n \sup_{x^* \in H} |x^*(x_n)| = 0,$$

where $\sum x_n$ is any w.u.C series in *E*. A Banach space *E* has the *Property V* if any *V*-set in *E*^{*} is relatively weakly compact. A Banach space *E* has the *wV-property* if any *V*-set in *E*^{*} is a weakly precompact set [19]. For the notions and terminology used and not defined in this paper see [4] and [5].

One of the most important problems of Banach space theory is to recognize the classical properties in Banach spaces. The study of V and V^* properties go back to Pełczyński [13]; also wV and wV^* properties go back to E. Saab and P. Saab [19].

A complete characterization of their equivalences and properties has been obtained through the efforts of [2], [3], [6], [7], [8], [14], [18] and [19]. In [13] it was shown that the Banach space *E* has property *V* if and only if every unconditionally converging operator from *E* to any Banach space *F* is a weakly compact operator. Also *E* has Property V^* if and only if any conjugate unconditionally converging operator from E^* into F^* is a weakly compact operator ([6] and [7]). In the present paper we show that *E* has property wV if some special subspace of it has property wV. Weakly precompact operators from $C(\Omega, E)$ to *F* will be characterized; in fact we show that the condition $L(C(\Omega, E), F) = WP(C(\Omega, E), F)$ is equivalent to *E* containing a complemented copy of ℓ_1 . It is well known that *E* contains a complemented copy of ℓ_1 if and only if E^* contains a copy of c_0 . We shall show that the complemented condition can be replaced by the wV^* property of *E*.

2. Property wV. It is well known that E has Property V if and only if E has property wV and E^* is weakly sequentially complete [19].

A subset H of E is said to be a V^* -set if

$$\lim_n \sup_{x \in H} |x_n^*(x)| = 0,$$

where $\sum x_n^*$ is any w.u.C series in E^* . A Banach space *E* has the *Property* V^* if any V^* -subset of *E* is relatively weakly compact. A Banach space *E* has the wV^* -property if any V^* -subset of *E* is weakly precompact set [19]. E. Saab and P. Saab proved that *E* has Property V^* if and only if *E* has property wV^* and *E* is weakly sequentially complete [19].

The following result characterizes the V and V^* properties.

PROPOSITION 2.1.

(a) [13] E^* has Property V^* if E has Property V.

(b) [13] *E* has Property V^* if E^* has Property *V*.

(c) [19] *E* has property wV if and only if for any Banach space *F* any unconditionally converging operator $T : E \to F$ has a weakly precompact adjoint.

(d) [19] *E* has property wV^* if and only if for any Banach space *F* any operator $T: F \rightarrow E$ is a weakly precompact operator if its adjoint is an unconditionally converging operator.

In the following proposition we show that E has property wV if some subspace of it has property wV. The next lemma provides the basic criterion for weak precompactness of bounded sequences.

LEMMA 2.2. [9] Let E be a Banach space, F a reflexive subspace of E and $Q : E \rightarrow E/F$ the canonical quotient map. Let $(x_n) \subseteq E$ be a bounded sequence such that $(Q(x_n))$ is a weakly Cauchy sequence. Then (x_n) is a weakly precompact set.

PROPOSITION 2.3. Let F be a reflexive subspace of E^* . Assume that ${}^{\perp}F = \{x \in E : y^*(x) = 0, \forall y^* \in F\}$ has property wV. Then E has property wV.

Proof. Let $Q: E^* \to E^*/F$ be the canonical quotient map and $i: E^*/F \to ({}^{\perp}F)^*$ the natural surjective isomorphism. It is well known that $iQ: E^* \to ({}^{\perp}F)^*$ is weak* to weak* continuous [12], and so there is an operator $S:{}^{\perp}F \to E$ such that $iQ = S^*$. Suppose $T: E \to G$ is any unconditionally converging operator from E to any Banach space G. Then TS is an unconditionally converging operator too. From the assumption

 $(TS)^* = S^*T^* = iQT^*$ is weakly precompact. *i* is a surjective isomorphism and so QT^* is weakly precompact. It follows that for any bounded sequence $(z_n^*) \subseteq G^*$ there is a subsequence (y_n^*) of (z_n^*) such that $(QT^*(y_n^*))$ is a weak Cauchy sequence. According to Lemma 2.2 $(T^*(y_n^*))$ has a weak Cauchy subsequence. Consequently, T^* is a weakly precompact operator.

