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Abstract 

Objective: Understanding country-level nutrition intake is crucial to global nutritional 

policies that aim to reduce disparities and relevant disease burdens. Still, there are limited 

numbers of studies using clustering techniques to analyse the recent Global Dietary Database. 

This study aims to extend an existing multivariate time-series clustering algorithm to allow 

for greater customisability and to provide the first cluster analysis of the Global Dietary 

Database to explore temporal trends in country-level nutrition profiles (1990-2018).  

Design: Trends in sugar-sweetened beverage intake and nutritional deficiency were explored 

using the newly developed program ‘MTSclust’. Time-series clustering algorithms are 

different from simple clustering approaches in their ability to appreciate temporal elements. 

Setting: Nutritional and demographical data from 176 countries were analysed from the 

Global Dietary Database. 

Participants: Population representative samples of the 176 in the Global Dietary Database. 

Results: In a 3-class test specific to the domain, the MTSclust program achieved a mean 

accuracy of 71.5% (Adjusted Rand Index [ARI]=0.381) while the mean accuracy of a popular 

algorithm, DTWclust, was 58% (ARI=0.224). The clustering of nutritional deficiency and 

sugar-sweetened beverage intake identified several common trends among countries and 

found that these did not change by demographics. Multivariate time-series clustering 

demonstrated a global convergence towards a Western diet. 

Conclusion: While global nutrition trends are associated with geography, demographic 

variables such as sex and age, are less influential to the trends of certain nutrition intake. The 

literature could be further supplemented by applying outcome-guided methods to explore 

how these trends link to disease burdens. 

Keywords: Clustering algorithm; Machine Learning; Time-series clustering; Trend; Global 

Dietary Database  
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1. Introduction 

1.1 Background 

Understanding the patterns of nutrition intake is important in providing evidence for 

stakeholders to develop appropriate policies for reducing associated disease burdens and 

disparities. While individual-level nutritional data analyses provide information about the 

impact on individuals’ health outcomes, country-level longitudinal data could provide a more 

in-depth understanding of how country characteristics, such as economic, cultural, and 

geographical differences, relate to the observed trends in nutritional profiles.  

However, country-level nutritional databases are made up of numerous nutritional variables 

and can therefore be extremely complex for interpretation. As such exploratory analyses can 

help individual governments or global health policy groups identify factors influential to 

existing disparities or disease burdens, or even encourage further “policy learning” (1, 2) and 

exchange of strategies between countries undergoing similar trends. A recent study (3) 

explores worldwide multivariate dietary patterns by taking median values of time-series, 

which almost completely disregards the temporal trends, while other studies that investigated 

country-level intake trends were limited to a single country (4), a single nutritional variable 

(5), or even a single nutritional variable within a single country (6). Azzam et al. (7) perform 

an exploratory analysis of data from Food Balance Sheets to test whether there is a global 

convergence towards a Western diet and they identify 16 countries with consumption 

consistent with this. Their study collated consumption data into an index at each time point 

and future studies could attempt to explore these trends over time in a time-series manner. 

These examples highlight the gap in analysing longitudinal data from multiple countries. 

There are vast amounts of data on nutritional intake, and to fully appreciate such data, 

computational and statistical methods are necessitated: clustering is a computational 

technique that could provide novel insights as to how nutritional profiles have evolved and 

identify groups of countries with similar intake trends or those that have trends distinct from 

any others. Longitudinal profiles could be analysed by directly applying standard clustering 

algorithms such as K-means (8) or DBSCAN (9) to snapshots of the data in a cross-sectional 

manner. Clustering is a form of unsupervised machine learning. Unsupervised machine 

learning involves analysing and grouping data without predefined labels, identifying hidden 
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patterns or structures within the dataset. However, these standard clustering approaches 

would fail to leverage the temporal aspect available in nutritional datasets. 

Multivariate Time-Series (MTS) clustering is an unsupervised machine learning method used 

to determine natural clusters of time-series data. Unlike univariate time-series clustering, this 

technique presents an attractive opportunity to extract value from multiple time-series 

variables at once. More details regarding MTS clustering will be provided in the Literature 

Review section. MTS Clustering was leveraged in a study of European countries with the aim 

of identifying similar consumption trends and a general dietary convergence (10). However, 

their findings were limited due to the use of Food Balance Sheets, which only captures a 

limited specificity of foods. In recent years, the Global Dietary Database (GDD) was 

developed, combining thousands of existing individual level surveys to offer estimates of 47 

intake variables between 1990-2018 for 188 countries. While this is a potentially extremely 

rich dataset for understanding how worldwide country-level intakes have evolved, no 

clustering technique, let alone MTS clustering, has yet been applied to the GDD. In addition, 

a study has pointed out that nutrition intake might be affected by the country level (11), but 

this finding has yet to be investigated using clustering techniques. 

