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Abstract

We give bounds for the Betti numbers of projective algebraic varieties in terms of their
classes (degrees of dual varieties of successive hyperplane sections). We also give bounds
for classes in terms of ramification volumes (mixed ramification degrees), sectional
genus and, eventually, in terms of dimension, codimension and degree. For varieties
whose degree is large with respect to codimension, we give sharp bounds for the above
invariants and classify the varieties on the boundary, thus obtaining a generalization of
Castelnuovo’s theory for curves to varieties of higher dimension.

Introduction

Let Xn ⊂ PN be a nondegenerate nonsingular complex projective algebraic variety of dimension n
and codimension a=N − n > 0. (I am grateful to C. Casagrande for pointing out that the
positivity assumption was not explicit in the original version of this paper.) The homology
class of X in PN is determined by the degree d= deg X. Viewed as an embedded projective
variety, X has projective numerical invariants, such as classes (cf. Definition 1.11), degrees of
various double and ramification loci etc. Viewed as an abstract variety, X has other important
numerical invariants, such as Chern numbers (for example cn1 (X) = (−1)n(Kn

X), where KX is the
canonical class of X, cn(X) = e(X), where e(X) is the Euler–Poincaré characteristic of X and so
on), Betti numbers bi(X), i= 0, . . . , 2n, and b(X) =

∑2n
i=0 bi(X) and Hodge numbers hp,q(X),

p, q = 0, . . . , n.
One of the most natural questions to ask is what are the relations between all these invariants

of X and, in particular, what are the restrictions imposed on all of them by fixing n, a and d (and
possibly some other basic invariants). In the case of curves (n= 1), the genus g(X) is the only
basic invariant. For a= 1, g is determined by d while in general there are a sharp upper bound
g 6 C(d, a) and a classification of all curves on the boundary (obtained by Halphen [Hal1882] for
a= 2 and by Castelnuovo [Cas1889, Cas1893] for any a). Here C(d, a) = d2/2a+ · · · , where · · ·
stand for a term bounded by a linear function in d; cf. (1.4.5) for a precise formula.

Castelnuovo theory for curves (which is still an active topic; it is important to know which
genera actually occur for which types of curves) can only serve as a hard to follow model for
varieties of higher dimension. One of the main difficulties is that, even for surfaces, there is no
single invariant playing a role comparable to that of genus of curves. The most important abstract
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invariants of surfaces are K2, the geometric genus pg, the arithmetic genus pa, the Euler–Poincaré
characteristic e and the total Betti number b, and there are some relations between them (b is
a linear combination of e, pg and pa, pa is given by the Noether formula). Clearly, the number
of important numerical invariants of X grows with dimension. Results comparable to those by
Castelnuovo are known only for the geometric genus pg(X) = h0,n(X) (cf. [Har1981]); however,
for higher-dimensional varieties pg does not play a role comparable to that of genus of curves.
In [Zak2012], we showed that bounds for many important numerical invariants of X, such as
Chern numbers and (middle) Hodge numbers, are asymptotically proportional to the bounds for
(the total) Betti number, and the maximal varieties belong to the same class (cf. Remarks (10)
and (11) in § 4). In the present paper, we concentrate on the study of bounds for some of the
most important numerical invariants of X, viz. Betti numbers (which are topological invariants)
and classes and ramification volumes (which are projective invariants).

Our approach to bounding the Betti numbers in terms of n, a and d consists in first bounding
them in terms of important projective invariants called classes. If X is a projective variety as
above, then the nth class or simply the class µn = µn(X) is defined as the degree d∗ of the
dual variety X∗ ⊂ PN ∗ (called codegree) provided that X∗ is a hypersurface in PN ∗ and zero
otherwise (we recall that X∗ is the locus of tangent hyperplanes to X, that is, the hyperplanes
containing the embedded tangent space TX,x at some point x ∈X). For the purpose of this
introduction, one can define the ith class µi(X), 0 6 i6 n, as the class of the intersection of X
with a general linear subspace of codimension n− i in PN . In particular, µ0 is equal to d= deg X
and µ1 is the class of a general curve section C of X, which, by the Riemann–Hurwitz formula,
equals 2π + 2d− 2, where π = gC is the sectional genus of X. Using Lefschetz theory, in § 2 we
show that bi = b2n−i 6 µi + µi−2 + µi−4 + · · · , i6 n, b= b(X) 6 µn + 2µn−1 + 3µn−2 + · · · and
e= e(X) = (n+ 1)µ0 − nµ1 + (n− 1)µ2 − · · · (cf. Theorem 2.9). Thus, the problem of bounding
Betti numbers is reduced to the problem of bounding classes.

Bounding classes which is more or less equivalent to bounding the codegree is an interesting
and important problem in itself. For example, while varieties of codegree one and two are,
respectively, linear spaces and quadrics, classification of varieties of codegree three is already deep
and nontrivial (cf. [Zak1993, ch. IV, Theorem 5.2]) and classification of varieties of codegree four
has not yet been completed. In [Zak2004], we proved various sharp lower bounds for d∗ (the case
of surfaces was dealt with in [Zak1973]) and classified the varieties on the boundary. However,
to bound the Betti numbers from above we need upper bounds for classes.

To get such bounds, we consider the ramification divisor R⊂X of a general linear projection
p :X → Pn, which is a handy tool to explore the geometry of X, often more convenient than
the canonical class K (one has R∼K + (n+ 1)H, where H is a hyperplane section) because
it is ample [Zak1993, ch. I, Corollary 2.14] and even very ample [Ein1982]. In § 1, we bound
classes in terms of ramification volumes ri. To wit, put ri = deg Ri = (RiHn−i), i= 0, . . . , n. In
Theorem 1.12 we show that, for all i, µi 6 ri, and thus our problem is reduced to bounding the
numbers ri.

Using the Hodge index theorem, one can show that the subsequent quotients ri/ri−1 form
a nonincreasing sequence, that is, r1/r0 > r2/r1 > · · ·> rn/rn−1, and so ri 6 ri1/r

i−1
0 = ri1/d

i−1.
Clearly, for n > 1 the number r1 is stable under passing to a general hyperplane section, and
thus is bounded by Castelnuovo’s theorem for curves: µ1 = r1 = 2π + 2d− 2 6 2C(d, a) + 2d− 2.
Thus, Castelnuovo theory for curves yields bounds for the numbers ri (hence also for classes and
Betti numbers) in terms of dimension, codimension and degree (cf. respectively Corollaries 1.5,
1.13 and 2.14). We also obtain universal sharp bounds for classes and Betti numbers in terms
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of dimension and degree; these bounds do not involve codimension and are attained only by
hypersurfaces (cf. Theorems 1.18 and 2.16 and Example 2.6). An easy consequence is that one
always has b(X)< dn+1 (Theorem 2.18).

In the case when, instead of fixing the degree, one considers varieties of given dimension n
and codimension a defined by equations of degree not exceeding d (it is this setup that was
studied in [Mil1964, Ole1951, Tho1965]), we get a sharp bound for classes in Theorem 1.21; this
bound is attained if and only if X is a complete intersection of a hypersurfaces of degree d. We
also obtain a bound for the Betti numbers of varieties from this class; cf. Theorem 2.20 and
Corollary 2.22.

The next questions to ask are whether the bounds for the classes and Betti numbers given in
§§ 1 and 2 are good (that is, asymptotically sharp in d), how to improve them and to find sharp
bounds and where to look for varieties on the boundary. These questions are dealt with in § 3.
In Theorem 3.1, we show that if some class, ramification volume or the (total or middle) Betti
number of X is large enough, then X ⊂ V ⊂ PN is a codimension-one subvariety in a variety
V n+1 of (minimal) degree a in PN . We proceed with giving sharper bounds for our invariants for
subvarieties of codimension one in varieties of minimal degree and studying which varieties of
minimal degree contain smooth codimension-one subvarieties. This allows us to prove nice general
bounds for classes and Betti numbers. For example, we show that b(X)< dn+1/an provided that
d> 2(a+ 1)2 (cf. Theorem 3.16(ii)).

Finally, in § 4 we discuss some generalizations and open problems.

1. Bounds for ramification and classes

Theorem 1.1. Let X ⊂ PN be a projective variety of dimension n, and let R be an ample
(Cartier) divisor on X. Denote by H a hyperplane section of X, and let d= (Hn) = deg X and
ri = (RiHn−i) = deg Ri (so that, in particular, r0 = d, r1 = deg R and rn = r = (Rn)). Then the
subsequent quotients ri/ri−1 form a nonincreasing sequence, that is, r1/r0 > r2/r1 > · · ·>
rn/rn−1, and so r=rn 6 r2

n−1/rn−2 6 r3
n−2/r

2
n−3 6 · · ·6 rn−i+1

i /rn−ii−1 6 · · ·6 rn1 /r
n−1
0 =rn1 /d

n−1.
In particular, ri 6 ri1/d

i−1, i= 1, . . . , n, and (Rn) 6 (deg R)n/(deg X)n−1.

Proof. Theorem 1.1 is a special case of the Concavity theorem [Laz2004, Example 1.6.4] for
α=R, β =H, si = ri, which, in its turn, is an easy consequence of the Hodge index theorem for
surfaces (cf. Remark 1.2(v) for a thorough historic discussion). 2

Remarks 1.2. (i) Let Xk be the section of X by a general linear subspace Pa+k ⊂ PN , 0 6 k 6 n.
Then it is clear that ri(X) = ri(Xk), 0 6 i6 k.

(ii) The bounds in Theorem 1.1 are sharp. In fact, it is clear that if R∼ αH for some α > 0,
then ri = αid, i= 0, . . . , n, and all the inequalities in Theorem 1.1 turn into equalities. It is also
easy to show the converse; cf. [BFJ2009, Theorem D] for an analogous result for big and nef line
bundles.

(iii) The bound in Theorem 1.1 is much better than a general one given in [Ful1998,
Example 8.4.7] (viz. (Rn) 6 (deg R)n), but, unlike Fulton’s bound, it fails if we replace n
copies of R by n divisors R1, . . . , Rn that are not equivalent to each other. To see this, it
suffices to consider the nonsingular quadric X ⊂ P3 and two ample divisors R1 ∼ `1 + 2`2 and
R2 ∼ 2`1 + `2, di = deg Ri = 3, i= 1, 2, where `1 and `2, (`1 · `2) = 1 are two generators. Then
d(R1 ·R2) = 10> d1d2 = 9.
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(iv) Theorem 1.1 actually holds for arbitrary nef (numerically effective) line bundles; cf.
[Laz2004, 1.6] or [Dem1993, Proposition 5.2] for a complex analytic analogue.

(v) An easy induction argument reduces Theorem 1.1 to the case of smooth surfaces, where
it is an easy consequence of the Hodge index theorem (cf. for example [Voi2002, Theorem 6.32]).
Here follows (a brief and incomplete) account of the history of Theorem 1.1 and its predecessor,
the Hodge index theorem.

Around 1933, Hodge proved a theorem to the effect that if S is a nonsingular complex
projective algebraic surface of geometric genus pg and Q is the (real) quadratic form
corresponding to the intersection pairing on the (classes of) 2-cycles of the underlying topological
4-manifold, then the number of positive terms in the signature of Q is equal to 2pg + 1. At about
the same time, Du Val observed that the intersection matrix of the components of the exceptional
divisor of the resolution of a ‘nice’ surface singularity is negative definite. Thus, it was only
natural that Du Val proposed to Hodge to show that the signature of the intersection form on
the (classes of) algebraic 2-cycles has only one positive term, viz. its restriction on the orthogonal
complement of a hyperplane section H is negative definite. In [Hod1937], Hodge succeeded in
doing that by using the (transcendental) method of harmonic integrals developed in his previous
papers. Soon after that, Bronowski [Bro1937] and Segre [SeB1937] gave simple geometric proofs
of this fact, which later acquired the name of the Hodge index theorem; another proof was
given by Grothendieck [Gr1958] some twenty years later. In fact, both Bronowski [Bro1937,
n04, Theorem (I,II)] and Segre [SeB1937, n04] have actually proved Theorem 1.1 in the case of
surfaces. It should be noted that Theorem 1.1 for a variety X of arbitrary dimension is easily
reduced to the case of surfaces by replacing X by intersections of general divisors from the linear
systems |H| and |kR|, k� 0.

Almost simultaneously with [Hod1937], A. D. Alexandrov published a series of papers in Mat.
Sbornik devoted to the theory of mixed volumes (in the sense of Minkowski). In particular, he gave
two different proofs of what is now known as the Alexandrov–Fenchel inequality for mixed volumes
generalizing the famous isoperimetric inequality. One of these proofs is based on a linear algebra
lemma resembling the Hodge index theorem (cf. [AA1938, § 3] and [Gro1990, § 2]). Around 1979,
Khovanskǐı [Kho1979] and Teissier [Tei1979] (again independently and almost simultaneously)
derived the Alexandrov–Fenchel inequality and its analogues in algebraic geometry, including
Theorem 1.1, from the Hodge index theorem. This approach revealing amazing connections
between classical and algebraic geometry was further explained and developed in other papers
by Khovanskǐı and Teissier and also in [BFJ2009, DN2006, Gro1990, KKh2012, Tim1999] (the
author is grateful to the referee for pointing out some of these references). However, in spite
of its beauty, this method does not contribute much to understanding Theorem 1.1 and its
generalizations since it is ultimately based on the Hodge index theorem of which Theorem 1.1 is
a direct consequence.

(vi) Theorem 1.1 and its generalizations, and local analogues, are thoroughly discussed
in [Laz2004, 1.6]. Variants of this theorem have been repeatedly rediscovered and reproved,
usually as auxiliary results, by various authors under different guises; cf. for example [BBS1989,
Lemma 0.15.1] and [Dem1993, Proposition 5.2]. However, the Hodge index theorem is still the
main ingredient of most of the proofs.1 Thus, it seems desirable to find out what makes

1 The only exception I know of is [Dem1993], where the proof of the Kähler version of [Laz2004, Theorem 1.6.1] is
based on the Aubin–Calabi–Yau theorem [Dem1993, Lemma 5.1] and the inequality between the arithmetic and
geometric means. This last inequality is actually equivalent to the claim that an n-cube has the largest volume
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the Hodge index theorem tick. Peskine showed that the Hodge index theorem can be deduced
from Castelnuovo’s bound for (possibly singular and nonreduced) curves (cf. Example 1.4 below),
and so the relationship between this theorem and bounds for codegree exploited in this section
might turn out to be deeper than it looks. In fact, the author recently found that both (a general
form of) the Hodge index theorem and the Castelnuovo inequality for the genus of curves are
consequences of a general theory yielding an upper bound for the dimension of the ambient space
of primitive families of intersecting linear subspaces.

The following example illustrates Theorem 1.1 in a very simple case.

Example 1.3. Let X =Q⊂ P3 be a nonsingular quadric, let `1 and `2 be its generators and let
R∼ α1`1 + α2`2. Then (R2) = 2α1α2 6 (α1 + α2)2/2 = (deg R)2/deg X with equality holding if
and only if α1 = α2 = α, that is, R∼ αH.

The next example plays a crucial role in the present paper.

Example 1.4. Let X ⊂ PN be a nondegenerate n-dimensional variety, let L⊂ PN , dim L=
N − n− 1, be a general linear subspace, and let pL :X → Pn be the projection with center L.
Then pL is a finite map of degree d= deg X, and we denote by RL ⊂X its (apparent) ramification
locus

RL = {x ∈ SmX | TX,x ∩ L 6= ∅}, (1.4.1)
where SmX =X\Sing X is the locus of nonsingular points of X and TX,x denotes the tangent
space to X at x. It is clear that RL is a (Weil) divisor inX and that, as L varies, the corresponding
divisors RL are rationally equivalent to each other and there are no points in SmX common
to all RL. If, furthermore, X is smooth, then it is easy to determine the ambient linear system
|RL|. To wit, KPn =O(−(n+ 1)) and, if ω is a rational rank-n differential form on Pn, then
(p∗L(ω))∼−(n+ 1)H +RL, where H is the divisor of a hyperplane section of X, and so

|RL|= |KX + (n+ 1)H| (1.4.2)

(here KPn (respectively KX) denotes the canonical class of Pn (respectively X); for n6 2
this formula was already known to Clebsch). The linear system |RL| is ample (cf. [Zak1993,
ch. I, Corollary 2.14]) and even very ample on X (cf. [Ein1982]). If Xi =X ∩ PN−n+i is the
i-dimensional section of X by a general linear subspace PN−n+i ⊃ L, then RL(Xi) =RL(X) ∩
PN−n+i and (RL(Xi)i) = (RiLH

n−i) = ri (cf. Remark 1.2(i)). The number ri will be called the
ith ramification volume or mixed ramification degree of the projective variety X.

Theorem 1.1 applies to R=RL and yields

ri = (RiLH
n−i) 6

ri1
di−1

. (1.4.3)

Let C =X1 ⊂ PN−n+1 be a general curve section of X, so that r1 = r1(X) = r1(C). Suppose that
C is nonsingular, and let π be the genus of C. Then deg C = deg X = d and, by the above,

r1(X) = r1(C) = deg KX + 2H = 2π − 2 + 2d (1.4.4)

(this is just the Riemann–Hurwitz formula). Furthermore, π 6 C(d, a), where a=N − n=
codimX = codim C and

C(d, a) =
(d− ε)(d− a+ ε− 2)

2a
, ε≡ d (mod a), 1 6 ε6 a (1.4.5)

among all the n-dimensional parallelepipeds with the same perimeter (sum of lengths of edges), which again is a
kind of isoperimetric inequality.
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is the Castelnuovo bound (cf. for example [GH1978, p. 252] and [HE1982, Theorem 3.7]). The
function

φ(t) =
(d− t)(d− a+ t− 2)

2a
attains maximal value for t= a/2 + 1 and φ(a/2 + 1) = (d− a/2− 1)2/2a. Thus,

C(d, a) 6
(d− a/2− 1)2

2a
,

r1 = 2π − 2 + 2d6
(d− a/2− 1)2

a
+ 2d− 2 =

(d+ (a− 2)/2)2

a
,

ri 6
ri1
di−1

6 d

(
(d+ (a− 2)/2)2

ad

)i
.

(1.4.6)

Corollary 1.5. Let X ⊂ PN be a nondegenerate nonsingular n-dimensional variety of
codimension a=N − n and degree d, let R=RL ∼KX + (n+ 1)H (cf. Example 1.4) and let
1 6 i6 n. Then ri = (RiHn−i) 6 ri1/d

i−1 < d(d/a+ 5/4)i. Furthermore, if d> (a− 2)2/8 (which
is always true provided that a6 12), then ri < d(d/a+ 1)i.