The Banach space of operators S(E, F) with the \mathcal{K} -property is a subspace of L(E, F) in which weak convergence and pointwise weak convergence on sequences coincide. See [1] and [11].

DEFINITION 2.4. $A \subseteq S(E, F)$ is said to be a *quasi-V- set* if the following conditions satisfy:

(a) $\lim_{n} \sup_{T \in \mathcal{A}} |T(x_n \otimes y^*)| = \lim_{n} \sup_{T \in \mathcal{A}} |y^*(T(x_n))| = 0,$

(b) $\lim_{n} \sup_{T \in A} |T(x \otimes y_{n}^{*})| = \lim_{n} \sup_{T \in A} |y_{n}^{*}(T(x))| = 0$, where $\sum x_{n}$ and $\sum y_{n}^{*}$ are w.u.C series in *E* and *F*^{*} respectively.

LEMMA 2.5. Suppose that H^* is a subspace of S(E, F). Then every V-set in H^* is a quasi-V-set.

Proof. Suppose that $A \subseteq H^*$ is a *V*-set. $\sum x_n \otimes y^*$ is a w.u.C series in *H* because $H^* \subseteq L(E, F) \subseteq (E \otimes F^*)^*$, and so $\sum |T(x_n \otimes y^*)| = \sum |T(x_n)(y^*)| < \infty$. Hence, $\sum x_n \otimes y^*$ is a w.u.C series. Therefore, $(x_n \otimes y^*)$ converges uniformly to zero on *A*. On the other hand $\sum |T(x \otimes y_n^*)| = \sum |T(x)(y_n^*)| < \infty$. Similarly $(x \otimes y_n^*)$ converges uniformly to zero on *A*.

THEOREM 2.6. Suppose that F^* is a separable Banach space and $S(E, F^*)$ is a space of operators with the \mathcal{K} -property. Suppose $A \subseteq S(E, F^*)$ is a quasi-V-set. Then A is weakly precompact if E and F have property V.

Proof. Let $(h_n) \subseteq A$ be an arbitrary sequence. Since F^* is separable, one can consider $Y \subseteq F$ as a countable separating set for F^* . For each w.u.C series $\sum x_n$ and $\sum y_n^*$ in E and F^* respectively, we have

$$(h_n^*(y))(x_n) = h_n(x_n \otimes y) \to 0, \tag{1}$$

$$(h_n(x))(y_n) = h_n(x \otimes y_n) \to 0.$$
⁽²⁾

Therefore, $(h_n^*(y))$ is a *V*-set of E^* . Hence, by the countability of *Y* there is a subsequence of (h_n) which we denote again by (h_n) such that $(h_n^*(y))$ is weakly convergent for each $y \in Y$. We claim that $(h_n(x))$ is weakly Cauchy for each $x \in E$. From (2) $(h_n(x))$ is a *V*-set in F^* and so it has a weakly convergent subsequence. We claim that $(h_n(x))$ has only one weak cluster point. To see this, suppose that z_1^* and z_2^* are two weak cluster points for $(h_n(x))$. There are two subsequences $(h_{k(n)}(x))$ and $(h_{p(n)}(x))$ such that

$$z_1^* = weak - lim h_{k(n)}(x), \quad z_2^* = weak - lim h_{p(n)}(x).$$

Now for any $y \in Y$ we have

$$z_{1}^{*}(y) = \lim h_{k(n)}(x)(y)$$

= $\lim h_{k(n)}^{*}(y)(x)$
= $\lim h_{n}^{*}(y)(x)$
= $\lim h_{p(n)}^{*}(y)(x)$
= $\lim h_{p(n)}(x)(y)$
= $z_{2}^{*}(y)$.