The nature of this paper’s methods appreciates the full temporal aspect of longitudinal data to 

capture trends over time. The novelty of this study is the application of these MTS clustering 

methods to the data-rich Global Dietary Database. While this work is exploratory in nature, 

the findings may be of interest to global health governance, particularly for organisations like 

the World Health Organization (WHO), in formulating region-specific nutrition policies and 

tracking progress towards global nutrition targets. Ultimately, this research contributes to a 

deeper understanding of global nutritional trends and further exploring these trends could 

pave the way for more effective strategies and nutrition policies to improve population health. 

1.2 Aim 

Considering the small number of available literatures on MTS clustering of nutritional 

profiles and the potential impact of findings in nutritional intake trends on global health 

policies, it is crucial that MTS clustering techniques be applied to a more comprehensive 

database for identifying nutritional intake trends at the country level. To achieve this goal, 

this study will first develop a multivariate time-series clustering program (‘MTSclust’) which 

extends an existing approach (‘DTWclust’) 
(12)

 but is generalised to use any distance metric 
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and modified for further customisability. The first aim is to assess the performance of this 

newly developed program and compare it to another time-series clustering algorithm. 

The second aim is to explore trends in country-level nutritional profiles between 1990 and 

2018 using two different clustering perspectives. In the first approach, MTSclust is applied in 

a bivariate manner to identify groups of countries with similar trends in sugar-sweetened 

beverage intake and nutritional deficiencies to understand whether these trends differ by 

demographics. In the second approach, MTSclust is applied in a high-dimensional manner 

with around 50 nutritional variables being included to generate a 'World Nutrition Intake 

Trend Classification' to identify groups of countries with similar nutritional profiles. 

2. Literature review 

2.1. Time-Series Distance Metrics 

To compare any two time-series, one can utilise a distance metric. There are several existing 

metrics and these can be referred to as ‘similarity’ and ‘dissimilarity’ metrics although one 

must take care to invert the output depending on the use-case
 (13)

. The most basic cases 

include Euclidean distance, the popular Dynamic Time-Warping distance, and the temporal 

correlation (CORT) dissimilarity 
(14)

. 

The Euclidean distance between two univariate time-series,    and    (both of length  ), 

assumes a one-to-one mapping of points. It captures similarity in time-series that directly 

overlap. Therefore, if    and    contain identical trends but have a large time off-set, they 

would not be identified as similar. Z-score normalisation (standardisation) could be applied to 

the time-series beforehand if the impact of magnitude is not of interest. The  th
 point in one 

time-series is compared to the  th 
point of the other: 

                       
 
    . 

In contrast, Dynamic Time-Warping (DTW) distance can capture similarity of trends that are 

off-set (differing start and end) and of varying speeds (differing lengths of time or ‘skewed’). 

For the coupled observations (   
,    

), DTW finds a mapping of the time-series,  , so that 

the distance between them is minimised while   is the set of all admissible sequences of   

index pairs of observations that (1) the beginning and end of the two time-series are matched 

together, and (2) the sequence is monotonically increasing with all time-series indexes 

https://doi.org/10.1017/S136898002500059X Published online by Cambridge University Press

https://doi.org/10.1017/S136898002500059X


Accepted manuscript 

 

appearing at least once: 

               
   

      
    

 
 

   
    

Another dissimilarity index is CORT 
(14)

. This index incorporates time-series raw value 

proximity as well as their temporal correlation behaviours. More details, including the 

formulae, are provided in Supplementary 1. 

2.2. Dimension Reduction 

“Curse of Dimensionality” is one of the challenges that one might face when using machine 

learning approaches to analyse high-dimensional data 
(15)

. For example, the K-means 

distance-based measure converges as the number of dimensions increase, which makes it less 

effective at distinguishing points. The aim of dimension reduction is to represent the data in a 

lower dimensional space whilst minimising information loss and further avoid the “Curse of 

Dimensionality” 
(16)

. But this approach is also limited by the fact that multiple projections to a 

lower-dimensional space exist, and these sub-spaces could potentially have different 

clustering results. In this study, dimensionality of MTS can refer to either the number of 

nutritional variables or length of time-series. 