Proof. From (1.4.3), (1.4.6) and the inequality d> a+ 1, it follows that

ri 6
ri1
di−1

6 d

(
d

a
+
a− 2
a

+
(a− 2)2

4ad

)i
< d

(
d

a
+

5
4

)i
. (1.5.1)

If d> (a− 2)2/8, then −2/a+ (a− 2)2/4ad6 0, and so

(d+ (a− 2)/2)2

ad
6
d

a
+ 1, (1.5.2)

which yields the second claim of Corollary 1.5. Finally, if a6 12, then d> a+ 1> (a− 2)2/8. 2

Corollary 1.6. Let X ⊂ PN be a nondegenerate nonsingular n-dimensional variety of degree d,
codimension a=N − n and sectional genus π, let KX be the canonical class of X, let R=RL ∼
KX + (n+ 1)H, and let r1 = deg KX = 2π + 2d− 2.

(i) One has

deg (Ki
X) = (Ki

XH
n−i) 6 d

(
r1

d
− n− 1

)i
=

(r1 − d(n+ 1))i

di−1

=
(2π − (n− 1)d− 2)i

di−1
< d

(
d

a
+

1
4
− n

)i
, 1 6 i6 n.

If, moreover, d> (a− 2)2/8 (which is always true provided that a6 12), then deg (Ki
X)<

d(d/a− n)i, 1 6 i6 n.

(ii) Suppose that π 6 (n− 1)d/2 + 1. Then Ki
XH

n−i 6 0 for all 1 6 i6 n, i≡ 1 (mod 2).

(iii) If π 6 (n− 1)d/2 + 1 (respectively π < (n− 1)d/2 + 1), then no positive multiple of
the canonical class KX can be a positive divisor, so that either KX = 0 or Pm = Pm(X) =
l(mKX) = 0 for all m> 0 (respectively Pm = 0 for all m> 0). If π > (n− 1)d/2 + 1 (respectively
π > (n− 1)d/2 + 1), then no negative multiple of the canonical class can be a positive divisor,
so that either KX = 0 or l(−mKX) = 0 for m> 0 (respectively l(−mKX) = 0 for m> 0); in
particular, −KX cannot be ample.
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(iv) Suppose that d6 an+ 2. Then X satisfies the assumption of (ii), so that, in particular,
no multiple of the canonical class KX can be a positive divisor. Furthermore, if d6 an+ 1, then
Pm = Pm(X) = 0 for all m> 0.

(v) Suppose that d < an+ (an)(n−1)/n/(n+ 1) + 2. Then the canonical class KX cannot be
ample on X.

Proof. (i) Expanding the right-hand side of the equality

(Ki
XH

n−i) = ((RX − (n+ 1)H)iHn−i),

substituting the sequence of inequalities from Theorem 1.1 and using (1.4.6) in the same way as
in the proof of Corollary 1.5, one gets

deg (Ki
X) =

i∑
j=0

(−1)j
(
i

j

)
(n+ 1)jri−j

=
[i/2]∑
j=0

[(
i

2j

)
(n+ 1)2jri−2j −

(
i

2j + 1

)
(n+ 1)2j+1ri−2j−1

]

6
[i/2]∑
j=0

ri−2j−1

[(
i

2j

)
(n+ 1)2j ri−2j−1

ri−2j−2
−
(

i

2j + 1

)
(n+ 1)2j+1

]

6
ri−2j−1

1

di−2j−2

[(
i

2j

)
(n+ 1)2j r1

d
−
(

i

2j + 1

)
(n+ 1)2j+1

]

= d
i∑

j=0

(−1)j
(
i

j

)
(n+ 1)j

(
r1

d

)i−j
= d

(
r1

d
− (n+ 1)

)i

=
(2π − (n− 1)d− 2)i

di−1
< d

(
d

a
+

1
4
− n

)i
(here brackets denote integral part and we put rl = 0 for l < 0). If, moreover, d> (a− 2)2/8,
then, by (1.5.2), (2π − (n− 1)d− 2)/d < d(d/a− n), which proves the second claim of (i).

(ii) From our assumptions, it follows that r1 6 d(n+ 1) (respectively r1 < d(n+ 1)); thus, (ii)
is an immediate consequence of (i).

(iii) In view of (1.4.4), one has

deg mKX =m deg (R− (n+ 1)H) =m(r1 − (n+ 1)d) =m(2π − (n− 1)d− 2),

which yields our claim.
(iv) If d6 a(n− 1)< a(n− 1/4), then from (1.5.1) it follows that r1/d− n− 1< 0, which,

in view of (ii), proves (iv) in this case.
Suppose now that a(n− 1)< d6 an. Then, by (1.4.5), ε= d− a(n− 1) and

r1

d
− n− 1 =

(n− 1)(2d− an− 2) + 2d− 2
d

− n− 1 6−2n
d
< 0, (1.6.1)

which, in view of (ii), proves (iv) in this case.
Suppose finally that an < d6 a(n+ 1). Then, by (1.4.5), ε= d− an and

r1

d
− n− 1 =

n(d− a+ ε− 2) + 2d− 2
d

− n− 1 =
d− 2− n(a+ 2− ε)

d
. (1.6.2)
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From (1.6.2), it follows that r1/d− n− 1 6 0 (respectively r1/d− n− 1< 0) if and only if

ε6 2 (respectively ε= 1), (1.6.3)

which completes the proof of (iv).
(v) Put d= an+ ε. Using (i) and arguing as in (1.6.2), we see that KX cannot be ample on

X provided that

d

(
r1

d
− n− 1

)n
= d

(
n(d− a+ ε− 2) + 2d− 2

d
− n− 1

)n
< 1. (1.6.4)

Expanding (1.6.4), we conclude that KX fails to be ample for

ε < 2 +
d(n−1)/n

n+ 1
(1.6.5)

and a fortiori for

ε < 2 +
(an)(n−1)/n

n+ 1
, (1.6.6)

which yields (v). 2

Remarks 1.7. (i) Sometimes the bounds in (1.4.6) and Corollaries 1.5 and 1.6 can be improved.
For example, if a=N − n is odd, then argmax φ= [a/2] + 1 and one gets slightly better
upper bounds for r1 and rn. Thus, if a= 1, then r1 6 (d− 1)(d− 2)/2 + 2(d− 1) = d(d− 1),
rn 6 dn(d− 1)n/dn−1 = d(d− 1)n, which is the best possible bound (it is sharp if and only if
the hypersurface X is smooth; cf. Theorem 1.18 below), and (Ki

X) 6 d(d− n− 2)i, which is
again sharp. If a= 2, then r1 6 d2/2, rn 6 d2n/2ndn−1 = dn+1/2n and (Ki

X) 6 d((d− 2n− 2)/2)i,
and if a= 3, then r1 6 d(d+ 1)/3, rn 6 d((d+ 1)/3)n and (Ki

X) 6 d(d− 3n− 2/3)i. We already
saw that if a6 12 or, more generally, d> (a− 2)2/8, then rn 6 d(d/a+ 1)n and (Ki

XH
n−i) 6

d(d/a− n)i. If, on the other hand, d6 2a+ 1, then from the Clifford theorem it follows
that r1 6 2(2d− a− 2) (cf. [GH1978, p. 252]), Theorem 1.1 shows that rn 6 3nd and from
Corollary 1.6 it follows that KX cannot be effective for n> 2.

(ii) After completing this paper I learned that, under certain assumptions, Di
Gennaro [DG2001] obtained Castelnuovo-type bounds for (Kn

X) in terms of degree, dimension
and codimension. In particular, he had to assume that KX is nef. Apart from being intimately
connected with other important invariants, such as classes (cf. Theorem 1.12 below), RL, unlike
the canonical class, is always ample (cf. Example 1.4).

(iii) It might be interesting to extend Example 1.4 to more general finite coverings of Pn (not
necessarily corresponding to projections); cf. [Laz2004, 6.3.D] and Remark (6) in § 4.

We apply the above results to bound the classes of projective varieties in terms of their
degree and sectional genus or codimension. We recall the necessary definitions. Let X ⊂ PN be an
n-dimensional variety. The hyperplanes in PN are parametrized by the dual projective space PN ∗.
For a point α ∈ PN ∗, we denote by Lα ⊂ PN the corresponding hyperplane in PN . We denote by
SmX the subset of nonsingular points of X. For a point x ∈X, we denote by TX,x ⊂ PN the
(embedded projective) tangent subspace to X at x; if x ∈ SmX, then dim TX,x = dimX = n.
A hyperplane α ∈ PN ∗ is said to be tangent to X at x if Lα ⊃ TX,x.

Definition 1.8. Let X ⊂ PN be an n-dimensional projective algebraic variety of degree d. The
subvariety PX ⊂X × PN ∗, PX = {(x, α) | x ∈ SmX, Lα ⊃ TX,x}, where bar denotes projective
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closure, is called the conormal variety of X in PN . Let p : PX →X and π :X × PN ∗→ PN ∗ be
the canonical projections. The image X∗ = π(PX)⊂ PN ∗ is called the dual variety of X.

For any x ∈ SmX, the fiber p−1(x) is the (N − n− 1)-dimensional linear subspace of PN ∗

dual to TX,x, and so dim PX =N − 1. Thus, X∗ is the locus of hyperplanes that are tangent to X
at a nonsingular point, and n∗ = dimX∗ 6 dim PX =N − 1. The number def X =N − n∗ − 1
is called the defect of X. We denote by d∗ = deg X∗ the degree of X∗, that is, the number of
common points of X∗ and a general (def X + 1)-dimensional linear subspace in PN ∗. The number
d∗ = codeg X is called the codegree of X.

An important result about dual varieties is the following theorem.

Reflexivity Theorem 1.9. We have (X∗)∗ =X. More precisely, if α ∈X∗ is a nonsingular
point, then the linear subspace Pα = {z ∈ PN | Λz ⊃ TX∗,α} is contained in X and Lα is tangent
to X at all points of Pα ∩ SmX (here Λz denotes the hyperplane in PN ∗ corresponding to a
point z ∈ PN ).

Proof. See for example [Tev2005, Theorem 1.7]. 2

We also need the following elementary result.

Lemma 1.10. (i) Let L⊂ PN , codimPN L6 def X, be a general linear subspace, let Λ = ΛL ⊂
PN ∗, dim Λ =N − dim L− 1, be the subspace corresponding to L and let Y =X ∩ L. Then
Y ∗ = π(X∗), where π = πΛ : PN ∗ 99K L∗ is the projection with center Λ.

(ii) Let L⊂ PN , dim L < codimPn X − 1, be a general linear subspace, let Λ = ΛL ⊂ PN ∗,
dim Λ =N − dim L− 1, be the linear subspace corresponding to L and let Y = p(X), where
p= pL : PN 99K Λ∗ is the projection with center L. Then Y ∗ =X∗ ∩ Λ.

Proof of Lemma 1.10. (i) Clearly, it suffices to consider the case when def X > 0 and L is a
hyperplane. Since the dual of any curve is a hypersurface, def X > 0 implies n > 1. Thus, from
the Bertini theorem it follows that Y is irreducible. Furthermore, if y ∈ Y is a general point, then
TY,y = TX,y ∩ L and TY,y is a hyperplane in TX,y. Let M ⊂ L, M ⊃ TY,y be a tangent hyperplane
and let β = βM ∈ Y ∗ be the corresponding point of the dual variety. Consider the hyperplane
M̃ = 〈M, TX,y〉 ⊂ PN , where, for a subset A⊂ PN , we denote by 〈A〉 its linear span, and let
β̃ ∈ PN ∗ denote the corresponding point. Then it is clear that π(β̃) = β, and so Y ∗ ⊂ π(X∗).

Conversely, let β̃ ∈X∗ be a general point, let M̃ ⊂ PN be the corresponding hyperplane
and put β = π(β̃). Since def X > 0, M̃ is tangent to X along a positive-dimensional subvariety
Z
β̃
⊂X (more precisely, M̃ ⊃ TX,x for all x ∈ Z

β̃
\Sing X; from the Reflexivity Theorem it

actually follows that Z
β̃

= Pdef X ⊂ PN , cf. [Tev2005, Theorem 1.18] for more details). Clearly,

Z
β̃
∩ Y = Z

β̃
∩ L 6= ∅. Since (α, β̃) ∈ PN ∗ ×X∗ is a general point, Z

β̃
∩ Y 6⊂ Sing Y , and so there

exists a point y ∈ Y \Sing Y such that the hyperplane M = L ∩ M̃ ⊂ L corresponding to the point
β = π(β̃) ∈ L∗ is tangent to Y at y. Thus, β ∈ Y ∗ and π(X∗)⊂ Y ∗. This completes the proof
of (i). 2

(ii) can be proved in a similar way. However, one can also observe that claim (ii) is dual to
claim (i), and so (i) ⇒ (ii) by the Reflexivity Theorem 1.9. 2

The codegree is but the most important representative of a sequence of classical invariants
reflecting infinitesimal properties of projective embedding called classes.
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Definition 1.11. Let X ⊂ PN be a nondegenerate n-dimensional projective variety of degree d
and codegree d∗ (cf. Definition 1.8). The number

µ=

{
d∗, def X = 0,
0, def X > 0,

is called the class of X. Thus, class is equal to codegree if X∗ is a hypersurface and is zero
otherwise.

Let 0 6 i6 n, and let Xi be the section of X by a general linear subspace L⊂ PN ,
codim L= n− i, so that Xi ⊂ PN−i is a nondegenerate smooth projective variety of dimension i.
The class of Xi is called the ith class of X and is denoted by µi.

Thus, µn = µ is the class of X, µ0 = d and µi = 0 if and only if def Xi > 0, that is, if and only
if i > n− def X.

The number

µ=
n∑
i=0

µi =
n−def X∑
i=0

µi =
n−def X∑
i=0

codeg Xi

is called the total class of X.

It is clear that µi(X) = µi(Xn−1) = · · ·= µi(Xi) and, in particular, µ(X) = µn(X) +
µ(Xn−1). Furthermore, µi can be interpreted as the degree of the i-dimensional polar locus
Pi = Pi(L) = {x ∈X | dim TX,x ∩ L> i− 1}, where L⊂ PN is a general linear subspace of
codimension n− i+ 2, and can be computed as an intersection on the conormal variety:
µi =

∫
PX h

n−ih′N−n+i−1, where h and h′ denote the liftings on PX of the classes of hyperplane
sections of X and X∗, respectively.

The notion of class was first introduced and studied by Poncelet and Plücker in the case of
plane curves and by Salmon in the case of surfaces in P3. Foundations of a general theory
of polar varieties and classes were laid by Severi and developed by Todd; cf. [Kle1986, Pie1978,
Sev1902, Tod1937] or [Ful1998, ch. 14].

We proceed with giving a bound for classes in terms of ramification volumes.

Theorem 1.12. Let X ⊂ PN be an n-dimensional nondegenerate nonsingular variety, and let
RL be the ramification divisor of the projection pL :X → Pn, where L⊂ PN , dim L= a− 1 =
N − n− 1 is a general linear subspace. Let 0 6 i6 n, and let µi be the ith class of X. Then
µi 6 ri.

Proof. If def X > 0, then we replace X by its general linear section Xn−def X , where Xn−def X =
X ∩ PN−def X . From Lemma 1.10(i), it follows that def Xn−def X = 0 and

µi(X) =
{
µi(Xn−def X), i6 n− def X,
0, i > n− def X.

Furthermore, since µi(X) = µi(Xi), we see that to bound µi we can replace X by Xi. Thus, the
proof of Theorem 1.12 reduces to showing that d∗ 6 rn provided that def X = 0, which we will
assume from now on.

Let M ⊂ L be a general hyperplane. We denote by pM : PN 99K Pn+1 and πLM = ppM (L) :
Pn+1 99K Pn the projections with centers M and pM (L) respectively as well as their restrictions
on X and X ′ = pM (X); thus, pL = πLM ◦ pM .
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Consider the hypersurface X ′ = pM (X)⊂ Pn+1 defined by vanishing of a form
F (x0, . . . , xn+1) of degree d. By Lemma 1.10(ii), X ′∗ is the section of X∗ by the linear subspace of
Pn+1∗ corresponding to M and, in particular, def X ′ = 0. On the other hand, X ′∗ = γ(X), where
γ :X ′ 99K Pn+1∗, γ = (∂F/∂x0 : · · · : ∂F/∂xn+1) is the Gauß map defined outside of Sing X ′.
From the Reflexivity Theorem 1.9, it follows that γ :X ′ 99KX ′∗ is birational. It is clear that, for
a general linear combination F ′ = α0(∂F/∂x0) + · · ·+ αn+1(∂F/∂xn+1), the intersection of X ′

with the (polar) hypersurface of degree d− 1 defined by vanishing of F ′ has the form RML +B,
where RML =RpM (L) is the ramification locus of πLM for a suitable linear subspace L⊃M
and B is a Weil divisor supported on Sing X ′. Taking a general collection of n hyperplane
sections Ξ1, . . . , Ξn of X ′∗ and applying Lemma 1.10(ii), we see that card {Ξ1 ∩ · · · ∩ Ξn}=
d∗(X ′) = d∗(X) = d∗ and, if RML,i is the ramification locus in X ′ for the projection from the
point li ∈ Pn+1 corresponding to the hyperplane 〈 Ξi〉, then {RML,1 ∩ · · · ∩RML,n} contains
the subset γ−1(Ξ1 ∩ · · · ∩ Ξn)\Sing X ′ consisting of d∗ distinct points. Similarly, if Li =
〈M, li〉, then the intersection RL1 ∩ · · · ∩RLn ⊂X contains the subset p−1

M (γ−1(Ξ1 ∩ · · · ∩ Ξn))
consisting of d∗ distinct points. Thus, the codegree of X does not exceed the number of
intersection points of n general ramification divisors in X, that is, d∗ 6 rn. 2

Another approach consists in interpreting the codegree d∗ of the nondefective variety X as the
number of tangent hyperplanes passing through a general linear subspace of codimension two.
Let L̃⊂ PN , dim L̃=N − 2, be a general linear subspace, let L1, . . . , Ln ⊂ L̃, dim Lk = a− 1,
be a general collection of n linear subspaces and let R1, . . . , Rn, Rk =RLk , k = 1, . . . , n, be
the corresponding ramification divisors on X. Then it is clear that R1 ∩ · · · ∩Rn contains a
component {x ∈X | dim TX,x ∩ L̃> n− 1} and the set {x ∈X | dim TX,x ∩ L̃> n− 1} consists
of d∗ points, which yields Theorem 1.12 (for i < n it suffices to pass to Xi). This approach allows
us to improve the bound for µi for a > 1; cf. Remark 1.17(iv). A further elaboration of this
approach allows us to give an upper bound for the difference ri − µi; cf. [Zak2012]. 2

Theorems 1.1 and 1.12 and Corollary 1.5 yield the following corollary.