Then $z_1^* = z_2^*$ since Y is a separating set. According to the definition of $S(E, F^*)$, the sequence (h_n) is a weakly Cauchy sequence which proves that A is a weakly precompact set.

COROLLARY 2.7. Suppose that E^* and F have property V. Then any quasi-V-set of $K_{w^*}(E^*, F^*)$ is weakly precompact.

Proof. We recall that $K_{w^*}(E^*, F^*)$ has the \mathcal{K} -property [11]. Consider a quasi-V-set H of $K_{w^*}(E^*, F^*)$. According to the Eberlein-Smulian theorem [4] we consider the case $H = (h_n)$, and so we can assume that F^* is separable. Then Theorem 2.6 completes the proof.

COROLLARY 2.8. Let E^* and F have property V and let $K_{w^*}(E^*, F^*)$ contain the dual of a Banach space G. Then G has property wV.

Proof. Suppose that $(h_n) \subseteq G^*$ is a *V*-set. Similar to what is done in the proof of Theorem 2.6 one can assume that $(h_n^*(y))$ is a weakly convergent sequence for each $y \in Y$ where *Y* is a countably separating set for *H* and *H* is a separable subspace of F^* containing all the ranges of the h_n 's. The rest of the proof is similar to the proof of Theorem 2.6.

3. Property wV^* . The concept of V^* -set was introduced, as a dual concept to that of V-set which was first studied by A. Pełczyński in his fundamental paper [13]. F. Bombal in [3] proved that every closed subspace of an order continuous Banach lattice has property wV^* . We should like to extend this result to Banach spaces from the case of an order continuous Banach lattice.

PROPOSITION 3.1. Suppose that E has property wV^* . Then any closed subspace F of E has property wV^* .

Proof. Let $H \subseteq F$ be a V^* -set. Consider a w.u.C series $\sum x_n^*$ in E^* . It is easy to see that $\sum \tilde{x_n^*}$ is a w.u.C series, where $\tilde{x_n^*}$ is the restriction of x_n^* to F. Therefore $(\tilde{x_n^*})$ converges uniformly to zero on H. Then (x_n^*) converges uniformly to zero on H. That H is a weakly precompact set in F follows directly from this and the fact that H is a V^* -set in E.

A key ingredient in the proof of the next proposition will be the isometric embedding occurring in the following lemma.

LEMMA 3.2 [10]. Let E_0 be a separable subspace of E. Then there is a separable subspace Z of E that contains E_0 and an isometric embedding $J : Z^* \to E^*$ such that $J(z^*)(z) = z^*(z)$ for each z in Z and z^* in Z^* . In particular $J(Z^*)$ is 1-complemented in E^* .

In [3] it is shown that E has property wV^* if and only if every closed separable subspace of E has property wV^* , where E has the separable complementation property. Here, we prove this result without the separable complementation property.

PROPOSITION 3.3. *E* has property wV^* if and only if any closed separable subspace of E has property wV^* .

Proof. (\Rightarrow) . This follows from Proposition 3.1.

(\Leftarrow). Suppose $H \subseteq F$ is a bounded subset that is not weakly precompact. We shall show that H is not a V^* -set in E. From Rosenthal's ℓ_1 Theorem [15], H contains a subsequence (x_n) as a copy of ℓ_1 . Let $F = [x_n]$ be the closed linear span of (x_n) which is certainly a separable subspace of E. There is a separable subspace Z of Eand an isometric embedding J which satisfies the conditions of Lemma 3.2. That (x_n) is not a V^* -set in E follows from this and the assumption that Z has property wV^* . Consequently, there is a (w.u.C.) series $\sum x_n^*$ in Z^* such that

$$\lim_n \sup_k |z_n^*(x_k)| \neq 0.$$

Choose $x_k^* = J z_k^*$. Then it is easy to see that $\sum x_k^*$ is a w.u.C series in E^* and

$$\lim_{k} \sup_{n} |x_{k}^{*}(x_{n})| = \lim_{k} \sup_{n} |Jz_{k}^{*}(x_{n})|$$
$$= \lim_{k} \sup_{n} |z_{k}^{*}(x_{n})|$$
$$\neq 0$$

and the proof is complete.