The simplest approach to dimension reduction is “Feature Selection”, which refers to the 

removal of unnecessary variables based on existing knowledge or statistical considerations 

(16)
. Another common approach to reduce variables is Principal Component Analysis (PCA), 

which transforms correlated variables into uncorrelated variables by projecting the original 

data on to the space spanned by the eigenvectors of the variables’ correlation matrix 
(17)

. 

To reduce the lengths of time-series, segmentation can be utilised to extract the most 

distinguishing periods of a time-series. It is useful for time-series with long spans of 

inactivity 
(18)

. Sliding window approaches can be adapted to reduce the resolution of 

time-series. A similar outcome can be achieved using piecewise linear approximation. One 

could also represent the data using transformations such as the Discrete Wavelet or Fourier 
(19)

 

transformations which attempt to decompose features of the time-series. In addition, 

clustering very large time-series by extracting global characteristics, such as trend, 

seasonality, periodicity, and serial correlation, is another strategy 
(18)

. 
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2.3. Approaches 

MTS clustering algorithms are often designed by combining time-series distance metrics and 

dimension reduction. Regarding the application of DTW for MTS, an R package “DTWclust” 

provides an implementation but failed to clearly state how it handles the multivariate case
 (20)

. 

Another DTW implementation written in Python handles the multivariate case by simply 

concatenating the variables into a univariate time-series 
(21)

. Given that DTW identifies 

similarities in two time-series even if they are offset, the concatenation of variables in such a 

manner could therefore result in trends from different variables being accidentally matched. 

On the other hand, a recently developed MTS clustering approach utilises Common Principal 

Component Analysis, which is a variation of PCA assuming that multiple datasets share 

principal components, to represent the data in a lower dimensional space before clustering 

with K-mean 
(22)

. However, package source code was not provided, complicating replication 

of their algorithm and performance tests. Meanwhile, spectral clustering utilises eigenvalues 

of variable similarities to perform dimensionality reduction before clustering, and a variation 

of this algorithm has been developed for time-series although not for multivariate time-series 

(23)
. 

Furthermore, there have been recent developments in deep-learning approaches for MTS 

clustering (24). Many of these models can be considered ‘black-box’ models, meaning their 

decision making to create outputs (clustering results) are not easily understandable. These 

models are more difficult to interpret. In many clustering applications, it is important to know 

what metrics are determining the outcome, especially given that clustering can be considered 

somewhat of an art, not an exact science (25). 

One example of a recent deep-learning MTS approach is to utilise a Variational AutoEncoder 

architecture to compress multiple time-series variables into a single dimension for 

hierarchical clustering (26). In this case, interpretability may be difficult as it may not be 

clear which elements of the different time-series variables are retained in the single 

dimension representation. Variational AutoEncoders are a type of neural network architecture 

designed for unsupervised machine learning, particularly effective in dimensionality 

reduction and generative tasks (27). The encoder maps high-dimensional data (such as several 

nutritional variables) into a lower-dimensional space. 
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In most of the above cases, the target number of clusters is required. This can be guided by 

intended use-case, or via heuristics such as the Elbow, Silhouette or Gap method 
(28)

. Overall, 

the literature on MTS clustering is quickly evolving, but the reproducibility remains to be 

examined 
(22, 29)

. 

2.4. Evaluating Clustering Performance 

Whilst there are several existing strategies to evaluate standard clustering algorithms, 

approaches specific to MTS are limited 
(30)

. Most clustering algorithms aim to output cluster 

assignments, and hence the same performance metrics can be used, but complications arise 

when attempting to define the specific task to be evaluated: many of these algorithms are 

domain dependent so whilst evaluating using existing benchmarks may be the simplest 

approach, the same performance may not be observed when applied to the domain of interest 

(30)
. 