Corollary 1.13. Let Xn ⊂ PN be a nondegenerate nonsingular variety of degree d and
codimension a, and let 1 6 i6 n. Then µi 6 µi1/d

i−1 < d(d/a+ 5/4)i. If, moreover, d> (a−
2)2/8, then µi < d(d/a+ 1)i.

Examples 1.14. (i) Let X be a nonsingular curve of genus g. Then r1 = deg R= d∗, which,
combined with (1.4.2), yields the Riemann–Hurwitz formula

µ= d∗ = 2g + 2d− 2 (1.14.1)

(cf. (1.4.4) and Example 2.5 below).

(ii) Let X ⊂ Pn+1 be a nonsingular hypersurface of degree d. Then, in the notation of
Example 1.4, KX = (d− n− 2)H and RL =KX + (n+ 1)H = (d− 1)H. Thus, by Theorem 1.12,
d∗ 6 rn = rn1 /d

n−1 = d(d− 1)n. It is easy to see that the above inequality is actually an equality;
cf. Theorem 1.18 below.

(iii) Let X be a (nonsingular) cubic scroll in P4. Then, in the notation of the proof of
Theorem 1.12, L⊂ P4 is a line, M ∈ L is a point and the double locus DM is a conic. The cubic
surface X ′ = pM (X) is singular along the line D′M = pM (DM ). One has µ2 = µ2(X) = d∗ = 3 (in
fact, since X ′ is obtained from the Segre variety P1 × P2 ⊂ P5 by first taking a general hyperplane
section and then a general projection, from Lemma 1.10 it follows that X ′∗ is obtained from the
dual Segre variety (P1 × P2)∗ ' P1 × P2 by performing the same operations in an opposite order).
It is also easy to see that µ1 = µ1(X) = 4 (the dual of a twisted cubic is a developable quartic
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singular along the twisted cubic parametrizing osculating planes; the equality µ1 = 4 also follows
from (i)) and µ0 = µ0(X) = 3. In this example, RL ∼H + F , DM ∼H − F and RL +DM ∼ 2H,
where H is a hyperplane section and F is a fiber of X, and so r2 = (R2) = 5 and r1 = 4. The reason
why µ2 < r2 is that the double locus of the projection of X from a general point z ∈ P4 is a conic
Dz ∼H − F containing two pinch points corresponding to the two tangent lines to Dz passing
through the point z: 3 = 5− 2. In this example, RL ∼H + F , DM ∼H − F and RL +DM ∼ 2H,
where H is a hyperplane section and F is a fiber of X. The reason why µ= µ2 = 3< (R2

L) = 5
is that the double line D′M on X ′ contains two pinch points corresponding to two tangent lines
to DM passing through the point M : 3 = 5− 2.

(iv) A general projection X ′ of the Veronese surface X = v2(P2)⊂ P5 in P3 is called a Steiner
or Roman surface. Here, in the notation of Theorem 1.12, L⊂ P5 is a plane, M ⊂ L is a line and
the double locusDM consists of three conics. In fact, ifm ∈M is a general point, X̄ = pm(X)⊂ P4

is the projected Veronese surface and m′ = pm(M), then m′ is a general point of P4 and, as noted
first by Castelnuovo, m′ is contained in a unique trisecant line of X̄ and any two of the three
intersection points of this line with X lie on a unique conic corresponding to a line in P2.
Furthermore, the surface pm′(X̄) = pM (X) =X ′ is singular along D′M = pM (DM ), where D′M
is a union of three lines meeting in a triple point (the image of the trisecant line under the
projection pm′). It is clear that µ2(X) = d∗(X) = d∗(X̄) = d∗(X ′) = d∗ = 3 (the determinant of a
symmetric 3× 3 matrix is a cubic form) and, by Lemma 1.10(ii), X ′∗ is a cubic surface with four
nodes; more precisely, the Del Pezzo surface defined by the plane cubic curves passing through
the six intersection points of four general lines in the plane. In this example, RL ∼ 3`, DM ∼ 3`,
H = 2`, RL +DM ∼ 3H (here we use the isomorphism X ' P2 and ` is a line in P2), µ1 = 6 (the
dual surface is defined by vanishing of the discriminant of a quartic binary form) and µ0 = 4.
The reason why µ= µ2 = 3< (R2

L) = 9 is that each of the three double lines on the Steiner
surface obviously contains two pinch points (since any point in the complement of a plane conic
is contained in exactly two tangent lines to the conic): 3 = 9− 6.

General formulas of this type for surfaces in P3 were first obtained by Salmon, Cayley and
Zeuthen.

Corollary 1.15. Let X ⊂ PN be a nondegenerate nonsingular variety of codimension a, degree
d and sectional genus π. Then

d∗ 6 rn−def X 6
rn−def X

1

dn−def X−1
< d

(
d

a
+

5
4

)n−def X

, r1 = µ1 = 2π + 2d− 2.

If, moreover, d> (a− 2)2/8, then d∗ 6 (d/a+ 1)n−def X .

Proof. Corollary 1.15 follows from Theorems 1.1 and 1.12 and Corollary 1.5 by the argument
in the first paragraph of the proof of Theorem 1.12 relying on Lemma 1.10(i) and showing that
d∗ = µn−def X . 2

Example 1.16. Let Xn ⊂ PN be a nonsingular rational normal scroll. Then d= deg X =N −
n+ 1 and def X = n− 2 (since each tangent hyperplane to X contains a linear generator
Pn−1 ⊂X and the corresponding hyperplane section is reducible, so that the dimension of
its singular locus, equal to the defect, is n− 2). Another way to see this is to observe that
X is a linear section of a Segre variety P1 × Pa ⊂ P2a+1, which is easily seen to be self-dual.
Then, applying Lemma 1.10, one concludes that X∗ is a projection of the Segre variety, and
so dimX∗ = a+ 1 =N − n+ 1 and def X =N − 1− (N − n+ 1) = n− 2. The same argument
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shows that d∗ = deg X∗ = a+ 1 =N − n+ 1 = d. On the other hand, in this case r1 = 2d− 2 and
Corollary 1.15 only gives d∗ 6 r2

1/d= 4d− 8− 4/d, which fails to be sharp for d 6= 2. It should
be noted that for d= 3 this example reduces to Example 1.14(iii) and that any smooth section
of X is again a rational normal scroll.

Remarks 1.17. (i) Let X ⊂ PN be a nondegenerate variety of dimension n and codimension
a, and let L⊂ PN , dim L= a+ i− 2, 0 6 i6 n, be a general linear subspace. The
subset Pi = Pi(L) = {x ∈ SmX | dim TX,x ∩ L> i− 1} is called the ith polar locus of X with
respect to L. If X is nonsingular, then x ∈ Pi if and only if there exists a hyperplane passing
through L and tangent to X at x (cf. [Zak2012] for an alternative definition of polar classes).
It is clear that codimX Pi = i and deg Pi = µi, which gives an alternative (classical) definition
of classes (cf. for example [Pie1978]). In particular, P1 =RL is the ramification divisor from
Example 1.4 and µ1 = r1 = deg RL.

(ii) The argument in the proof of Theorem 1.12 is closely related to the classical relation
R+D ∼ (d− 1)H, where R=RL is the ramification divisor of a general projection pL :X → Pn
defined in (1.4.1) and D is the double point divisor of a general projection pM :X → Pn+1. This
relation (known to Clebsch in the case of curves and surfaces) easily follows from the argument
involving polar hypersurfaces in the proof of Theorem 1.12. Furthermore, even without referring
to Theorem 1.1 and Example 1.4, from the proof of Theorem 1.12 it immediately follows that
µi 6 d(d− 1)i for all 1 6 i6 n with equality holding if and only if D = ∅, that is, if and only
if X is a hypersurface; cf. Theorem 1.18 for a more general statement and Remark 1.19 for its
refinement.

(iii) The first inequality in Corollary 1.15 actually yields a bound for the codegree of X in
terms of the degree d and the sectional genus π(X) (defined as π(X) = g(Xn−1), so that one has
r1 = 2d+ 2π − 2). In the case when the sectional genus of X is much less than the maximum
given by Castelnuovo’s theorem, this bound is much better than the general one given by the
second inequality.

(iv) The bounds for codegree given in Corollary 1.15 are not optimal. The main reason for
the failure of these bounds to be sharp is that the inequality µi 6 ri proved in Theorem 1.12
is always strict provided that i > 1 and a > 1 (cf. Examples 1.14 and [Zak2012]). In fact, let
L0 ⊂ PN , dim L0 = a− 2, be a general linear subspace, let Lk ⊃ L0, dim Lk = a− 1, k = 1, . . . , i,
i6 n, be general linear subspaces and let L= 〈L1, . . . , Li〉, dim L= a+ i− 2, be their linear
span. Denote by Rm = Rm(M)⊂X, n6m6 2n− 1, the ramification locus of the projection
pM :X → Pm from a general linear subspace M ⊂ PN , dimM =N −m− 1. It is easy to see
that codimX Rm =m− n+ 1; in particular, Rn is the ramification divisor R from Example 1.4.
It is clear that RL1 ∩ · · · ∩RLi = Pi(L) ∪ Rn+1(L0) for i> 2 (for i= 2 this is actually a
classical formula representing the self intersection of a hyperplane section of the Grassmann
variety G(N, n) parametrizing n-dimensional linear subspaces of PN as a sum of two Schubert
subvarieties of codimension two) and µi 6 ri − deg Rn+1, so that µi < ri provided that Rn+1 6= ∅,
which is always so if a > 1. If n= 2, then one arrives at the classical formula r2 = µ2 + ν2,
where ν2 = deg R3 is the so-called type of the surface X (cf. [SR1949, ch. IX, Theorem 2.01]);
this explains the appearance of the number of pinch points in Examples 1.14. In general, the
ramification locus Rn+1 can be computed via Johnson’s formula (cf. for example [Ful1998,
Example 9.3.13]), which, combined with the relation R+D ∼ (d− 1)H mentioned in (ii), yields
the inequality deg Rn+1 6 d(d− 1)− r1 (with equality holding if and only if either n= 1 or
a= 2 or X is a Veronese surface); if n= 2, one arrives at a classical formula expressing the
number of improper nodes in terms of type and classes (this formula is due to Zeuthen;
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cf. [SR1949, ch. IX, § 2.13]). One can also give lower and upper bounds for the difference ri − µi
in terms of other projective invariants (cf. [Zak2012]).

Also the bound ri 6 ri1/d
i−1 obtained in Theorem 1.1 is not always sharp.

Varieties of positive defect have an extra reason for the failure of this bound to
be sharp (cf. Example 1.16). Finally, the last bound in Corollary 1.15 depends on
the bound C(d, a)< d(d/a+ 5/4) (cf. (1.4.5) and (1.5.1)), which is not sharp either
(cf. Remark 1.7(i)). The real import of Corollary 1.15 is that µi < di+1/ai + · · · , where ‘ · · · ’
stand for an (easily computable) polynomial of degree i in d. Below we will give examples
of series of varieties whose classes have the form µi = di+1/ai + · · · (cf. Example 3.5 and
Proposition 3.11), and so in this sense our bound for classes is good. In § 3, we will obtain
better bounds for classes and classify the varieties on the boundary.

One case when the bound in Corollary 1.15 is sharp is the case of hypersurfaces (cf.
Example 1.14(ii)).

Theorem 1.18. Let Xn ⊂ PN be a nondegenerate (not necessarily nonsingular) variety of
degree d. Then µi 6 d(d− 1)i, 0 6 i6 n, with equality (for some i) holding if and only if either
i= 0 or X is a hypersurface with dim (Sing X)< n− i (that is, if and only if Xi is a nonsingular
hypersurface).

Similarly, d∗ 6 d(d− 1)n−def X with equality holding if and only if X is a cone over a
nonsingular hypersurface Y ⊂ PN−def X with vertex Pdef X−1, in which case n=N − 1, dim Y =
n− def X, Sing X = Pdef X−1 and X∗ = Y ∗ ⊂ PN−def X∗ ⊂ PN ∗ is the linear subspace orthogonal
to the vertex of the cone X.

In particular, one always has d∗ 6 d(d− 1)n with equality holding if and only if X is a
nonsingular hypersurface.

Proof. Theorem 1.18 can be proved by specializing the bound in Theorem 1.12 (cf. Remarks 1.7(i)
and 1.17(i)), but to avoid making any assumptions on the singularities of X we give an
independent proof.

Replacing X by its section Xi by a general linear subspace PN+i−n ⊂ PN , one may assume
that i= n, that is, consider the codegree instead of class.

If def X > 0, then one can replace X by its section Xn−def X by a general linear subspace
PN−def X ⊂ PN . Applying Lemma 1.10(i), we see that X∗n−def X is a general projection of X∗, and
so def Xn−def X = 0, deg Xn−def X = deg X = d and deg X∗n−def X = deg X∗ = d∗. This reduces
Theorem 1.18 to the case def X = 0.

Suppose that def X = 0, codimX = a > 1. Then we can replace X by its projection X̄ ⊂ Pn+1

from a general linear subspace Pa−2 ⊂ PN . Applying Lemma 1.10(ii), we see that X̄∗ is the section
of X∗ by a general (N + 1)-dimensional linear subspace in PN ∗. Thus, X̄ is a hypersurface of
degree d in Pn+1 and deg X̄∗ = µn(X̄) = deg X∗ = d∗.

To prove the bound in Theorem 1.18, it now remains to verify it in the case when X is a
hypersurface with def X = 0 in Pn+1 defined by an equation F (x0 : · · · : xn+1) = 0, deg F = d. To
this end we observe that, by definition, X∗ is the image of the Gauß map γ :X 99K Pn+1∗,
γ(x0 : · · · : xn+1) = (∂F/∂x0 : · · · : ∂F/∂xn+1) defined outside the singular locus Sing X ⊂X.
Since ∂F/∂x0, . . . , ∂F/∂xn+1 are forms of degree d− 1, this means that X∗ =$(vd−1(X)),

where vd−1(X)⊂ P(n+d
n+1)−1 is the (d− 1)st Veronese embedding of X and $ : P(n+d

n+1)−1 99K Pn+1 ∗
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is a linear projection. Thus,

deg X∗ = deg γ(X) 6 deg vd−1(X) = d(d− 1)n. (1.18.1)

To classify the varieties on the boundary, we need first to classify the hypersurfaces for
which the inequality in (1.18.1) turns into equality. Clearly, this happens if and only if the
projection $ is a regular map, that is, if and only if the Gauß map γ :X 99KX∗ does not
have fundamental points or, equivalently, if Sing X = ∅. Furthermore, being linearly normal,
a nonsingular hypersurface cannot be a birational regular projection of a nondegenerate
variety. In view of our reductions, this completes classification of varieties for which
d∗ = d(d− 1)n.

Arguing in a similar way, we see that to complete the proof of Theorem 1.18 it remains
to classify the hypersurfaces Xn ⊂ Pn+1 whose intersection with a general linear subspace of
codimension def X is nonsingular. But, for such a hypersurface, dim Sing X < def X and a
general tangent hyperplane α ∈X∗ is tangent to X at all the points of Pα ⊂X, where Pα is
a linear subspace of dimension def X (cf. Theorem 1.9 or [Tev2005, Theorem 1.18]). Clearly, this
is only possible if dim Sing X = def X − 1 and all the Pα pass through a component of Sing X.
But then, for general α, α′ ∈X∗, Pα ∩ Pα′ = Pdef X−1 ⊂ Sing X and each point x ∈X is contained
in a linear subspace Pdef X

x passing through this Pdef X−1. This means that Sing X = Pdef X−1 and
X is a cone with vertex Pdef X−1. 2

Remark 1.19. For X nonsingular, Theorem 1.12 combined with Remark 1.7(i) yields a much
better bound for classes than Theorem 1.18, viz. µi < di+1/2i for a > 1, i> 1.

Theorem 1.18 has two generalizations to varieties of given codimension a> 1. In
Theorem 3.16(i), we show that µi < di+1/ai, at least for d> (a+ 1)2. We end this section with
another generalization in which the property of having degree d is substituted by the property
of being defined by equations of degree at most d.

Definition 1.20. Let X ⊂ PN be a projective variety and let IX be the sheaf of ideals
defining X. We say that X is defined by equations of degree (not exceeding) d if the sheaf
I(d) is generated by its global sections.

It is clear that if d′ > d and X is defined by equations of degree d, then X is also defined by
equations of degree d′.

For example, a complete intersection of a hypersurfaces of degrees d1 6 d2 6 · · ·6 da = d
is defined by equations of degree d (of course, if d1 < d and we wish to represent X (scheme
theoretically) as an intersection of hypersurfaces of degree d, then we need more than a
hypersurfaces).

Theorem 1.21. Let Xn ⊂ PN , N = n+ a, be a (not necessarily nondegenerate or nonsingular)
variety defined by equations of degree d, and let i, 0 6 i6 n be an integer. Then µi 6(
a+i−1
i

)
da(d− 1)i =

(
a+i−1
i

)
da+i + · · · (where ‘ · · · ’ stand for a polynomial in d of degree at most

a+ i− 1) with equality holding if and only if X is a complete intersection of a hypersurfaces
of degree d with dim(Sing X)< n− i (so that Xi is a nonsingular complete intersection). In
particular, d∗ 6

(
N−1
n

)
da(d− 1)n =

(
N−1
n

)
dN + · · · with equality holding if and only if X is a

nonsingular complete intersection of a hypersurfaces of degree d.

Sketch of proof. Replacing X by its linear section, we see that it suffices to consider the case
when i= n and def X = 0, that is, to bound the class. We pick a general equations F1, . . . , Fa
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of the variety X, so that Fi = Fi(x0 : · · · : xN ), i= 1, . . . , a, is a form of degree d and the
differentials dxF1, . . . , dxFa are linearly independent for x ∈ U , where U ⊂X is an
open subset. Let γi : U → PN ∗, γi(x) = ((∂Fi/∂x0)(x) : · · · : (∂Fi/∂xN )(x)), i= 1, . . . , a,
and let Ξi = γi(X) = γi(U)⊂ PN ∗, so that γi :X 99K Ξi is a rational map. By defini-
tion, X∗ =

⋃
x∈U 〈γ1(x), . . . , γa(x)〉, where 〈γ1(x), . . . , γa(x)〉= Px is the conormal space

to X at the point x (cf. Definition 1.8). From Theorem 1.9, it follows that
the maps γi :X 99K Ξi, i= 1, . . . , a, are actually birational. Let P be a projec-
tive space of dimension a(N + 1)− 1, and let κi : PN ∗ ↪→P, i= 1, . . . , a, be lin-

ear embeddings such that κi(PN
∗) ∩ 〈κ1(PN ∗), . . . , ̂κi(PN ∗), . . . , κn(PN ∗)〉= ∅, 1 6 i6 a.