The following result provides us with a criterion for non-weakly precompactness of an operator. To get started, we first provide a way of characterizing a V^* -set.

LEMMA 3.4 [6]. A subset H of E is a V^{*}-set if and only if the image of any operator $T: E \rightarrow \ell_1$ on H is relatively compact.

THEOREM 3.5. $T : E \to F$ is not a weakly precompact operator if and only if T fixes a copy of ℓ_1 .

Proof. (\Leftarrow). Without loss of generality we can assume that $T : \ell_1 \to \ell_1$ is an isomorphism. We claim that $\{e_n : n \in \mathbb{N}\}$ is a bounded sequence in ℓ_1 but $(T(e_n))$ has no weak Cauchy subsequence. On the contrary, from the Schur property of ℓ_1 [4, p. 85], it has a norm Cauchy subsequence and thus a norm convergent subsequence. Now T is an isomorphism and thus $(e_n)_n$ has a norm convergence subsequence in ℓ_1 , which is a contradiction.

(\Rightarrow). Since *T* is not weakly precompact there is a bounded sequence (x_n) in *E* such that $(T(x_n))$ has no weak Cauchy subsequence. From Rosenthal's ℓ_1 Theorem, there is a subsequence $(T(x_{n_k}))$ equivalent to the unit vector basis of ℓ_1 . (x_{n_k}) cannot have a weak Cauchy subsequence. Again using Rosenthal's ℓ_1 Theorem there is a subsequence $(x_{n'})$ such that $(x_{n'})$ and $(T(x_{n'}))$ are equivalent to the unit vector basis of ℓ_1 . Theorem there is a subsequence $(x_{n'})$ such that $(x_{n'})$ and $(T(x_{n'}))$ are equivalent to the unit vector basis of ℓ_1 . Then $\tilde{T} : [x_{n'}] \rightarrow [Tx_{n'}]$ is an isomorphism, where \tilde{T} is the restriction of T to $[x_{n'}]$.

THEOREM 3.6. Suppose that E has property wV^* and (x_n) is a bounded but not weakly precompact sequence in E. Then there is a subsequence (x_{n_k}) equivalent to the unit vector basis of ℓ_1 such that $[x_{n_k}]$ is complemented in E.

Proof. From the assumption (x_n) is not a V^* -set in E. According to Lemma 3.4, there is an operator $T : E \to \ell_1$ such that (Tx_n) is not relatively compact in ℓ_1 . Hence, T is not a weakly precompact operator. Now according to Theorem 3.5, T fixes a copy of ℓ_1 and so $[Tx_{n_k}]$ is complemented in ℓ_1 by a projection $Q : \ell_1 \to [Tx_{n_k}]$ [4, p. 55].

Now consider the following compositions

$$E \xrightarrow{T} \ell_1 \xrightarrow{Q} [T(x_{n_k})] \xrightarrow{\tilde{T}^{-1}} [x_{n_k}],$$

where \tilde{T} is the restriction of T on $[x_{n_k}]$. Now $\tilde{T}^{-1}QT$ is the required projection.

We recall that E^* has a copy of c_0 if and only if E has a complemented copy of ℓ_1 [4, 48]. This leads to our next result.

COROLLARY 3.7. Suppose E has property wV^* . Then E^* contains a copy of c_0 if and only if E contains a copy of ℓ_1 .

Proof. (\Rightarrow) . This follows from the previous paragraph.

(\Leftarrow). Since *E* contains a copy of ℓ_1 there is a sequence $(x_n) \subseteq E$ equivalent to the unit vector basis of ℓ_1 . Therefore, it is not a weakly precompact set in *E*. The assertion we are after follows quickly from Theorem 3.6.