Clustering algorithms aim to group observations based on their similarity. In most cases, 

clustering is applied to unlabelled data where no predefined categories or 'ground truth' labels 

exist, making it a purely unsupervised machine learning task. However, when labels are 

available, such as in datasets where the true class of each observation is known, clustering 

results can be evaluated in comparison to these labels. In such cases, the Rand Index (RI) is a 

metric that can be applied to evaluate clustering results. This metric is similar to accuracy, 

and can be thought of as a measure of the proportion of correct assignments (31). It can be 

computed as follows where   ,   ,   , and    are the numbers of true positive, false 

positives, false negatives, and true negatives: 

    
       

                 
 

The Adjusted Rand Index (ARI) is similar to the Rand Index, but corrects for chance, which 

can make it a more appropriate evaluation metric. An ARI of 0 suggests clustering outputs are 

similar to random selection while an ARI close to 1 suggests the clustering outputs are better 

than random selection. A value below 0 suggests clustering outputs are worse than random 

selection. The formula for ARI can be found in Supplementary 1. 
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3. Methods 

3.1. Data 

3.1.1. Global Dietary Database (GDD) 

The Global Dietary Database (GDD) 
(32)

 includes country-level nutritional data from 1990 to 

2015 at 5-year intervals (1990, 1995, 2000, 2005, 2010, 2015) and the data of 2018. In this 

database, 47 nutritional variables, which include 13 macronutrients, 18 micronutrients, 5 

beverages, and 11 foods, are available. In terms of demographic information, age, sex, 

education, and urbanisation are provided. In this study, only age and sex were included in the 

analyses. 

3.1.2. Nutritional Deficiency 

Disability Adjusted Life Years Lost (DALY) caused by nutritional deficiency was obtained 

from the Global Burden of Diseases Study (33). Each unit of DALY indicates one year of full 

health lost as a result of premature mortality and years lived with the disability. Data on 

DALY was available for all years between 1990-2019, for all countries of interest. This 

variable was sourced from various existing datasets and primary data collections, such as 

disease registries and household surveys. A disease meta-regression model is used to generate 

the estimates 
(34)

. 

3.1.3. Income Classifications 

Historical income classifications between 1990 and 2018 are provided by the World Bank 
(35)

. 

For each year, countries are classified into one of four groups: (1) Low-Income, (2) 

Lower-Middle-Income, (3) Upper-Middle-Income, and (4) High-Income based on gross 

national income (GNI) per capita, in U.S. dollars. GNI is estimated by economists and 

population size is estimated by the World Bank. 

3.1.4. Data Pre-Processing 

The GDD uses various data sources to generate estimated nutrition intakes, hence it was 

complete and did not require further data imputation. Data for nutritional deficiency was 

obtained from a separate dataset: the Global Burden of Diseases Study (33). To ensure both 

datasets were in a compatible format, nutritional deficiency observations were dropped to 
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match the years of interest as indicated in the GDD (retained years: 1990, 1995, 2000, 2005, 

2010, 2015, and 2018). For income classifications, after extracting the years of interest, 

countries with one missing value were imputed by simply using the most recent value from 

other years (e.g. if 1990 was missing, then 1991 was used, not 1995).  

Notably, since income classifications are time-dependent variables, to simplify the 

interpretability, countries that were originally labelled as Lower-Middle-Income or 

Upper-Middle-Income were first merged into a new Middle-income. Based on the income 

trends, countries were then classified into six groups: (1) constantly low-income, (2) 

constantly middle-income, (3) constantly high-income, (4) increasing then decreasing income 

trend, (5) decreasing income trend, and (6) increasing income trend. Because groups 4 and 5 

have low sizes and would unnecessarily complicate the interpretation of the clustering 

performance, countries there were in either group 4 or 5 were removed. The final dataset 

comprised of 176 countries. 

3.2. Program Development 

3.2.1. MTSclust Algorithm 

To address the first aim a newly implemented program, “MTSclust”, was developed based on 

the DTW multivariate time-series clustering algorithm 
(12)

. The key difference being 

generalisation to allow for use of any distance measure. MTSclust calculates dissimilarities in 

the univariate time-series space and aggregates these into a single matrix which can be 

analysed by several standard (non-time-series) clustering algorithms (36), which is a common 

technique for developing clustering algorithms and similar to existing approaches (37-39). 

Algorithm 1 provides the pseudo code. 