Put γ̃i = κi ◦ γi :X 99K P, Ξ̃i = γ̃i(X), i= 1, . . . , a, X̃∗ =
⋃
x∈U 〈γ̃1(x), . . . , γ̃a(x)〉. It is clear that

X∗ is a birational projection of X̃∗, and so deg X∗ 6 deg X̃∗ with equality if and only if the center
of projection does not meet X̃∗ (the points of the form (γ̃1(x), . . . , γ̃N (x)), x ∈ SmX, such that
the differentials dxF1, . . . , dxFa are linearly dependent clearly lie in the center of projection).
Arguing as in the proof of Theorem 1.18, we see that deg Ξ̃i = deg Ξi 6 (d− 1)n deg X, i=
1, . . . , a, with equality holding if and only if the hypersurface in PN defined by vanishing of
Fi is nonsingular along X. Furthermore, deg X 6 da with equality holding if and only if X is
a complete intersection of hypersurfaces of degree d. To prove Theorem 1.21, it now suffices to
reproduce the argument in [Har1992, 19.5–19.7]. 2

2. Bounds for Betti numbers

Let Xn ⊂ PN be an n-dimensional complex projective algebraic variety of degree d= deg X > 1.
The variety X has the structure of a finite simplicial complex of dimension 2n and, if X is
nonsingular, then X can be viewed as a compact topological manifold of dimension 2n. We
denote by bi(X) = dimHi(X,Q) the ith Betti number of X and by b(X) =

∑2n
i=0 bi(X) the total

Betti number of X.

If X is nonsingular, then Poincaré duality yields

bi(X) = b2n−i(X), i= 0, . . . , 2n. (2.0.2)

Denote by e(X) =
∑2n

i=0(−1)ibi(X) the Euler–Poincaré characteristic of X. From (2.0.2), it
follows that

b(X) = bn + 2
n−1∑
i=0

bi, (2.0.3)

e(X) = (−1)nbn + 2
n−1∑
i=0

(−1)ibi. (2.0.4)

To compare the Betti numbers of X with those of its general hyperplane section, we need
some facts from Lefschetz theory.

Definition 2.1. Let Xn ⊂ PN be a nonsingular complex projective variety. A line `⊂ PN ∗ is
called a Lefschetz pencil if and only if ` meets X∗ in exactly µ points, where µ= µn is the class
of X (cf. Definition 1.11). This means that either def X > 0 and ` ∩X∗ = ∅ or def X = 0 and `
transversely intersects X∗ meeting it in d∗ = deg X∗ = µ nonsingular points.

The linear subspace L` =
⋂
α∈` Lα of codimension two in PN is called the axis of the pencil `.
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To each Lefschetz pencil `, we associate a variety

X̃ = X̃` ⊂X × `, X̃ = {(x, α) | x ∈ Lα}.

The projection of X × ` onto the second factor yields a morphism p : X̃ → ` whose fibers
are sections by hyperplanes from the pencil `. The morphism σ : X̃ →X induced by the
projection of X × ` onto the first factor is the inverse of the blowing up of the subvariety
X ′′ =Xn−2 = L` ∩X ⊂X; it is clear that X ′′ is nonsingular and that the exceptional divisor
E = σ−1(X ′′) is a line bundle over X ′′.

From the above description, it is clear that the sections of X by hyperplanes from `
fall into two types: the nonsingular sections that are all diffeomorphic between themselves
and the singular ones, which exist only if def X = 0. We denote by X ′ =Xn−1 a smooth
hyperplane section of X (or a general fiber of p : X̃ → `) and by Yk, k = 1, . . . , µ, Yk =X ∩ Lαk ,
` ∩X∗ = α1 ∪ · · · ∪ αµ, the singular hyperplane sections (or the singular fibers of p : X̃ → `).
There are a closed embedding j :X ′ ↪→X and a topological retraction ρk :X ′→ Yk defined by
the trajectories orthogonal to a nonsingular fiber in a small neighborhood of the fiber Yk of the
map p.

We summarize what we need from Lefschetz theory in the following proposition.

Proposition 2.2. Let Xn ⊂ PN be a nonsingular variety, let X∗ be its dual variety and let
`⊂ PN ∗ be a Lefschetz pencil. Then, in the above notation:

(i) the following conditions are equivalent:

(a) def X = 0 and α ∈ SmX∗;
(b) the hyperplane section Yα = Lα ∩X corresponding to α has a unique singular point xα,

and xα is a nondegenerate quadratic singularity of Yα (which means that, in a suitable
coordinate system in a small complex neighborhood Uα of the point xα in X, Yα is
defined by the equation x2

1 + · · ·+ x2
n = 0);

(ii) each of the singular fibers Yk, k = 1, . . . , µ, has a unique nondegenerate quadratic singular
point xk with xk /∈X ′′;

(iii) the homology map ji :Hi(X ′,Q)→Hi(X,Q) is an isomorphism for i < n− 1 and is
surjective for i= n− 1. In particular, b′i > bi for 0 6 i6 n− 1 and bi = b′i for i < n− 1,
where bi = bi(X) and b′i = bi(X ′) are the Betti numbers of X and X ′, respectively;

(iv) bi > bi−2 for 2 6 i6 n;

(v) ρk,i :Hi(X ′,Q)→Hi(Yk,Q) is an isomorphism for i < n− 1, k = 1, . . . , µ. Furthermore,
one of the following conditions holds:

(a) ker ρk,n−1 = Qδk is generated by a single element δk called the Lefschetz vanishing cycle
associated to the point αk ∈ ` and ρk,n is an isomorphism;

(b) ρk,n−1 is an isomorphism and coker ρk,n = Q∆k is generated by a single element ∆k.

Moreover, if one of the above conditions holds for some k, 1 6 k 6 µ, then it holds for all k
and

〈δ2
k〉=

{
0, n≡ 0 (mod 2),

2(−1)(n−1)/2, n≡ 1 (mod 2),
k = 1, . . . , µ, (2.2.1)

where 〈 〉 denotes the intersection pairing on Hn−1(X ′,Q). In particular, (b) is possible only
if n≡ 0 (mod 2);
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(vi) ker jn−1 = Van, where Van⊂Hn−1(X ′,Q) is the subspace of vanishing cycles spanned by
δ1, . . . , δµ;

(vii) for k = 1, . . . , µ, one has e(Yk) = e(X ′) + (−1)n.

Proof. See [DK1973, Lam1981, Lef1924, Moi1967]. Geometrically, if Yk is defined in a
neighborhood of xk by an equation x2

1 + · · ·+ x2
n = 0, then δk can be thought of as a sphere

defined in real coordinates by the equation x2
1 + · · ·+ x2

n = ε. If the cycle δk happens to be
homologous to zero in X ′, then the chain bounding it tends to a limit cycle ∆k in Yk. 2

Definition 2.3. In the notation and assumptions of Proposition 2.2, the vector space Van is
called the vanishing homology subspace. Its dimension is called the vanishing number of the pair
(X, X ′) and is denoted by λ= λn−1(X ′) = b ′n−1(X ′)− bn−1(X).

The following well-known proposition expressing the classes µi in purely topological terms is
an immediate generalization of the Riemann–Hurwitz formula for curves (cf. Example 2.5 below).

Proposition 2.4. Let X ⊂ PN be a nonsingular nondegenerate variety. Then

µi = (−1)i[e(Xi)− 2e(Xi−1) + e(Xi−2)], i= 0, . . . , n (2.4.1)

(here, as usual, Xk denotes the intersection of X with a general linear subspace of codimension
n− k in PN ).

Proof. Clearly, it suffices to prove the proposition in the case i= n. In the notation after
Definition 2.1, we compute e(X̃) in two different ways, using the two projections σ : X̃ →X

and p : X̃ → ` and the excision (or additivity) property of the Euler–Poincaré characteristic.
Since σ is an isomorphism on the complement of E = σ−1(X ′′) and E is a line bundle over X ′′,
one has

e(X̃) = e(X̃\E) + e(E)
= e(X\X ′′) + e(`) · e(X ′′) = e(X\X ′′) + 2e(X ′′) = e(X) + e(X ′′). (2.4.2)

On the other hand, similar arguments applied to the projection p combined with
Proposition 2.2(vii) yield

e(X̃) = e

(
X̃

∖ µ⋃
k=1

Yk

)
+

µ∑
k=1

e(Yk)

= e

(
`

∖ µ⋃
k=1

αk

)
· e(X ′) + µ[e(X ′) + (−1)n] = 2e(X ′) + (−1)nµ. (2.4.3)

Combining (2.4.2) and (2.4.3), we get

e(X) + e(X ′′) = 2e(X ′) + (−1)nµ,

which yields (2.4.1) in the case i= n. Replacing X =Xn by Xi, we complete the proof of
Proposition 2.4. 2

Example 2.5. Suppose that n= 1 and X = C is a nonsingular projective curve of degree d and
genus g. Then a general projection of C onto a projective line has precisely d∗ simple ramification
points. In this case e(X) = 2− 2g, e(X ′) = d, e(X ′′) = 0 and Proposition 2.4 yields

µ= d∗ = 2d+ 2g − 2, (2.5.1)
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which is just the Riemann–Hurwitz formula expressing genus in terms of ramification (cf.
Example 1.14(i)).

Example 2.6. Let Xn ⊂ Pn+1 be a nonsingular hypersurface of degree d. Since X is isomorphic
to a smooth hyperplane section of the variety vd(Pn+1) (where, as usual, vd : Pn+1→ P(n+d+1

d )−1

is the dth Veronese embedding of Pn+1), all nonsingular hypersurfaces of dimension n and degree
d are diffeomorphic and, from Proposition 2.2(iii) and the Poincaré duality, it follows that

bi(X) =

{
0, i 6= n, i≡ 1 (mod 2);
1, i 6= n, i≡ 0 (mod 2).

Thus,

b(X) =

{
n+ bn(X) + 1, n≡ 1 (mod 2);
n+ bn(X), n≡ 0 (mod 2),

(2.6.1)

e(X) =

{
n− bn(X) + 1, n≡ 1 (mod 2);
n+ bn(X), n≡ 0 (mod 2).

(2.6.2)

Combining (2.6.1) and (2.6.2) with Theorem 1.18 and Proposition 2.4, we get the following
recurrent formula for b(X):

b(X) = d(d− 1)n − 2b(X ′)− b(X ′′) + 4n, (2.6.3)

where X ′ (respectively X ′′) is a nonsingular hypersurface of degree d and dimension n− 1
(respectively n− 2). Using (2.6.3), we get the following general formula for b(X) (cf. also
[KK1989, ch. IV, § 5.10]):

b(X) =
(d− 1)n+2 + (−1)n+1

d
+ n+ 1 + (−1)n

= d

( n∑
i=0

(−1)i
(
n+ 2
i

)
dn−i

)
+ (1 + (−1)n+1)(n+ 1). (2.6.4)

In particular, if Xn is a nonsingular hypersurface of degree d, b(Xn) has the following values
for 1 6 n6 4:

b(X1) = d2 − 3d+ 4;

b(X2) = d3 − 4d2 + 6d;

b(X3) = d4 − 5d3 + 10d2 − 10d+ 8;

b(X4) = d5 − 6d4 + 15d3 − 20d2 + 15d

(2.6.5)

(the first of these formulas is equivalent to the well-known computation of the genus of
nonsingular plane curves).

We will also need the formulas for the Betti numbers of nonsingular quadrics (the case d= 2
in the above computations):

bi(X) =


0, i≡ 1 (mod 2),
1, i≡ 0 (mod 2), i 6= n,

2, i= n≡ 0 (mod 2),
b(X) =

{
n+ 1, n≡ 1 (mod 2),
n+ 2, n≡ 0 (mod 2).

(2.6.6)
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Corollary 2.7. In the assumptions of Proposition 2.4, one has

(i) µi = (bi(Xi)− bi−2(Xi)) + 2λi−1(Xi−1) + λi−2(Xi−2);

(ii) def Xi > 0 if and only if λi−2(Xi−2) = λi−1(Xi−1) = bi(Xi)− bi−2(Xi) = 0.

Proof. To get (i), it suffices to substitute in (2.4.1) the expressions for e(X), e(Xn−1) and
e(Xn−2) obtained from (2.0.4). To get (ii), we observe that the three summands on the right are
nonnegative by Proposition 2.2(iii) and (iv). 2

Corollary 2.8. Let X be a nonsingular nondegenerate complex projective variety of dimension
n and codimension a. Put bk = bk(X), 0 6 k 6 2n, λn−1 = λn−1(X ′). Then:

(i) if def X > 0, then bn = bn−2, and if def X = 0, then

bn−2 6 bn < bn−2 + µn 6 bn−2 +
µn1
dn−1

< bn−2 + d

(
d

a
+

5
4

)n
; (2.8.1)

(ii) if def X > 0, then λn−1 = 0, and if def X = 0, then

λn−1 6
1
2
µn 6

1
2
rn 6

µn1
2dn−1

<
d

2

(
d

a
+

5
4

)n
. (2.8.2)

Proof. The first inequality in (2.8.1) follows from Proposition 2.2(iv), and the second one from
Proposition 2.2(iii) and Corollary 2.7(i). If def X > 0, then, from Corollary 2.7(ii) it follows
that bn = bn−2, and if def X = 0, then, by Corollary 2.7(i), bn 6 bn−2 + µn. To prove (i), it now
remains to apply Theorem 1.12 and Corollaries 1.5 and 1.15.

Similarly, (2.8.2) follows from Corollary 2.7(i), Proposition 2.2(iii) and (iv), Theorem 1.12
and Corollaries 1.5 and 1.15. 2

Theorem 2.9. In the above notation, one has

(i) e(X) = (−1)n[µn − 2µn−1 + · · ·+ (−1)n(n+ 1)µ0];

(ii) bi(X) = b2n−i(X) 6 µi + µi−2 + · · ·+ µi−2[i/2], i= 1, . . . , n;

(iii) b(X) 6 µn + 2µn−1 + 3µn−2 + · · ·+ (n+ 1)µ0.

Proof. To prove (i), it suffices to substitute in the right-hand part the equalities (2.4.1) for
i= 0, . . . , n.

To prove (ii), we sum up the equalities in Corollary 2.7(i) for k = i, i− 2, . . . , i− 2[i/2], where
brackets denote integral part, and use the nonnegativity of λk (cf. Definition 2.3).

(iii) is obtained by summing up the inequalities in (ii). 2

Remarks 2.10. (i) In view of Proposition 2.2 and the Poincaré duality, all homologies of X
except for the middle one are bounded by homologies of a general hyperplane section X ′. The
inequality (2.8.1) bounds the middle homology and thus allows us to bound the total Betti
number b(X); alternatively, this can be done using Theorem 2.9(iii) (cf. Corollary 2.14 below).

(ii) The first inequality in (2.8.2) (the author recently learned that this inequality was earlier
proved as [KP2004, Theorem 4]) shows that, whatever the embedding of X, the µ Lefschetz
vanishing cycles δk ∈Van⊂Hn−1(X ′,Q), k = 1, . . . , µ, satisfy numerous linear relations: at most
half of them are linearly independent. Similarly to Proposition 2.2(v)(b), one sees that these
relations yield generators of the cokernel of jn.
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(iii) Asymptotically (for d large), the bound (2.8.2) is far from being optimal. Below (cf.
Corollary 2.14) we show that not only λn−1 but even bn−1(X ′)> λn−1 is bounded by a polynomial
of degree n in d.

(iv) The formula in Theorem 2.9(i) looks simple, is easily proved and involves classes which are
classical invariants, but I have not encountered it in this form in the literature. However, careful
examination revealed that similar formulas were being repeatedly discovered under different
guises.

For curves, the Riemann–Hurwitz formula shows that b1 = µ1 − 2µ0 + 2 6 µ1 and e= 2−
b1 = 2µ0 − µ1 in accordance with Theorem 2.9. The case of surfaces is more interesting. The role
of the Euler–Poincaré characteristic e was classically played by the Zeuthen–Segre invariant
I defined by the formula I = δ − σ − 4p, where, for a (general) pencil of curves, δ is the
number of nodal curves, σ is the number of base points and p is the genus of a generic
curve (cf. [SR1949, ch. IX, § 7.1]). This number was shown to be independent of the choice
of pencil of curves. By methods anticipating those of modern Lefschetz theory, Alexander
proved (in two different ways) the equality I = e− 4 (cf. [Ale1914, §§ 2 and 3]). In our setup,
that is, for a Lefschetz pencil, using the Riemann–Hurwitz formula 2p= µ1 − 2µ0 + 2, one
gets, in our notation, that I = µ2 − µ0 − 4p= µ2 − µ0 − 2(µ1 − 2µ0 + 2) = µ2 − 2µ1 + 3µ0 − 4.
By Alexander’s interpretation of I, this classical formula (cf. for example [SR1949, ch. IX, § 7,
Formula (5)]) can be rewritten as e= 3µ0 − 2µ1 + µ2, which is a special case of Theorem 2.9(i)
for n= 2. Furthermore, by Lefschetz’s theorem (cf. Proposition 2.2(iii)) and the formula for
curves in the preceding paragraph, b3 = b1 6 2p= µ1 − 2µ0 + 2 6 µ1 and b2 = e+ 2b1 − 2 6 µ2 −
2µ1 + 3µ0 + 2(µ1 − 2µ0 + 2)− 2 = µ2 − µ0 + 2 6 µ2, which is a special case of Theorem 2.9(ii).
It is amusing to observe that the now obvious formula b2 = I + 4(pg − pa) + 2 (where pg and
pa are respectively the geometric and arithmetic genus of our surface) was obtained only by
Alexander [Ale1914] who corrected an erroneous relation b2 = I + 2(pg − pa) + 2 published
by Poincaré in 1906.

In [Seg1895/96, § 11], Segre introduced a generalization II of the invariant I to varieties
of arbitrary dimension by using (in our notation) a recurrent formula II n = µn − 2II n−1 −
II n−2, II 0 = µ0 − 1, II 1 = µ1 − 2µ0 + 2 (thus II 2 = I + 1; the normalization chosen by Segre
is such that the invariants II n vanish for all linear spaces). Computing by induction, one
can show that

II n = (−1)n
( n∑
i=0

(n− i+ 1)µi − n− 1
)

= (−1)n(µn − 2µn−1 + · · ·+ (−1)n−1nµ1 + (−1)n(n+ 1)(µ0 + 1)).

On the other hand, using Alexander’s method, one can verify that II n = (−1)n(e− n− 1)
(Alexander himself used a different generalization In of I defined by the same recurrent formula,
but based on a different value I0 = II 0 + 1, which does not make much difference). Putting
together the above two formulas, one arrives at Theorem 2.9(i).