Our final result now follows.

THEOREM 3.8. Suppose F has property wV^* . Then one of the two following statements holds.

(a) *E* contains a complemented copy of ℓ_1 . (b) $L(C(\Omega, E), E) = WP(C(\Omega, E), E)$

(b) $L(C(\Omega, E), F) = WP(C(\Omega, E), F).$

Proof. Suppose that (b) does not hold. Then there is a bounded operator T: $C(\Omega, E) \to F$ which is not weakly precompact. According to Theorem 3.5, T fixes a copy of ℓ_1 ; i.e., there is a sequence (f_n) in $C(\Omega, E)$ such that (f_n) and $(T(f_n))$ are equivalent to the unit vector basis of ℓ_1 . $(T(f_n))$ is not weakly precompact in F, where F has property wV^* . Hence, according to Theorem 3.6, $[Tf_n]$ is complemented in F by a projection P. Then the following composition.

$$C(\Omega, E) \xrightarrow{T} F \xrightarrow{P} [T(f_n)] \xrightarrow{\tilde{T}^{-1}} [f_n],$$

is a projection, where \tilde{T} is the restriction of T to $[f_n]$. Also $\tilde{T}^{-1}PT$ is a projection from $C(\Omega, E)$ to $[f_n]$. This means that $C(\Omega, E)$ has a complemented copy of ℓ_1 . Consequently, E has a complemented copy of ℓ_1 [17].

REFERENCES

1. M. Alimohammady, Weak convergence in spaces of measures and operators, *Bull. Belg. Math. Soc.* 6 (1999), 465–471.

2. F. Bombal, On V and V^* sets in vector valued function spaces, *Proceedings of the II international conference: Poznan*, 1989.

3. F. Bombal, On V* sets and Pełczyński's property V*, Glasgow Math. J. **32** (1990), 109–120.

4. J. Diestel, Sequences and series in Banach spaces, Graduate texts in Mathematics, (Springer-Verlag, 1984).

5. J. Diestel and J. J. Uhl Jr, Vector measures, Math. Surveys, 15 (Amer. Math. Soc., 1977).

6. G. Emmanuele, On Banach spaces with the property V^* of Pełczyński, *Annali Mat. Pura Appl.* **152** (1988), 171–181.

7. G. Emmanuele, On Banach spaces with the property V^* of Pełczyński II, Annali Mat. Pura Appl. 160 (1991), 163–170.

8. G. Emmanuele and W. Hensgen, Property V in projective tensor products, *Proc. Royal Irish Academy* **95A**(2) (1995), 227–231.

9. M. Gonzalez and V. M. Onieva, Lifting results for sequences in Banach spaces, *Math. Proc. Cambridge Phil. Soc.* **105** (1989), 117–121.

10. R. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, *Studia Math.* **73** (1982), 225–251.

11. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.

12. R. E. Megginson, *An introduction to Banach space theory*, Graduate texts in Mathematics (Springer-Verlag, 1998).

13. A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, *Bull. Acad. Pol. Sci. Math.* 10 (1962), 641–648.

14. N. Randrianantoanina, Complemented copies of ℓ_1 and Pełczyński's property V^* in Bochner function spaces, *Canad J. Math.* **48**(3) (1996), 625–640.

15. H. P. Rosenthal, A characterization of Banach spaces containing ℓ_1 , *Proc. Nat. Acad. Sci. USA.* **71** (1974), 2411–2413.

16. H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, *Studia Math.* **37** (1970), 13–36.

17. E. Saab and P. Saab, A stability property of a class of Banach spaces not containing a complemented copy of ℓ_1 , *Proc. Amer. Math. Soc.* **84** (1982), 44–46.

18. E. Saab and P. Saab, On Pełczyński's properties V and V*, Pacific J. Math. 125(2) (1986), 205–210.

19. E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, *Illinois J. Math.* **5**(3) (1991), 522–531.