Algorithm 1: MTSclust 

Inputs: Multivariate time-series for N number of items; K target number of clusters 

Output: Cluster assignments for N items 

1. Initiate empty N x N matrix 

2. For each time-series variable do 

i. Calculate time-series dissimilarity 

ii. Add dissimilarity to the existing N x N matrix (optionally weighted) 

3. Perform clustering on the N x N aggregated dissimilarity matrix from above, (e.g. 
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using hierarchical or PAM; or optionally mapped to Cartesian space with MDS) 

 

The time-series dissimilarity matrix can be calculated using one of many existing measures 

such as the Euclidean, DTW, Compression-based, Correlation-based, or Partial 

Autocorrelation metric 
(37)

. As discussed in the previous section, distance metric selection is 

highly dependent on use-case 
(13)

. In our study, the CORT distance metric would be an 

appropriate metric because it captures similarities in both temporal correlation behaviour and 

raw value proximity. Other potentially applicable distance metrics include CDM, DTWARP, 

EUCL, and NCD, which are all provided in the TSclust R package 
(40)

. 

It is crucial to highlight that not all sub-clustering algorithms are immediately compatible: for 

example, the K-means clustering algorithm 
(8)

 processes Cartesian coordinates rather than a 

dissimilarity (distance) matrix. To use K-means, one could map the aggregated dissimilarity 

matrix to an abstract 2D-space using a Multidimensional Scaling (MDS) algorithm, such as 

non-metric multidimensional scaling 
(41)

. MDS is a form of non-linear dimensionality 

reduction and information loss is likely to happen 
(42)

. It is important to retain as much 

information as possible, hence why Hierarchical and PAM are used for sub-clustering in this 

study. The MTSclust program allows for weighting of particular time-series variables, which 

could be used to prevent a variable of interest from being “drowned out”, an important 

consideration when dealing with high-dimensional multivariate data. 

3.2.2. Performance comparison 

For comparison, MTSclust was benchmarked against a popular algorithm “DTWclust”. 

Trends in income levels, which were defined based on World Bank Income Classifications, 

were selected as the labels to assess the performance of these algorithms. In addition, 

nutritional variables known to be correlated with income, including nutritional deficiency, 

sugar sweetened beverages, added sugar, iodine, vitamin A & zinc, were selected as inputs. 

Three different test sets of income trends were utilised for the performance analysis: (1) 

low-income versus high-income, (2) low-income versus middle-income versus high-income, 

and (3) low-income versus increasing income. The tests, which aim to differentiate countries 

by these trends, were repeated 1000 times for each variable, and the median accuracy for 

each algorithm was reported. 
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To evaluate the cluster performance, four measurements: accuracy (%), run-time (seconds), 

Rand Index, and Adjusted Rand Index were included in the performance metrics. The 

arbitrary cluster IDs had to be remapped to the known labels to obtain these metrics. A 

snippet of R code was developed for this project to find the optimal remapping by comparing 

the accuracy of all possible permutations of labels, allowing one to obtain performance 

metrics from cluster assignments. 

Reference values were generated based on 1,000 simulated randomised repeats of a dummy 

clustering algorithm. Such reference values would allow one to gain an understanding of how 

much better the clustering algorithms are than randomness, similar to the Adjusted Rand 

Index. 

 

3.3. Applying MTS Clustering Algorithm to GDD 

To satisfy the second aim of this study, trends in sugar-sweetened beverage intake and 

nutritional deficiencies were explored. MTSclust was applied to the two variables using the 

CORT distance metric. This metric captures both Euclidean and temporal similarities in 

time-series. The target number of cluster was defined as 4 (K=4) to strike a balance between 

having too many clusters that complicates the interpretation and having too few that the 

respective clusters do not contain a common trend. The trends in generated clusters were then 

visually explored. Demographic-specific trends were explored by repeating the above using 

the stratified GDD data (sex and age). 

In addition, trends in all nutritional variables were explored with MTSclust being applied to 

all 47 GDD intake variables plus the nutritional deficiency variable. Variables were equally 

weighted, and the CORT distance metric was used. The resultant cluster assignments could be 

loosely described as a ‘World Nutrition Intake Trend Classification’. This was created for 

four groups of countries (K=4) and six groups of countries (K=6) respectively. 

3.4. Software 

Data processing scripts were originally written in Python (using Google Colab, an online 

notebook lab space) as this can make use of powerful libraries such as Pandas for quick data 

wrangling of large datasets. The analysis stages were written in R as most of the key 
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packages, such as DTWclust 
(20)

 and TSclust 
(40)

, were written in this language. Eventually, 

the data processing Python scripts were converted to R to increase interoperability with the 

analysis stages. Having a single codebase also makes it easier for other researchers to 

reproduce the analysis. A link to the GitHub code repository to reproduce this analysis is 

provided in Supplementary 2. The ‘MTSclust’ program is provided as an R package within 

the code files. 