As was kindly pointed out to me by Lê Dũng Tráng, Theorem 2.9(i) can also be deduced
from the formulas for the local Euler obstructions for singularities obtained in [LT1981]. Different
proofs of Theorem 2.9(i) can be found in [KhZ, Theorem 2.13] and [Zak2012, Corollary 1.8].

We do not know of any classical bounds for Betti numbers in terms of classes similar to those
in Theorem 2.9(ii) and (iii).

(v) One can view Theorem 2.9(i) as a far-reaching generalization of Hopf’s celebrated formula
for the index of a vector field to the setup of projective algebraic geometry.
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(vi) The inequalities in Theorem 2.9(ii) and (iii) are not sharp. In fact, by Corollary 2.7(i)
they could only be sharp if the vanishing homology subspaces were trivial for all linear sections
of X, but this is never the case since for example λ0(X0) = d− 1. Already this observation shows
that the bound in Theorem 2.9(ii) can be improved by 2(d− 1), viz.

bi(X) = b2n−i(X) 6
[i/2]∑
k=0

µi−2k − 2(d− 1), i= 1, . . . , n, (2.10.1)

and the bound in Theorem 2.9(iii) can be improved by (3n− 1)(d− 1)− n− 1, viz.

b(X) 6
n∑
k=0

(k + 1)µn−k − (3n− 1)(d− 1) + n+ 1. (2.10.2)

More generally, from (2.2.1) it follows that λk(Xk)> 0 for k ≡ 0 (mod 2), which allows us to
further improve the bounds in Theorem 2.9(ii) and (iii).

Proposition 2.11. Let X ⊂ PN be a nonsingular nondegenerate variety of dimension n> 2
and let X ′ be its general hyperplane section. Then b(X) = b(X ′) + bn−1 + bn − λn−1(X ′) 6
b(X ′) + bn−1 + bn.

Proof. This follows immediately from (2.0.3) and Proposition 2.2(iii). 2

Corollary 2.12. In the assumptions of Proposition 2.11, b(X) 6 b(X ′) + µ(X).

Proof. This is an immediate consequence of Proposition 2.11 and Theorem 2.9(ii). 2

Combining Theorem 2.9 with Theorems 1.12 and 1.1, one can get various bounds for the
Betti numbers in terms of dimension, codimension, degree and sectional genus, trade-off being
between compactness and sharpness. We proceed with giving some simple formulas of this type.

Corollary 2.13. Let X be a nondegenerate nonsingular variety of dimension n, codimension a
and degree d > 2, let r1 = µ1 = 2π + 2d− 2, where π = g(X1) is the sectional genus (cf. (1.4.4)),
and let t= r1/d. Then

bi(X) = b2n−i(X)< d
ti+2

t2 − 1
, i= 1, . . . , n;

b(X) =
2n∑
i=0

bi(X)< d
tn+2

(t− 1)2
,

b(X) =
2n∑
i=0

bi(X)< d(t+ 1)n−1(t+ 2)

(in the case d= 2, the Betti numbers were computed in (2.6.6)).

Proof. Since d > 2, one has t= 2π/d− 2/d+ 2> 1.
From Theorems 2.9(ii), 1.12 and 1.1, it follows that

bi(X) = b2n−i(X) 6 µi + µi−2 + · · ·+ µi−2[i/2]

6 ri + ri−2 + · · ·+ ri−2[i/2] 6 d(ti + ti−2 + · · ·+ ti−2[i/2])< d
ti+2

t2 − 1
. (2.13.1)
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From Theorems 2.9(iii), 1.12 and 1.1, it follows that

b(X) 6 µn + 2µn−1 + · · ·+ nµ1 + (n+ 1)µ0

6 rn + 2rn−1 + · · ·+ nr1 + (n+ 1)r0

6 d(1 + t+ · · ·+ tn) + d(1 + t+ · · ·+ tn−1) + · · ·+ d(1 + t) + d

<
dt

t− 1
(tn + tn−1 + · · ·+ t+ 1)< d

tn+2

(t− 1)2
. (2.13.2)

The first three lines of (2.13.2) also yield

b(X) 6 d(1 + t+ · · ·+ tn) + d(1 + t+ · · ·+ tn−1) + · · ·+ d(1 + t) + d

=
d

t− 1
(t+ · · ·+ tn − n− 1) =

d

t− 1

(
t
tn+1 − 1
t− 1

− (n+ 1)
)

=
d(tn+2 − (n+ 2)t+ n+ 1)

(t− 1)2
. (2.13.3)

From (2.13.3), it follows that to prove the last inequality in Corollary 2.13 it suffices to verify
that

tn+2 − (n+ 2)t+ n+ 1
(t− 1)2

6 (t+ 1)n−1(t+ 2), n> 1, t > 1. (2.13.4)

We prove (2.13.4) by induction on n. For n= 1, (2.13.4) obviously turns into equality. Assuming
that (2.13.4) holds for n− 1, to check that it holds for n it clearly suffices to show that

tn+2 − (n+ 2)t+ n+ 1
tn+1 − (n+ 1)t+ n

6 t+ 1, n> 2, t > 1

or, equivalently, that

λn(t) = tn+1 − (n+ 1)t2 + (n+ 1)t− 1 > 0, n> 2, t > 1. (2.13.5)

Since λ′′n(t) = n(n+ 1)tn−1 − 2(n+ 1), λ′n(t) = (n+ 1)tn − 2(n+ 1)t+ n+ 1 is a strictly
increasing function for n> 2, t> 1, while λ′n(1) = λn(1) = 0. This completes the proof of (2.13.5)
and thus of Corollary 2.13. 2

Corollary 2.14. In the setup of Corollary 2.13, one has

(i) bi(X) = b2n−i(X)<


a

(
d

a
+

5
4

)i+1

,

a

(
d

a
+ 1
)i+1

if d>
(a− 2)2

8
,

i= 1, . . . , n.

(ii) b(X)<


a2

d

(
d

a
+

5
4

)n+2

,

a2

d

(
d

a
+ 1
)n+2

if d>
(a− 2)2

8
.

Proof. By (2.6.6), both (i) and (ii) are obvious in the case d= 2, so we assume that d > 2 and
so t= (2π + 2d− 2)/d > 1.

(i) By Corollary 2.13,

bi(X) = b2n−i(X)< dφ(t), φ(t) =
ti+2

t2 − 1
. (2.14.1)
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One has

φ′(t) =
(i+ 2)ti+1(t2 − 1)− 2ti+3

(t2 − 1)2
=
iti+3 − (i+ 2)ti+1

(t2 − 1)2
, (2.14.2)

and so the function φ(t) is monotonically increasing on the interval t>
√

(i+ 2)/i. Thus, for

t>

√
i+ 2
i

, (2.14.3)

our inequalities for bi(X) follow from (2.14.1) and Corollary 1.5. Since t= (2π + 2d− 2)/d, the
condition (2.14.3) is always satisfied if the sectional genus π is positive. Consider now the case
when π = 0, t= (2d− 2)/d. By (2.14.1),

bi(X)< dφ(t) =
(2d− 2)i+2

di−1(3d2 − 8d+ 4)
. (2.14.4)

Put ψ(a) = a(d/a+ 1)i+1. Then

ψ′(a) =
(

1− id

a

)(
d

a
+ 1
)i

(2.14.5)

and, since id/a> d/a > 1, ψ(a) is a monotonically decreasing function for 1 6 a6 d− 1. Thus,
to prove (i), it suffices to verify that dφ(t) 6 ψ(d− 1), which is immediate from (2.14.4). 2

(ii) If n= 1, then, by (1.4.6),

b(X) = 2 + b1(X) 6
d2

a
− d− 2d

a
+
a

4
+

1
a

+ 3<
a2

d

(
d

a
+ 1
)3

(2.14.6)

and we are done. For n> 2, the proof is similar to that of (i). By Corollary 2.13,

b(X) =
2n∑
i=0

bi(X)< dφ(t), φ(t) =
tn+2

(t− 1)2
. (2.14.7)

One has

φ′(t) =
tn+1

(t− 1)3
(nt− (n+ 2)), (2.14.8)

and so the function φ(t) is monotonically increasing on the interval t> (n+ 2)/n. Thus, for

t>
n+ 2
n

, (2.14.9)

our inequalities for b(X) follow from (2.14.7) and Corollary 1.5. Since t= (2π + 2d− 2)/d, the
condition (2.14.9) is always satisfied if the sectional genus π is positive. Consider now the case
when π = 0, t= (2d− 2)/d. By (2.14.7),

b(X)< dφ(t) =
(2d− 2)n+2

dn−1(d− 2)2
. (2.14.10)

Put ψ(a) = (a2/d)(d/a+ 1)n+2. Then

ψ′(a) =
(

2a
d
− n

)(
d

a
+ 1
)n+1

, (2.14.11)

and so ψ(a) is a monotonically decreasing function for 1 6 a6 d− 2. Thus, to prove (ii), for
a6 d− 2 it suffices to verify that dφ(t) 6 ψ(d− 2), which is immediate from (2.14.10). Since
a6 d− 1, it remains to deal with varieties of minimal degree for which both inequalities in (ii)
are trivially satisfied. 2
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Remarks 2.15. (i) The bounds in Corollary 2.14 can be proved directly, without deducing them
from Corollary 2.13. However, Corollary 2.13 gives bounds for the Betti numbers of X in terms
of its degree, dimension and sectional genus π. In the case when the sectional genus of X is
much less than the maximum given by Castelnuovo’s theorem, this bound is much better than
the general one given in Corollary 2.14 (cf. Remark 1.17(iii)).

(ii) The bounds for the total Betti number given in Corollaries 2.13 and 2.14 are not
optimal for several reasons. Firstly, if the codimension a of X is larger than one, then the
bounds µi 6 ri proved in Theorem 1.12 are not sharp for i > 1 (cf. Remark 1.17(iv)). Also,
the bounds ri 6 ri1/d

i−1 in Theorem 1.1 are not always sharp. Secondly, the basic inequalities
in Theorem 2.9 are never sharp because of the existence of nontrivial vanishing cycles (cf.
Remark 2.10(vi)). Thirdly, the bound for r1 from Corollary 1.5 that we used in the proof
of Corollary 2.14 can be improved for certain values of a (cf. Remark 1.7(i)). For example,
combining Remark 1.7(i) with Corollary 2.13, we see that b(X)< dn+3/2n+2(d− 2)2 for a= 2
and b(X)< d(d+ 1)n+2/3n(d− 2)2 for a= 3.

(iii) The true import of Corollary 2.14 is that b(X)< dn+1/an +O(dn) with a rather precise
bound on O(dn). In the next section, we will give examples of (series of) varieties whose middle
Betti number has the form bn(X) = dn+1/an +O(dn), and so the above bound is asymptotically
sharp. Moreover, we will see that, using known bounds for curves, one can improve the above
bound, deduce from it an optimal one and classify the varieties on the boundary. In particular,
for sufficiently large d, one has b(X)< dn+1/an (cf. Remark 2.19 and Theorem 3.16(ii) below).

(iv) Let b−(X) =
∑

i6=n bi(X) = b(X)− bn(X) be the sum of all Betti numbers of X except the
middle one. Then, from Proposition 2.2(iii) and Corollary 2.14, it follows that b−(X) 6 b(X ′) +
bn−1(X) 6 b(X ′) + bn−1(X ′)< 2b(X ′) is bounded by a polynomial of the form dPn−1(d/a), where
Pn−1 is a polynomial of degree n− 1 with leading coefficient 2 (for d large, one can take
Pn−1(t) = 2tn; cf. (iii), Remark 2.19 and Theorem 3.16 below). On the other hand, Examples 2.6
and 3.5 show that it is impossible to give a bound of this form for the middle Betti number. In
other words, if the degree and the total Betti number of a variety are large, then the contribution
of all homologies except the middle one to the total Betti number is much less than that of the
middle homology. More generally, if b−l =

∑
|i−n|>l bi, 1 6 l 6 n− 1, then, for d large with respect

to a, b−l(X)< 2d(d/a)n−l.

Theorem 2.16. Let X be a nonsingular projective variety of dimension n and degree d. Then
b(X) 6 b(X), where X ⊂ Pn+1 is a smooth hypersurface of the same dimension n and degree d.
Furthermore, b(X) = b(X) if and only if X is itself a hypersurface (that is, a= codimX = 1).

Proof. If n= 1, then, by (1.4.5), b(X) 6 (d− 2)2/2 + 2< (d− 1)(d− 2) + 2 = b(X). Thus, in
what follows, we may assume that n> 2.

Suppose first that a> 6. By (2.6.4) and the first bound in Corollary 2.14(ii), one has

b(X)>
(d− 1)n+2

d
;

b(X)<
a2

d

(
d

a
+

5
4

)n+2

.

(2.16.1)

Considering the quotient φ(a, d) = an((d− 1)/(d+ (5/4)a))n+2 of the right-hand sides of
(2.16.1), we see that to prove the theorem it suffices to show that

φ(a, d) > 1, a> 6. (2.16.2)
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It is immediate that, for given a, φ is a monotonically increasing function of d, and so it suffices
to check (2.16.2) for d= a+ 1, that is, to show that

φ(a, a+ 1) =
a2n+2

((9/4)a+ 1)n+2
= an

1
(9/4 + 1/a)n+2

> 1. (2.16.3)

Since φ(a, a+ 1) is a monotonically increasing function of a, it suffices to verify (2.16.3) for a= 6,
in which case it is immediate provided that n> 2.

If a < 6, then d > (a− 2)2/8 (this inequality actually holds if a6 12; cf. Corollary 1.5), and
in (2.16.1) one can replace the first bound from Corollary 2.14(ii) by the second one:

b(X)>
(d− 1)n+2

d
;

b(X)<
a2

d

(
d

a
+ 1
)n+2

.

(2.16.4)

In this case, we can consider the quotient ψ(a, d) = an((d− 1)/(d+ a))n+2 of the right-hand
sides of (2.16.4), and to prove the theorem it suffices to show that

ψ(a, d) > 1. (2.16.5)

As above, it is obvious that, for given a, ψ is a monotonically increasing function of d. Hence,
to prove (2.16.5) for an arbitrary d> a+ 2, it suffices to check it for d= a+ 2, that is, to show
that

ψ(a, a+ 2) =
1
4

(
a

2

)n
> 1. (2.16.6)

It is clear that (2.16.6) is satisfied for all a> 4 provided that n> 2 (and a= 3 provided that
n> 4).

If d= a+ 1, then X is a variety of minimal degree and, from (2.6.4), it follows that
b(X) 6 2n < b(X) for d> 3.

In the case a= 3, Remark 2.15(ii) yields a better bound for b(X), so that in place of (2.16.4)
we get the following inequalities:

b(X)>
(d− 1)n+2

d
;

b(X)<
d(d+ 1)n+2

3n(d− 2)2
.

(2.16.7)

Denote by η(d) the quotient of the right-hand sides of (2.16.7). Then η(d) = 3n((d− 2)/d)2

((d− 1)/(d+ 1))n+2, and one sees immediately that η(d)> 1 for d> 5 = a+ 2, n> 3 or d> 6,
n> 2. In the remaining case when d= 5 and n= 2, (1.4.5) yields π 6 1 and r1 6 10; hence, by
Corollary 2.7(i), b(X) 6 b2(X) + 6 6 µ2 + 3< r2 + 3 6 100/5 + 3 = 23 while b(X)> 44/5> 50,
which completes the proof in the case a= 3.

Suppose finally that a= 2. Then, by Remark 2.15(ii), in place of (2.16.4) we get the following
inequalities:

b(X)>
(d− 1)n+2

d
;

b(X)<
dn+3

2n(d− 2)2
.

(2.16.8)
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Denote by ξ(d) the quotient of the right-hand sides of (2.16.8). Then ξ(d) = 2n((d− 2)/d)2

((d− 1)/d)n+2, and one sees immediately that ξ(d)> 1 for d> 4, n> 5 or d> 5, n> 4 or d> 6,
n> 3 or d> 7, n> 2, which proves the theorem for those values of d and n. If d= 6, n= 2,
then, by (1.4.5), π 6 4 and r1 6 18; hence, by Corollary 2.7(i), b(X) 6 b2(X) + 18< µ2 + 14<
r2 + 14 6 182/6 + 14 = 68 while b(X)> 625/6 and we are done. Finally, if d= 5, then, by (1.4.5),
π 6 2, r1 6 12 and t6 12/5. If n= 3, then, by Corollary 2.13, b(X)< dt5/(t− 1)2 = 125/(25 ·
49)< 204 while b(X)> 45/5> 204. It remains to consider the case n= 2. By Corollary 2.7(i),
in this case b(X) 6 b2(X) + 10< µ2 + 7< r2 + 7 6 122/5 + 7< 36 while b(X)> 44/5> 51. 2

Corollary 2.17. Let X be a nonsingular projective variety of dimension n and degree d. Then
bn(X) 6 bn(X), whereX ⊂ Pn+1 is a smooth hypersurface of the same dimension n and degree d.
Furthermore, bn(X) = bn(X) if and only if X is itself a hypersurface.

Proof. By Theorem 2.16,

b(X) 6 b(X) (2.17.1)

with equality holding if and only if a= 1. Corollary 2.17 follows from (2.17.1), Example 2.6 and
the following inequality:

bi(X) > 1, i≡ 0 (mod 2). (2.17.2)
2

Theorem 2.18. Let X be a nonsingular projective variety of dimension n and degree d. Then
b(X)< dn+1.

Proof. From Theorem 2.16, it follows that it suffices to prove Theorem 2.18 in the case when X
is a hypersurface.

If X is a quadric, then, by Example 2.6, b(X) 6 n+ 2< 2n+1. If d > 2, then, by (2.6.4),

b(X) =
(d− 1)n+2 + (−1)n+1

d
+ n+ 1 + (−1)n <

(d− 1)n+2

d
+ (n+ 2). (2.18.1)

In view of (2.18.1), to prove Theorem 2.18 it now suffices to show that (d− 1)n+2/d+ (n+ 2) 6
dn+1 or, more generally, that

φd(x) = dx − (d− 1)x − dx> 0, d> 3, x> 3. (2.18.2)

Differentiating the left-hand side of (2.18.2), we see that

φ′d(x) = ln d · dx − ln (d− 1) · (d− 1)x − d
> ln d[dx − (d− 1)x]− d > dx − (d− 1)x − d
> d2 − (d− 1)2 − d= d− 1> 0, d> 3, x> 2, (2.18.3)

so that the function φd(x) is increasing for d> 3, x> 2 and it suffices to check (2.18.2) for x= 3,
in which case it is clear that d3 − (d− 1)3 − 3d= d2 + d(d− 1) + (d− 1)2 − 3d > d2 − 3d> 0. 2

Remark 2.19. In the next section, we show (cf. Theorem 3.16) that if the degree d is sufficiently
large (for example d> 2(a+ 1)2), then b(X)< dn+1/an, which gives a nice generalization of
Theorem 2.18 for varieties of arbitrary codimension.
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The following result extends Theorem 2.18 to varieties of arbitrary codimension defined by
equations of degree d.

Theorem 2.20. Let Xn ⊂ PN be a (not necessarily nondegenerate) variety defined by equations
of degree d. Then b(X)<

(
N−1
n

)
dN .

Proof. From Theorem 2.9(iii), Remark 2.10(vi) and Theorem 1.21, it follows that

b(X)< da
n∑
i=0

(n+ 1− i)
(
a+ i− 1

i

)
(d− 1)i. (2.20.1)

On the other hand,(
N − 1
n

)
dN = da

(
N − 1
n

)
((d− 1) + 1)n = da

(
N − 1
n

) n∑
i=0

(
n

i

)
(d− 1)i. (2.20.2)

Using the obvious relations (
r

k

)
=
(
r − 1
k

)
+
(
r − 1
k − 1

)
,(

n

k

)
> k + 1, k 6 n− 1,

(2.20.3)

one can check that, for a > 1,(
n

i

)(
N − 1
n

)
> (n+ 1− i)

(
a+ i− 1

i

)
, i= 0, . . . , n, (2.20.4)

which yields our claim. 2

Example 2.21. Let Xn ⊂ PN be a nonsingular complete intersection of hypersurfaces of degree d.
From Proposition 2.2(iii), it follows that

bi(X) =

{
0, i 6= n, i≡ 1 (mod 2),
1, i 6= n, i≡ 0 (mod 2),

b(X) =

{
e(X), n≡ 0 (mod 2),
2(n+ 1)− e(X), n≡ 1 (mod 2).

A generating function for the Euler characteristic of complete intersections was found by
Hirzebruch (cf. [Hir1966, § 22] or [DK1973, exp. XI]), but the corresponding formulas are rather
involved. An easier way to compute the Euler characteristic is to use the formulas for classes
obtained in Theorem 1.21 and to apply Proposition 2.4 to get a recurrent formula. This seems to
be a general rule: classes appear to be more basic objects than Betti numbers, and formulas for
classes look nicer than those for Betti numbers (and even than those for the Euler characteristic).
We will see another manifestation of this rule in Proposition 3.11.

In any case, the computation sketched above shows that the bound in Theorem 2.20 is
asymptotically sharp. However, like its counterparts in Theorems 2.18 and 3.16 and many other
results in this paper, this bound fails to be the best possible; we sacrificed sharpness for beauty.
One expects that complete intersections have maximal Betti number among all varieties defined
by equations of degree d; cf. Remark (8) in § 4.

From Theorem 2.20 and Stirling’s formula, we derive the following bound valid for arbitrary
smooth subvarieties of PN .
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Corollary 2.22. Let X ⊂ PN be a nonsingular variety defined by equations of degree 6d.
Then b(X)<

(
N−1

[(N−1)/2]

)
dN ∼

√
2/πN · (2d)N .

Remark 2.23. In view of Example 2.21, the bounds in Theorem 2.20 and Corollary 2.22 are
asymptotically sharp. In particular, they are better than the bounds obtained in [Mil1964,
Tho1965] (cf. for example [Mil1964, Theorem 2 and Corollaries 1–3]); furthermore, the bound in
Theorem 2.20 takes into account the codimension of X. On the other hand, while Theorem 1.21
is true for arbitrary varieties, to apply the theory developed in the present section we, unlike
Milnor and Thom, need to assume that X is nonsingular.

3. Optimal bounds and varieties on the boundary

As pointed out in Remarks 1.17(iv) and 2.15(ii), the bounds for the classes and Betti numbers
obtained in Corollaries 1.13, 2.13 and 2.14 are not optimal. In this section, we improve these
bounds and describe the varieties on the boundary.

Theorem 3.1. Let X ⊂ PN be a nonsingular nondegenerate variety of dimension n, codimension
a=N − n and degree d > 2a+ 2, let bi, i= 0, . . . , 2n, and b=

∑2n
i=0 bi be its Betti numbers, and

let µi (respectively ri), i= 0, . . . , n, denote its classes (respectively ramification volumes).

(i) Suppose that, for some i > 0, µi > d(d/(a+ 1) + (d− 2)/d+ (a+ 1)/4d)i (since d >
2a+ 2, this condition is satisfied if µi > d(d/(a+ 1) + 9/8)i). Then X ⊂ V , where V ⊂ PN ,
dim V = n+ 1, deg V = a, is a variety of minimal degree.

(ii) Suppose that, for some i > 0, ri > d(d/(a+ 1) + (d− 2)/d+ (a+ 1)/4d)i (since d >
2a+ 2, this condition is satisfied if ri > d(d/(a+ 1) + 9/8)i). Then X ⊂ V , where V ⊂ PN ,
dim V = n+ 1, deg V = a, is a variety of minimal degree.

(iii) Suppose that b > dφ(d/(a+ 1) + (d− 2)/d+ (a+ 1)/4d), where, as in the proof of
Corollary 2.14, φ(t) = tn+2/(t− 1)2 (this condition is satisfied provided that b > ((a+
1)2/d)(d/(a+ 1) + 9/8)n+2). Then X ⊂ V , where V ⊂ PN , dim V = n+ 1, deg V = a, is a variety
of minimal degree.

Proof. By Theorem 1.12, (ii) follows from (i).
If N = n+ 1, then all the claims are obviously true (with V = Pn+1), even without any

assumptions on µi, ri and b.
Let N > n+ 2. Put C =X1, and let π = g(C) denote the sectional genus of X. We claim that

under our assumptions, one has

π >
d2

2(a+ 1)
− d

2
+
a+ 1

8
. (3.1.1)

In fact, since, by (1.4.4), π = r1/2− d+ 1, to show (3.1.1) it suffices to check that

r1 >
d2

a+ 1
+ d+

a− 7
4

. (3.1.2)

In case (i), Corollary 1.13 and Remark 1.17(i) yield

d

(
r1

d

)i
> µi > d

(
d

a+ 1
+
d− 2
d

+
a+ 1

4d

)i
, (3.1.3)

which implies (3.1.2).
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Consider now case (iii). Since, obviously, t3/(t− 1)2 > t, for n= 1 one has

r1 > r1 − 2d+ 4 = b > dφ

(
d

a+ 1
+
d− 2
d

+
a+ 1

4d

)
>

d2

a+ 1
+
a+ 1

4
+ d− 2. (3.1.4)

For arbitrary n, from Corollary 2.13 it follows that

dφ

(
d

a+ 1
+
d− 2
d

+
a+ 1

4d

)
< b < dφ

(
r1

d

)
. (3.1.5)

The function φ(t) is monotonically increasing for t> (n+ 2)/n (cf. (2.14.8) and (2.14.9)). Since
d > 2a+ 2 and r1 = 2π + 2d− 2, one has

d

a+ 1
+
d− 2
d

+
a+ 1

4d
> 3 +

(
a− 7

4d
+

1
a+ 1

)
> 3,

t=
r1

d
> 2 + 2

π − 1
d

>

2, π > 0,

1 +
a

a+ 1
, π = 0.

(3.1.6)

From (3.1.6), it follows that (3.1.2) holds for n> 3 and also for n= 2 provided that π > 0. If
n= 2 and π = 0, then, by (1.4.4), µ1 = r1 = 2d− 2 and, by Proposition 2.2(iii), b1(X) = 0. Thus,
from Theorems 2.9(iii), 1.12 and 1.1, it follows that

b(X) = e(X) = µ2 − d+ 4 6 4
(d− 1)2

d
− d+ 4 = 3d− 4

(
1− 1

d

)
< 3d. (3.1.7)

On the other hand, since φ(t) = t4/(t− 1)2 > t2 for all t > 1 and d > 2a+ 2, the first inequality
in (3.1.5) yields

b(X)> dφ

(
d

a+ 1
+
d− 2
d

+
a+ 1

4d

)
> d

(
d

a+ 1
+
d− 2
d

+
a+ 1

4d

)2

> d

(
3 +

a− 7
4d

)2

> 3d. (3.1.8)

Thus, (3.1.8) contradicts (3.1.7), and the case n= 2, π = 0 in (iii) does not occur (by the way,
it is well known that the only smooth surfaces with sectional genus zero are scrolls and the
Veronese surface (cf. for example [Zak1973]), so that for such surfaces b6 4). This completes
the proof of (3.1.1).

Suppose now that

b >
(a+ 1)2

d

(
d

a+ 1
+

9
8

)n+2

>
(a+ 1)2

d

(
d

d+ (a+ 1)/8

)2( d

a+ 1
+

9
8

)n+2

= d
(d/(a+ 1) + 9/8)n+2

(d/(a+ 1) + 1/8)2
= dφ

(
d

a+ 1
+

9
8

)
. (3.1.9)

One has
d

a+ 1
+
d− 2
d

+
a+ 1

4d
=

d

a+ 1
+ 1 +

a− 7
4d

<
d

a+ 1
+ 1 +

a− 7
8a+ 8

<
d

a+ 1
+

9
8
. (3.1.10)
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From (3.1.9), (3.1.10), (3.1.6) and the monotonicity of φ(t) for t> (n+ 2)/n, it follows that the
inequality b > ((a+ 1)2/d)(d/(a+ 1) + 9/8)n+2 implies the inequality b > dφ(d/(a+ 1) + (d−
2)/d+ (a+ 1)/4d).

We now recall the following theorem.

Theorem (Halphen–Harris). Let C ⊂ Pr be a nondegenerate curve of genus g and degree d > 2r
such that

g >
(d− ε)(d+ ε− r)

2r
+
[
ε

r

]
, ε≡ d (mod r), 1 6 ε6 r.

Then C is contained in a surface S of minimal degree in Pr: C ⊂ S ⊂ Pr, deg S = r − 1.

Proof. See [HE1982, Theorem 3.15] or [Cil1987, Theorem 3.4]. 2

We observe that
(d− ε)(d+ ε− r)

2r
+
[
ε

r

]
=
d2

2r
− d

2
+
ε(r − ε)

2r
+
[
ε

r

]
6
d2

2r
− d

2
+
r

8
, (3.1.11)

and so for the validity of the Halphen–Harris theorem it suffices to assume that g > d2/2r −
d/2 + r/8. Thus, (3.1.1) shows that the curve section C =X1 satisfies the hypothesis of the
Halphen–Harris theorem for r = a+ 1.

Another property of the curve section C =X1 is that it is linearly normal. In fact, if C were
an isomorphic projection of a curve C̃ ⊂ Pa+2, then, by (3.1.1) and (1.4.6),

d2

2(a+ 1)
− d

2
+
a+ 1

8
< π = g(C) = g(C̃) 6

(d− (a+ 1)/2− 1)2

2(a+ 1)

<
(d− (a+ 1)/2)2

2(a+ 1)
=

d2

2(a+ 1)
− d

2
+
a+ 1

8
, (3.1.12)

a contradiction.
We now need the following easy lemma.

Lemma 3.2. Let X ⊂ PN be a nondegenerate variety, and let X ′ ⊂ PN−1 be its general
hyperplane section. Denote by IX ⊂OPN (respectively IX′ ⊂OPN−1) the ideal sheaf of X
(respectively that of X ′). Then:

(i) if X ′ is linearly normal, then X is also linearly normal;

(ii) if X is linearly normal, then the restriction H0(PN , IX(2))→H0(PN−1, IX′(2)) is an
isomorphism. In particular, the complete linear system of quadrics in PN−1 containing
X ′ is cut by the complete linear system of quadrics in PN containing X.

Proof. (i) If X ′ is linearly normal, then

H1(PN−1, IX′(1)) = 0. (3.2.1)

On the other hand, in the exact cohomology sequence

H0(PN ,OX)→H0(X,OX)→H1(PN , IX)→H1(PN ,OX) (3.2.2)

the first arrow is an isomorphism and the last term is zero; hence,

H1(PN , IX) = 0. (3.2.3)

Substituting (3.2.1) and (3.2.3) in the exact cohomology sequence

H1(PN , IX)→H1(PN , IX(1))→H1(PN−1, IX′(1)), (3.2.4)
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we conclude that

H1(PN , IX(1)) = 0, (3.2.5)

that is, X is linearly normal. 2

(ii) follows from the exact cohomology sequence

H0(PN , IX(1))→H0(PN , IX(2))→H0(PN−1, IX′(2))→H1(PN , IX(1)) (3.2.6)

whose first and last terms are trivial (the first one by the nondegeneracy of X and the last one
by the linear normality of X). 2

We return to the proof of Theorem 3.1. Since C =X1 is linearly normal, a repeated application
of Lemma 3.2(i) shows that all linear sections X =Xn, X ′ =Xn−1, . . . , C =X1 of the variety X
are linearly normal and the linear system of quadrics containing Xi is obtained by restricting the
linear system of quadrics containing X on the linear subspace 〈Xi〉 ⊂ PN . From the Halphen–
Harris theorem it follows that C ⊂ S, where S ⊂ Pa+1, deg S = a, is a surface of minimal degree.
By [Zak1999, Corollary 5.8(a)] and the assumption d > 2a+ 2, C is defined by

e2(C) = h0(Pa+1, IC(2)) = h0(Pa+1, IS(2)) = e2(S) =
a(a− 1)

2
(3.1.13)

quadratic equations. Using Lemma 3.2(ii), we can lift these quadratic equations to the quadratic
equations of X in PN . Denoting by V ⊂ PN the intersection of the corresponding quadrics, we
immediately see that V ⊃X, dim V = n+ 1, deg V = a and V ∩ Pa+1 = S, which completes the
proof of Theorem 3.1. 2

Remark 3.3. Since b > bn, the statement of Theorem 3.1(iii) remains true if b is replaced by bn.
On the other hand, for i < n there are no conditions similar to those in Theorem 3.1(iii) ensuring
that if bi(X) is large enough, then X is a codimension-one subvariety in a variety V of minimal
degree in PN (in fact, from Proposition 2.2 it follows that, except for the middle one, the
homologies of X are the same as those of V ; cf. (3.5.12)). However, such conditions can be
given if bi(X) is replaced by bi(Xi). This point is further discussed in Remark (9) in § 4.

Theorem 3.1 shows the importance of studying codimension-one subvarieties in varieties of
minimal degree for the problem of describing the varieties with big numerical invariants. We
start with recalling classification of varieties of minimal degree (due essentially to P. Del Pezzo
and E. Bertini).

Theorem 3.4. (i) Let V n+1 ⊂ PN , n> 1, be a variety of minimal degree a=N − n. Then
V is a cone with vertex L= Pl over a nonsingular variety of minimal degree V0 ⊂ PN−l−1,
dim V0 = n− l, deg V0 = a, where V0 is a point, a quadric, a Veronese surface of degree four
in P5 or a rational normal scroll.

(ii) Any nonsingular rational normal scroll V0 ⊂ PN−l−1 has the form V0 = Sa1,...,an−l , where
ai > 0, i= 1, . . . , n− l, a1 + · · ·+ an−l = a and Sa1,...,an−l is constructed as follows. Take n− l
subspaces Pai , i= 1, . . . , n− l, in general position in PN−l−1, let Ci ⊂ Pai be a rational normal
curve of degree ai and let φi : P1→ Ci be an isomorphism. We define Sa1,...,an−l to be the
locus of (n− l − 1)-dimensional linear subspaces Ft spanned by the corresponding points of Ci,
i= 1, . . . , n− l, viz. Sa1,...,an−l =

⋃
t∈P1 Ft, Ft = 〈φ1(t), . . . , φn−l(t)〉, t ∈ P1.

More generally, the cone with vertex Pl over Sa1,...,an−l is denoted by S0,...,0︸︷︷︸
l+1

,a1,...,an−l .
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(iii) The rational normal scroll V = Sa1,...,an+1 ⊂ PN with a1, . . . , an+1 > 0 is a linear section
of the Segre variety P1 × Pa−1 ⊂ P2a−1, a= a1 + · · ·+ an+1.

(iv) Let V = Sa1,...,an+1 , let H ⊂ V and F ⊂ V be the divisors of the hyperplane section and
the n-space Ft, respectively, and let KV be the canonical class of V . Then KV ∼−(n+ 1)H +
(a− 2)F , where a= deg V = a1 + · · ·+ an+1.

(v) The dual variety S∗0,...,0,a1,...,an−l
= S∗a1,...,an−l

is contained in the linear subspace of

codimension l + 1 in PN ∗ formed by the hyperplanes passing through the vertex Pl, and one
has V ∗ =

⋃
t∈P1 Pa−1

t , where a= a1 + · · ·+ an+1 and Pa−1
t ⊂ PN ∗ is the subspace formed by the

hyperplanes passing through the n-space Ft, t ∈ P1 (cf. (ii)).

Furthermore, dim V ∗ = deg V ∗ = a, and so def V = n− 1 (cf. Definition 1.8). In particular,
all scrolls of dimension larger than two are defective.

Proof. For the most part, this is well known, cf. for example [EH1987] or [Har1981, § 3]; (v) can
be easily verified by hand. 2

According to Theorem 3.1, varieties with sufficiently big classes, ramification volumes or
Betti numbers are codimension-one subvarieties in varieties of minimal degree. However, we
do not yet know whether varieties of minimal degree actually contain subvarieties with big
invariants and whether the upper bounds for ramification volumes, classes and Betti numbers
obtained in Corollaries 1.5, 1.13 and 2.14 are asymptotically sharp. The following example gives
an affirmative answer to these questions.

Example 3.5. Let V n+1 = Sa1,...,an+1 ⊂ PN , a1, . . . , an+1 > 0, deg V =N − n= a= a1 + · · ·+
an+1, be a nonsingular rational normal scroll (cf. Theorem 3.4(ii)), let W ⊂ PN be a general
hypersurface of degree m and let X =W ∩ V be the corresponding codimension-one subvariety
of degree d=ma in V . By Bertini’s theorem, X is smooth and irreducible. Let F = Pn ⊂ V be
a fiber, and let H ⊂ V denote a hyperplane section, so that X ∼mH as divisors on V .

From Theorem 3.4(iv) and the adjunction formula, it easily follows that

ri = (mH · (mH + (a− 2)F )i ·Hn−i)V

= mi(am+ i(a− 2)) =
(
d

a

)i
(d+ i(a− 2)), (3.5.1)

which is a better bound than the general one obtained in Corollary 1.5.

It is clear that

X∗ =
⋃
x∈X
〈Pa−2
V,x , γW (x)〉, (3.5.2)

where Pa−2
V,x ⊂ PN ∗ is the linear subspace of hyperplanes passing through the (embedded) tangent

space Tn+1
V,x and γW :W → PN ∗ is the Gauß map which is birational and defined by forms of degree

m− 1. An easy check shows that, for any m> 1, X∗ is a hypersurface (that is, def X = 0).

In the notation of Definition 1.8, for any subvariety Y ⊆X not contained in a fiber Ft, we
put

PV |Y = p−1(Y ), PV (Y ) = π(PV |Y ) =
⋃
y∈Y

Pa−2
V,y . (3.5.3)
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From Definition 1.8 and Theorem 3.4(v), it easily follows that

dim PV |Y = dim Y + a− 2,

dim PV (Y ) =


a, dim Y > 2,
a− 1, dim Y = 1,
a− 2, dim Y = 0,

PV (Y ) = V ∗, dim Y > 2.

(3.5.4)

For i= 1, . . . , m, let Xγ
i ⊂X be the i-dimensional subvariety cut on X by n− i general

hypersurfaces of degree m− 1; in particular, we put C =Xγ
1 . Then

deg Xγ
i = d(m− 1)n−i (3.5.5)

and, arguing as in [Har1992, 19.5] (cf. also the proof of Theorem 1.21) and using
Theorem 3.4(v), [Har1992, 19.4] and (3.5.4), we see that

µn = deg X∗ =
n∑
i=0

d0(π|p−1(Xγ
i ))

= deg γW (X) + deg PV (Xγ
1 ) +m(m− 1)n−2 deg V ∗

= am(m− 1)n + deg PV (C) + am(m− 1)n−2, n> 2,
µ1 = am(m− 1) + deg PV (C).

(3.5.6)

Thus, it remains to compute deg PV (C). An easy way to do this almost without computations
is to consider a general projection $ : V → Pn+2. Put V ′ =$(V ), X ′ =$(X), C ′ =$(C). By
Lemma 1.10(ii), V ′∗ is a linear section of V ∗, dim V ′∗ = 2. The double locus D =Dπ ⊂ V of the
projection $, that is, the locus on V , where $ fails to be an isomorphism, has the form

D ∼ (a− n− 3)H −KV ∼ (a− 2)(H − F ) (3.5.7)

(cf. [Ili1998] and Theorem 3.4(iv)). Let γV ′ : V ′ 99K V ′∗ be the Gauß map defined out of
D′ =$(D) = Sing V ′, and put PV ′(C ′) = γV ′(C ′). Then

deg PV (C) = deg PV ′(C ′) = deg γV ′(C ′)
= (deg V ′ − 1) deg C ′ − card (C ′ ∩D′) = (deg V − 1) deg C − (C ·D)V
= (a− 1)(m− 1)n−1d− (a− 2)m(m− 1)n−1(Hn ·H − F )V
= 2m(a− 1)(m− 1)n−1. (3.5.8)

Substituting (3.5.8) in (3.5.6), we get

µn = deg X∗

= am(m− 1)n + 2m(a− 1)(m− 1)n−1 + am(m− 1)n−2

= m(m− 1)n−2(am2 − 2m+ 2)

=
d

a

(
d

a
− 1
)n−2(d2

a
− 2

d

a
+ 2
)
, n> 2. (3.5.9)

Moreover, since, for each i> 1, Xi is a variety of the same type as X, we conclude that

µi = µi(X) =


d

a

(
d

a
− 1
)i−2(d2

a
− 2

d

a
+ 2
)
, 2 6 i6 n,

d2

a
+ (a− 2)

d

a
, i= 1.

(3.5.10)
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Thus,

µi =
di+1

ai
−
(
i− 2(a− 1)

a

)
di

ai−1
+ Pi−1(d), 1 6 i6 n, (3.5.11)

where Pi−1 is a polynomial of degree i− 1 in d (with coefficients depending on a), and so the
bound in Corollary 1.13 is asymptotically sharp for all 1 6 i6 n.

Comparison of (3.5.10) with (3.5.1) illustrates Theorem 1.12 in this special case. Of course,
both (3.5.1) and (3.5.11) combined with Theorem 1.12 show that the bound for ramification
volumes ri given in Corollary 1.5 is asymptotically sharp for all 1 6 i6 n.

By Proposition 2.2(iii),

bi(X) = bi(V ) =


2, i≡ 0 (mod 2), i 6= 0, n, 2n
1, i= 0, 2n
0, i≡ 1 (mod 2), i 6= n

6 2 (3.5.12)

and, by Theorem 2.9(ii),
bn(X) 6 µn + µn−2 + · · ·. (3.5.13)

We observe that in our setup (3.5.13) can be substantially strengthened. In fact, in view
of (3.5.12) and the obvious lower bounds for the vanishing homology, Proposition 2.2 and
Corollary 2.7(i) yield

bn(X) 6 µn(X). (3.5.14)

From (3.5.14) and (3.5.10) or (3.5.11), it is clear that the bound for bn(X) in Corollary 2.14(i)
is asymptotically sharp. Similarly, from (3.5.10) or (3.5.11) and Theorem 2.9(iii), it follows that
the bound for b(X) in Corollary 2.14(ii) is asymptotically sharp (this is also evident from the
sharpness of the bound for bn(X)). On the other hand, from (3.5.12) and Remark 3.3, it is
clear that the bounds for bi(X), i < n, given in Corollary 2.14(i) fail to be asymptotically sharp
(cf. also Remark (9) in § 4).

Theorem 3.1 shows that nonsingular varieties with big classes, ramification volumes or Betti
number are codimension-one subvarieties in varieties of minimal degree. On the other hand,
according to Example 3.5, (at least some of the) varieties of minimal degree contain smooth
codimension-one subvarieties of arbitrarily high degree with big invariants. Although we do
not believe that the assumption of nonsingularity is crucial, it is essential for some of our
arguments (cf. also Remark (4) in § 4). Thus, one needs to know which of the varieties of
minimal degree contain nonsingular subvarieties of codimension one. Now we turn to settling this
question.

Proposition 3.6. Let X ⊂ V n+1 be a nonsingular subvariety of a variety of minimal degree
V n+1 ⊂ PN with dim Sing V = l. Then either X ⊂ L (and, consequently, dimX 6 l) or l 6
2 codimV X − 1.

Proof. In the notation of Theorem 3.4, V is a cone with vertex L= Pl over a nonsingular variety
V0 of minimal degree in PN−l−1. Suppose that X 6⊂ L. Pick a point x ∈X\L, and let v ∈ V0

be the point for which x ∈ Lv, where Lv = 〈L, v〉, dim Lv = l + 1, is the linear subspace in V
corresponding to v. Put Tv = 〈TV0,v, L〉. Then TV,w = Tv for each w ∈ Lv\L, and therefore the
(n+ 1)-dimensional linear subspace Tv is tangent to X along the subvariety Xv =X ∩ (Lv\L).
Since x ∈ Sm V , one has

dimXv > dim Lv − codimV X = l − codimV X + 1. (3.6.1)
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On the other hand, by the Theorem on tangencies [Zak1993, ch. I, Corollary 1.8],

dimXv 6 dim Tv − dimX = codimV X. (3.6.2)

Combining (3.6.1) and (3.6.2), one gets

l 6 2 codimV X − 1. (3.6.3)
2

Corollary 3.7. In the notation of Proposition 3.6, suppose that V contains a nonsingular
subvariety Xn of codimension one. Then l 6 1.

Proof. Since l = dim L6 dim V − 2 = n− 1, X 6⊂ L. Thus, our claim follows from (3.6.3). 2

Proposition 3.8. In the notation of Proposition 3.6, suppose that l = dim L= 1 and V
contains a nonsingular subvariety Xn, n> 2, of codimension one. Then L⊂X and V =
S0,0,a1,...,an−1 is a cone with vertex L over a rational normal scroll V0 = Sa1,...,an−1 ⊂ PN−2,
a1 + · · ·+ an−1 = a. Thus, X is a Roth variety (cf. [Ili1998, Definition 3.1]) and so d≡ 1 (mod a)
and X has the form described in [Ili1998, Theorem 3.8].

Proof. Suppose that L 6⊂X. Then, in the notation of the proof of Proposition 3.6, there exists a
point x ∈ L such that

x ∈
⋂
v∈V0

Xv, (3.8.1)

and so

TnX,x ⊂
⋂
v∈V0

Tv =
〈
L,
⋂
v∈V0

TV0,v

〉
= L (3.8.2)

(the intersection of the tangent spaces of V0 is empty because V0 is not a cone). Since l = 1 and
n> 2, (3.8.2) leads to a contradiction.

Thus, L⊂X, and therefore S(x, X) = S(y, X) = S(L, X) = V for arbitrary points x, y ∈ L
(here, for a subvariety Y ⊂X, S(Y, X) denotes the relative secant variety, that is, the join
of Y with X). Proposition 3.8 now follows from [Ili1998, Proposition 4.1] (cf. also [Ili1998,
Theorem 3.8]). 2

Remarks 3.9. (i) Recall that, by [Ili1998, Theorem 3.8], the Roth varieties X ⊂ V ,
V = S0,0,a1,...,an−l , can be described as follows. Consider the variety Ṽ ⊂ P1 × PN , Ṽ =⋃
t∈P1(t, 〈L, φ1(t), . . . , φn−1(t)〉) and its projections π2 : Ṽ → V ⊂ PN and π1 : Ṽ → P1. Clearly,

Ṽ is a (nonsingular) scroll over P1, and we denote by F its fiber and by H the pullback under
π2 of a hyperplane section of V . Let b> 1, and let X̃ ∈ |bH + F | be a smooth irreducible variety
meeting the quadric P1 × L along an irreducible curve (a general X̃ ∈ |bH + F | has this property
by Bertini’s theorem). Put X = π2(X̃). Then X ' X̃ is a Roth variety of degree d= ab+ 1 and,
conversely, any Roth variety L⊂X ⊂ V has this form.

(ii) Any variety V n+1 ⊂ PN of minimal degree with l = dim Sing V = 0 contains nonsingular
subvarieties of codimension one. Indeed, it suffices to take the intersection of V with a general
hypersurface in PN avoiding the singularity of V . There also exist nonsingular subvarieties
Xn ⊂ V passing through the vertex of the cone V ; in view of [Ili1998, Remark 5.14], these
subvarieties admit the same description as in (i).
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Corollary 3.10. A nondegenerate variety V n+1 ⊂ PN of (minimal) degree a=N − n and a
nonsingular subvariety Xn ⊂ V of degree d exist if and only if one of the following conditions
holds:

(a) a= 1, V = Pn+1, X is a hypersurface;

(b) a= 2, V =Q is a quadric with at most one singular point (l 6 0, X is a complete intersection
if n− l > 2; the case l = 0, n= 2 fits into the case (e) while the case n= 1 is classical and
easy);

(c) a= n− 1, l = 1, V0 = P1 × Pn−2 ⊂ P2n−3, X ⊃ L= Sing V , d≡ 1 (mod n− 1) and X is a
Roth variety described in [Ili1998, Theorem 3.8]; cf. also Remark 3.9(i);

(d) a= n, l = 1, V = S0,0,1,...,1︸︷︷︸
n−2

,2, X ⊃ L= Sing V , d≡ 1 (mod n) and X is a Roth variety;

(e) a= n, l = 0 and either X 63 L or X 3 L and X is a variety described in Remark 3.9(ii);

(f) a> n+ 1.

Proof. This follows from Proposition 3.8, Remark 3.9 and the fact that a= codimX = codim V +
1 = codim V ′ + 1 = deg V ′ = a1 + · · ·+ an−l (cf. Theorem 3.4). 2

The varieties considered in Example 3.5 satisfy the condition d≡ 0 (mod a). However, similar
examples exist for arbitrary degrees. In what follows, we estimate the invariants of codimension-
one subvarieties of varieties of minimal degree; the bounds obtained are asymptotically equivalent
to, but better than, the general bounds for arbitrary varieties obtained in the preceding sections.

We start with subvarieties of rational normal scrolls. Let V = Sa1,...,an+1 ⊂ PN , deg V =N −
n= a= a1 + · · ·+ an+1 = a be a rational normal scroll (cf. Theorem 3.4(ii)), and let Xn ⊂ V n+1

be an arbitrary smooth subvariety (cf. Corollary 3.7, Proposition 3.8 and Remark 3.9). If
F = Pn ⊂ V , F = 〈L, F0〉, where L= Sing V , F0 ⊂ V0 is a fiber, and H is a hyperplane section
of V , then X ∩ F is a hypersurface whose degree we denote by m (clearly, m6 d= (Hn ·X)V ).
One may assume that X ∼mH − εF . If ε> 0, then X is the residual intersection of V with a
hypersurface W of degree m passing through ε n-dimensional linear subspaces F1, . . . , Fε ⊂ V ,
and if ε < 0, then X is the residual intersection of V with a hypersurface W of a higher degree
m+m′ passing through a subvariety Y ⊂ V , Y ∼m′H − ε. We will not pursue here the problem
of giving a detailed description of the pairs (m, ε) for which there exists an irreducible smooth
subvariety X ⊂ V , X ∼mH − εF (cf. Remark 3.13 below). Rather, we will give better bounds
for the invariants of such subvarieties X in terms of m and ε (and eventually in terms of d and a).

Proposition 3.11. (i) ri 6 a(d/a+ ρi)i+1, where ρi = (i/(i+ 1)) · ((a− 2)/a)< 1, 1 6 i6 n.
Furthermore, this bound is asymptotically sharp (and even sharp if i+ 1 divides a− 2).

(ii) µi(X) = µi(m, d)

=

{
−am2 + (2d+ a− 2)m, i= 1,

m(m− 1)i−2(−iam2 + ((i+ 1)d+ 2(a− 1))m− 2(d− 1)), i> 2.
For given d, one has

µ1 < d

(
d

a
+ 1
)
, d>

(a− 2)2

8
;

µ2 <
d2

a2
(d− 1), d>

a(a+ 6)
3

;

µi < d

(
d− 1
a

)i
, i> 3,
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and the function µi = µi(m) attains maximum at a point m0
i =m0

i (d) with

d

a
+

a− 2
a(i+ 1)

6m0
i 6

d

a
+

2(a− 1)
a(i+ 1)

, lim
d→∞

m0
i −

d

a
=

a− 2
a(i+ 1)

.

Furthermore,

µi(X)<
di+1

ai
−
(
i− 2

a− 1
a

)
di

ai−1
+ Pi−1(d),

where Pi−1 is a polynomial of degree i− 1 in d whose coefficients depend only on a, and this
bound is asymptotically sharp, that is, there exist varieties X as above with (1/di)(µi(X)−
di+1/ai + (i− 2(a− 1)/a)(di/ai−1)) arbitrarily small.

In our setup m=m(X) is an integer, and the maximal value of µi(X) = µi(m(X), d) is
attained either for m= [d/a] or for m= [d/a] + 1.

(iii) b(X) = (−1)ne(X) + 2n(1 + (−1)n+1)
= µn − 2µn−1 + 3µn−2 − · · ·+ (−1)n(n+ 1)µ0 + 2n(1 + (−1)n+1)

and

b(X)<
dn+1

an
.

Furthermore,

b(X)<
dn+1

an
−
(
n+

2
a

)
dn

an−1
+Qn−1(d),

where Qn−1(d) is a polynomial of degree n− 1 in d whose coefficients depend only on a, and
this bound is asymptotically sharp, that is, there exist varieties X as above with (1/dn)(b(X)−
dn+1/an + (n+ 2/a)(dn/an−1)) arbitrarily small.

In our setup m=m(X) is an integer, and the maximal value of b(X) = b(m(X), d) is attained
either for m= [d/a] or for m= [d/a] + 1.

Proof. The arguments in the proof of Proposition 3.11 are similar to those used in Example 3.5,
and we will not go into petty computational details.

(i) From Theorem 3.4(iv) and the adjunction formula, it follows that

ri = (mH − εF · (mH + (a− ε− 2)F )i ·Hn−i)V

= mi(am+ (a− 2)i− (i+ 1)ε) =
(
d+ ε

a

)i
(d+ i(a− ε− 2)). (3.11.1)

It is easy to see that, for fixed a, d and i, ri attains maximal value for ε= ε0 = i(a− 2)/(i+ 1)
(here we assume that ri = ri(ε) is defined by (3.5.1) for arbitrary (real) values of ε, although only
integral values make sense geometrically). Substituting ε0 in (3.5.1), we get

ri 6 a

(
d

a
+ ρi

)i+1

where ρi =
i

i+ 1
· a− 2

a
< 1. (3.11.2)

(ii) Adding to the equation of W a suitable form from the homogeneous ideal of V , we may
assume that W is smooth. Clearly,

d= deg X = am− ε. (3.11.3)
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An argument similar to that in Example 3.5 shows that in our setting (3.5.6) is replaced by the
formula

µn = deg X∗ = (mH − F )((m− 1)H − εF )n

+ deg PV (C) +m(m− 1)n−2 deg V ∗, n> 2, (3.11.4)

where

C ∼ (mH − εF ) · ((m− 1)H − εF )n−1

∼ m(m− 1)n−1Hn − ε(m− 1)n−2(nm− 1)Hn−1F. (3.11.5)

From (3.5.7) and (3.11.5), it follows that

(C ·D)V = ((a− 2)(H − F ) · (m(m− 1)n−1Hn − ε(m− 1)n−2(nm− 1)Hn−1F ))
= (a− 2)(m− 1)n−2(m(m− 1)(a− 1)− ε(nm− 1)) (3.11.6)

and

deg C = (m− 1)n−2(ma(m− 1)− ε(nm− 1)). (3.11.7)

Arguing as in the proof of (3.5.8), we get

deg PV (C) = (a− 1) deg C − (C ·D)V
= (m− 1)n−2(2m(m− 1)(a− 1)− ε(nm− 1)), (3.11.8)

and so, by (3.11.4),

µn(X) = (m− 1)n(ma− ε) + (m− 1)n−2(2m(m− 1)(a− 1)
− ε(nm− 1) +ma)− εmn(m− 1)n−1

= m(m− 1)n−2((am2 − 2m+ 2)− ε((n+ 1)m− 2)), n> 2. (3.11.9)

Moreover, since, for each i> 1, Xi is a variety of the same type as X, arguing as above, we
conclude that

µi = µi(X)

=

{
m(m− 1)i−2((am2 − 2m+ 2)− ε((i+ 1)m− 2)), i> 2,
m(a(m+ 1)− 2(ε+ 1)), i= 1.

(3.11.10)

Substituting ε= am− d from (3.11.3) in (3.11.10), we get the first formula in (ii):

µi =

{
m(m− 1)i−2(−iam2 + ((i+ 1)d+ 2(a− 1))m− 2(d− 1)), i> 2,
−am2 + (2d+ a− 2)m, i= 1.

(3.11.11)

From (3.11.11), it is easy to deduce that, for fixed d, the function µi = µi(m) attains maximum
at a single point m0

i =m0
i (d) with

d

a
+

a− 2
a(i+ 1)

<m0
i <

d

a
+

2(a− 1)
a(i+ 1)

, (3.11.12)

and

lim
d→∞

m0
i (d) =

d

a
+

a− 2
a(i+ 1)

(3.11.13)

(m0
1 = d/a+ (a− 2)/2a). Of course, only integral values of m make sense in our geometric setup,

and analyzing the behavior of the function µi and its derivatives, it is easy to see that the
maximal value of µi at an integral point is attained either for m= [d/a] or for m= [d/a] + 1.
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The remaining claims in (ii) can now be obtained by estimating the value µi(m0
i ). For example,

for i> 3 our claims follow from a stronger bound

µi 6 µi(m0
i )<

d2

a

(
d

a
− i− 1
i+ 1

)(
d

a
− ai+ 2
a(i+ 1)

)i−2

, (3.11.14)

which can be obtained from (3.11.11), (3.11.12) and a study of the derivative µ′i; we will
incorporate (3.11.14) in Corollary 3.12. We observe that one gets progressively better bounds
for µi for higher values of i and a.

(iii) The equality

b(X) = (−1)ne(X) + 2n(1 + (−1)n+1)

= µn − 2µn−1 + 3µn−2 − · · ·+ (−1)n(n+ 1)µ0 + 2n(1 + (−1)n+1)
(3.11.15)

is an immediate consequence of (3.5.12) and Theorem 2.9(i). The claims concerning the Betti
number can be obtained from (3.11.15) and the already known properties of classes. For example,
using (3.11.11), one can show that

((n− i+ 1)µi − (n− i+ 2)µi−1)′m > 0, m6
d

a
,

((n− i+ 1)µi − (n− i+ 2)µi−1)′m < 0, m>
d

a
+ 1,

(3.11.16)

after which the proof of (iii) is reduced to a computational check.
The cases n= 1 and n= 2 are somewhat special. For n= 1,

b(X) = µ1(X)− 2d+ 4 6
d2

a
− a+ 2

a
d+

a

4
+ 3 +

1
a
<
d2

a
, d> a+ 1. (3.11.17)

For n= 2, a combination of (3.11.11) and (3.11.15) yields

b(X)<
d2(d− a)

a2
<
d(d− 1)(d− 2)

a2
< d

(
d− 1
a

)2

<
d3

a2
. (3.11.18)

2

Proposition 3.11 and its proof yield other useful bounds for classes. For example, one has the
following corollary.

Corollary 3.12.

(i) µi <
d2

a

(
d

a
− i− 1
i+ 1

)(
d

a
− ai+ 2
a(i+ 1)

)i−2

for i> 3.

(ii) µi < d
d− 1
a
· d− 2

a
· · · d− i

a
for i > 3 or i= 3, a > 4.

Proof. (i) was already stated in (3.11.14), and (ii) follows from (i). 2

Remark 3.13. It turns out that for m= [d/a] and m= [d/a] + 1 there indeed exist smooth
irreducible subvarieties Xn ⊂ V n+1 such that X ∼mH − εF , ε= am− d; cf. [Har1981, § 4].

As we recalled in Theorem 3.4(i), there are other nonsingular varieties of minimal degree
besides rational normal scrolls, viz. quadrics and the Veronese surface. Leaving aside the classical
case n= 1 already considered in Example 1.4, and the case when the quadric is a scroll, we get
the following proposition.
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Proposition 3.14. Let V =Qn+1, n > 1, be a quadric such that dim V 0 > 2, and let Xn ⊂Q
be a nonsingular subvariety. Then d= deg X ≡ 0 (mod 2), a= 2 and X is a complete intersection
of Q and a hypersurface W ⊂ Pn+2 of degree m= d/2. Furthermore,

ri(X) =
di+1

2i
, 1 6 i6 n,

µi(X) = 2m(1 + (m− 1) + · · ·+ (m− 1)i)<



d

(
d

2
+ 1
)
, i= 1,

d2

4
(d− 1), i= 2,

d

(
d− 1

2

)i
, i> 3,

b(X) = (−1)ne(X)

= µn − 2µn−1 + · · ·+ (−1)n(n+ 1)µ0 <
dn+1

an
.

Proof. Under our assumptions, PicQ= Z and X is a complete intersection (Klein’s theorem);
furthermore, one may assume W to be smooth.

The first claim follows from the adjunction formula.

Denoting by γQ :Q→ Pn+2∗ and γW :W → Pn+2∗ the Gauß maps defined respectively by
linear forms and forms of degree m− 1, one sees that

X∗ =
⋃
x∈X
〈γQ(x), γW (x)〉 (3.14.1)

and, from [Har1992, 19.5–19.7], it follows that

µn = deg γW (X) + µn−1

= d(1 + (m− 1) + · · ·+ (m− 1)n) = 2m
(m− 1)n+1 − 1

m− 2
.

(3.14.2)

Replacing X by its intersection with a general linear subspace of codimension n− i, that is,
replacing n by i, and making obvious verifications, we get the second claim.

From Proposition 2.2 and Corollary 2.7(i), it follows that

b(X) 6 bn(X) + n+ 1 6 µn(X) + n+ 1 (3.14.3)

(cf. also (3.5.14)). For n> 2, the bound for b(X) follows from (3.14.3) and the bound for µn(X).
For n= 1,

b(X) = µ1 − 2µ0 + 4< d

(
d

2
+ 1
)
− 2d+ 4 =

d2

2
− (d− 4) 6

d2

2
. (3.14.4)

2

The remaining case of (cones over) the Veronese surface is the simplest one, and we will
not discuss it in detail (cf. also [Har1981, pp. 63–64] and [DG2001, p. 150]; we remark that, by
Corollary 3.7 and Proposition 3.8, a nonsingular subvariety Xn of codimension one in such a
variety of minimal degree exists if and only if n6 2). We sum up some of the above results in
the following theorem.
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Theorem 3.15. Let Xn ⊂ V be a nonsingular subvariety of codimension one and degree d in a
variety V n+1 ⊂ PN , deg V = a=N − n. Then:

(i) ri(X) 6 a

(
d

a
+ ρi

)i+1

, where ρi =
i

i+ 1
· a− 2

a
< 1, 1 6 i6 n;

(ii) µ1(X) < d

(
d

a
+ 1
)
, d>

(a− 2)2

8
;

µ2(X) <
d2

a2
(d− 1), d>

a(a+ 6)
3

;

µi(X) < d

(
d− 1
a

)i
, i> 3;

(iii) b(X)<
dn+1

an
.

Furthermore, the above bounds are asymptotically sharp.

The following result strengthens Theorems 1.18 and 2.18 in the case of varieties of fixed
codimension a.

Theorem 3.16. Let Xn ⊂ PN be a nondegenerate nonsingular variety of degree d and
codimension a=N − n. Then:

(i) µi(X)<
di+1

ai
, d> (a+ 1)2, 2 6 i6 n;

µ1(X) 6
1
a

(
d+

a− 2
2

)2

;

(ii) b(X)<
dn+1

an
, d> 2(a+ 1)2, n> 2;

b(X)<
d2

a
, n= 1.

Furthermore, the above bounds are asymptotically sharp.

Proof. (i) In view of Theorem 3.1(i), the claim follows from Theorem 3.15(ii).
(ii) For n= 1, this claim was proved in (3.11.17).
Suppose that n> 2. By (2.14.8) and (2.14.9), the function φ(t) = tn+2/(t− 1)2 is

monotonically increasing for t> (n+ 2)/n. By Theorems 3.1(iii) and 3.15(iii), to prove our claim
it suffices to show that there exists a number α such that, for d > 2(a+ 1)2 and tα = (d− α)/a,
the following conditions hold:

(a) tα =
d− α
a

>
n+ 2
n

;

(b) tα =
d− α
a

>
d

a+ 1
+
a− 7

4d
+ 1;

(c) dφ(tα)<
dn+1

an
.

Condition (a) is clearly satisfied for d> a+ α+ 2a/n.
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Since (a+ 1)(a+ α+ 1)> (a+ 1)(a+ α) + (a(a− 7)(a+ 1))/4d for d > a(a− 7)/4, condi-
tion (b) is satisfied for d> (a+ 1)(a+ α+ 1).

Condition (c) is equivalent to the inequality

(d− α)n+2 < dn(d− (a+ α))2. (3.16.1)

If α > 0, then it is clear that if (3.16.1) holds for some n= n0, then it also holds for all
n > n0. Putting n0 = 2, one sees that (c) is satisfied for example for α= a+ 1 provided that
d> (a+ 2)2.

Putting all this together, one concludes that conditions (a), (b) and (c) are satisfied for

α= a+ 1, d> 2(a+ 1)2 (3.16.2)

(for larger n, one can take smaller α, which leads to an (insignificant) improvement of the lower
bound for d; cf. also Remark 3.17(ii)).

Asymptotic sharpness follows from a similar claim in Theorem 3.15. 2

Remarks 3.17. (i) Arguing as in the proof of Theorem 3.16, one can use Theorems 3.1(ii) and
3.15(i) to obtain a bound for the ramification volumes ri(X) of arbitrary smooth varieties
of sufficiently large degree d. However, this bound is only slightly better than the bound
ri < d(d/a+ 1)i for d> (a− 2)2/8 from Corollary 1.5, and so we do not give it here.

(ii) Theorem 3.16 is stated in the above way for the sake of uniformity and brevity. The
bounds can be sharpened for specific values of i and n. For example, from Theorems 3.1(i) and
3.15(ii), it follows that µi(X)< d((d− 1)/a)i for i> 3 and d> (a+ 1)(a+ 2). More generally,
(3.11.14) and other similar inequalities yield progressively better bounds for the codegree d∗ = µn
and the Betti numbers b and bn as n grows, but these sharper bounds are valid for somewhat
larger d.

In a different direction, it is evident that, for large d, (3.16.1) holds provided that 2(a+ α)<
(n+ 2)α, that is, α > 2a/n. Taking smaller α, one can slightly improve the lower bound for d in
Theorem 3.16, but it still remains quadratic in a.

4. Further remarks and open problems

Here we give a list of possible extensions of the above results and some open problems.

(1) Our bounds for ramification volumes, classes and Betti numbers hold, under mild
assumptions, for projective varieties defined over an algebraically closed field of arbitrary
characteristic. In fact, the proof of Theorem 1.1 is based on the Hodge index theorem, which
holds in arbitrary characteristic (cf. for example [Gr1958]), and the bounds for Betti numbers
can be derived from Theorems 1.1 and 1.12 by using Lefschetz theory for `-adic cohomologies
(cf. [DK1973]).

(2) Similar bounds hold for the Betti numbers of real algebraic varieties. There are two ways
to obtain them. First, one can apply Smith theory to the bounds for complex varieties given
in the present paper. Unfortunately, this method applies only to homologies with coefficients
Z/2Z. Second, one can develop a relative version of Morse theory for morphisms to a projective
line valid for both real and complex varieties; this is done in a forthcoming joint paper with
Kharlamov [KhZ].
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It should be mentioned that, unlike in the complex setup, in the real case our methods yield
bounds only for the total Betti number and not for the individual ones. Also, while it is rather
easy to prove asymptotic sharpness, getting sharp bounds for the total Betti number of real
varieties is much harder. In particular, it is not easy to show the existence of M -varieties among
hypersurfaces in varieties of minimal degree (cf. [KhZ]).

(3) In this paper we give bounds for the Betti numbers of nonsingular projective varieties.
However, there are similar (and even better) bounds for nonsingular affine varieties. To wit,
if V n ⊂ AN is a nonsingular affine variety, X is its closure in PN and µi, i= 0, . . . , n, is the ith
class of X, then in [KhZ] we show that V is homotopy equivalent to a CW -complex with at most
µi cells of dimension i, so that, in particular, bi(V ) 6 µi. This gives a far-reaching generalization
of Lefschetz’s weak theorem, and it is desirable to give an ‘abstract’ proof of this result by
methods similar to those used in the present paper. However, we do not know how to do that,
particularly in the case when X has singularities at infinity.

(4) The nonsingularity hypothesis is essential for our methods. It seems less important for the
validity of bounds for ramification volumes and classes (although the definition and ampleness of
the ramification divisor present certain problems), but it is crucial for the application of Lefschetz
theory and its consequences. Nevertheless, we feel that ‘morally’ our bounds should be true for
varieties with arbitrary singularities. It is also possible that in the singular case it is worthwhile
to study other invariants whose relation to Betti numbers can be compared to that of arithmetic
genus to geometric genus in Castelnuovo’s theory.

(5) Our proof of Theorem 3.16 uses the Halphen–Harris theorem, and so it does not work for
small d. The bound b(X)< dn+1 proved in Theorem 2.18 is true without any assumptions on d.
It would be nice to find out whether the bound b(X)< dn+1/an proved in Theorem 3.16(ii) for
d> 2(a+ 1)2 holds for smaller d when one cannot guarantee that X is contained in a variety of
minimal degree.

(6) Varieties of dimension n and degree d are a special case of d-fold coverings of the projective
space Pn (cf. for example [Laz2004, 6.3 D]). It would be nice to study the appropriate notions
and extend our bounds to this wider class of varieties.

(7) It would be nice to extend the results of this paper to subvarieties of abelian and toric
varieties.

(8) We already mentioned that while we considered the problem of bounding numerical
invariants, such as classes or Betti numbers, on the set of varieties Xn ⊂ PN of a given degree d,
Milnor [Mil1964], Oleinik [Ole1951], Thom [Tho1965] and others studied the problem of bounding
the (total) Betti number of a variety Xn ⊂ PN defined by equations whose degree does not
exceed d (cf. Definition 1.20). In Theorems 1.21 and 2.20, we found asymptotically sharp bounds
for classes and Betti numbers in the setting of Milnor and Thom. However, while in the case
of classes our bounds are sharp and attained only by nonsingular complete intersections of
hypersurfaces of degree d (cf. Theorem 1.21), we did not give classification of varieties with
maximal Betti numbers. It would be nice to classify such varieties, with respect to both bn and
b (presumably, they also are complete intersections). More generally, one can study bounds
and extremal varieties for classes and Betti numbers of varieties whose defining equations include
(at least) ei (linearly independent) equations of degree di (with possible variations).

(9) We already gave examples showing that our bounds for b(X) and bn(X) as well as those
for ri(X) and µi(X) are asymptotically sharp (cf. e.g. Example 3.5). However, this is not the
case for the bounds for the other Betti numbers bi(X) in Corollary 2.14(i). As an example,
consider the case i= 1. If the irregularity of X were close to the upper bound given by
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Corollary 2.14(i), then, by Proposition 2.2(iii), the sectional genus of X would be still closer
to this bound, so that, by the arguments in the proof of Theorem 3.1, X is a divisor in a variety
of minimal degree, whence X is regular provided that n > 1 (cf. (3.5.12) and Proposition 2.2(iii)).
Thus, the sharp upper bound for irregularity is smaller than the one given in Corollary 2.14(i),
and it is desirable to find this bound and to classify maximally irregular varieties of given
dimension, codimension and degree. By Lefschetz theory, this problem reduces to the case of
surfaces. There are reasons to believe that the bound in question is roughly twice better than
Castelnuovo’s bound for curves. However, this bound should be much better for small a. In fact,
complete intersections are regular and, by a conjecture of Peskine and Van de Ven, irregularity
of all nonsingular surfaces in P4 is uniformly bounded.

Similar questions arise with respect to all other Betti numbers bi(X) with 1 6 i6 n− 1.
Thus, it is desirable to obtain sharp (or asymptotically sharp) inequalities for individual Betti
numbers other than the middle one and classify the varieties on the boundary.

(10) It is not accidental that the principal term in a sharp bound for b(X) (or e(X);
cf. Theorem 2.9 and Corollary 2.14) is the same as the one in a sharp bound for rn(X) (or
µn(X) or (Kn

X); cf. Corollaries 1.5 and 1.6), viz. dn+1/an. In [Zak2012] we showed, among other
things, that for any two multi-indices I, I ′ with |I|= |I ′|= n, the difference cI − cI′ between the
corresponding Chern numbers is bounded by a polynomial of degree n in d. Applying this to cn
and cn1 or, with some deliberation, to ramification and polar classes, one gets an ‘explanation’ of
the above observation.

(11) Another natural generalization of Castelnuovo’s work for curves is to bound, for fixed
p and q, the Hodge number hp,q of nondegenerate nonsingular projective varieties Xn ⊂ PN
of a given degree d and to classify the varieties on the boundary. For p= n, q = 0 (the case of
geometric genus) this was done in [Har1981]. A priori, even in the most important case when
p+ q = n, one might think that one thus gets [(n+ 2)/2] independent maximization problems
(clearly, hp,q = hq,p). However, it turns out that asymptotically (for large d), all these problems are
equivalent, viz. hp,q attains maximal value simultaneously with bn (hence with all the hp

′,q′ ,
p′ + q′ = n) and the extremal varieties are again codimension-one subvarieties in varieties of
minimal degree (cf. [Zak2012]).

More precisely, let αp = hp,n−p/bn,
∑n

p=0 α
p = 1, denote the ‘weight’ of the corresponding

Hodge number. Then, in [Zak2012], we showed that the weights αp(X) are close to αp(X)
provided that bn(X) is large enough (here, as in Theorem 2.16, X denotes a nonsingular
hypersurface of dimension n and degree d). Thus, the limit weights αp∞ are given by the volumes
of slices of the unit cube K⊂ Rn+1, viz.

αp∞ = vol {(x0, . . . , xn) ∈K | p6 x0 + · · ·+ xn 6 p+ 1}

(cf. for example [KK1989, ch. 4, § 5.10]).
In general, for given n, a, d and 0 6 p, q 6 n, it is an interesting problem to find a sharp (or

asymptotically sharp) bound for the Hodge number hp,q and to classify the varieties on or near
the boundary. Since

∑
p+q=i h

p,q = bi, this problem is closely related to the one considered in (9).
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1131

https://doi.org/10.1112/S0010437X1100738X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100738X


F. L. Zak

Mil1964 J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964),
275–280; Reprinted in: Collected papers I, geometry (Publish or Perish, Houston, 1994),
133–140.

Moi1967 B. G. Moishezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR
Ser. Mat. 31 (1967), 225–268 (in Russian); English translation: Math. USSR Izvestija 1,
209–251.

Ole1951 O. A. Oleinik, Estimates of the Betti numbers of real algebraic hypersurfaces, Mat. Sb. 28
(1951), 635–640 (in Russian).

Pie1978 R. Piene, Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér (4) 11 (1978),
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