4. Application 

4.1. Clustering Performance Comparison 

4.1.1. Tuning DTWclust 

Prior to comparing performance, DTWclust was tuned using a tune grid to find the optimal 

combination of parameters. Figure 1 demonstrates the performance of the 16 combinations 

after each combination ran 1000 repeats with different seeds. The combinations were defined 

based on four parameters: (1) Manhattan distance or Euclidean distance, (2) distance being 

square rooted or not, (3) backtracking technique being applied or not, and (4) data being 

normalised or not. In this violin plot, the red points indicate median accuracy for each set of 

1000 runs with the values range from 0.694 to 0.748.  

The optimal parameter setting (combination 5) was to use the square rooted Manhattan 

distance for the local cost matrix of DTW. As observed, the combinations in the violin plot 

appears to be in groups of four. This is because normalisation and backtracking had no effect, 

and were therefore not applied. 

4.1.2. Performance comparison 

To assess how well MTSclust and DTWclust were able to partition countries into their 

income-levels based on the five closely correlated nutrition variables (sugar sweetened 

beverage, added sugar, iodine, zinc, and vitamin A intake), each of these five bivariate sets of 

variables were clustered 1000 times. As described earlier, three different test sets of income 

trends were utilised. In addition, for the first test sets, the process was repeated across the 

male and female GDD datasets to ensure robustness. The results are summarised in Table 1. 

The performance analysis found that MTSclust in general performed better than ‘DTWclust’ 
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in the 3-class performance test with MTSclust achieving a mean accuracy of 71.5% 

(ARI=0.381) whereas DTWclust achieving 58.0% (ARI=0.224). Both algorithms performed 

well in 2-class performance test using high- and low-income class countries, both achieving 

97.5% (ARI=0.90). In all test cases, MTSclust well exceeds the reference values. MTSclust is 

much slower: in the 2-class test it took on average 0.37 seconds, 3.88 times longer than 

DTWclust. 

4.2 Results of Applying MTS Clustering Algorithm to GDD 

After validating the performance of MTSclust, this program was then applied in real-world 

setting. Clustering is first performed on two time-series variables, which is also known as 

bivariate clustering. This is followed by an exploration of clustering on all 48 variables at 

once, known as the high-dimensional MTS clustering. 

In the bivariate time-series clustering, sugar-sweetened beverage intake and nutritional 

deficiency were input variables for the clustering. “PAM” and “CORT” were used as the 

sub-clustering algorithm and the distance metric in MTSclust. In Figure 2, countries with 

similar trends in sugar-sweetened beverage intake and nutritional deficiency are clustered 

together. The clusters are loosely correlated with geography: Cluster 1 largely contains Latin 

American, Middle East, and Southern Mediterranean countries; Cluster 2 largely contains 

South East Asian and Central African countries; Cluster 3 is ambiguous with countries 

scattered in several continents; and Cluster 4 contains Western countries and the former 

Soviet region. It’s fair to say these clusters are not fully described by geography. 

To better understand the trends, the time-series plots with each country coloured as per their 

cluster assignment are provided in Figure 3. In addition, given that the demographic-specific 

trends are also of interest, the datasets were stratified according to sex or age for analyses. 

The results demonstrated that some clusters are visually separable (see for example Cluster 3), 

but others are not (Figures 3A and 3B). This bivariate time-series clustering identified four 

distinguishing trends among countries, as seen in these figures: Cluster 1 contained countries 

with increasing sugar-sweetened beverage intake whilst deficiency decreased. Cluster 2 

contained countries with slightly increasing sugar-sweetened beverage intake and a steep 

decline in deficiency. Cluster 3 contained countries with highly erratic (and often very high) 

sugar-sweetened beverage intake whilst deficiency decreased. This erratic trend could be 

caused by the origin of the data: these are countries with small populations and in turn, lower 
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sample size which would increase variation of estimates. Cluster 4 contained countries with 

constantly low sugar-sweetened beverage intake and low deficiency. These are largely 

developed countries in the northern hemisphere. 

The methods identified no demographic specific trends in these two variables 

sugar-sweetened beverage intake and nutritional deficiency) (Figure 3C, 3D, 3E and 3F). It 

could be said that these country-level trends between 1990-2018 do not seem to be dominated 

by sex or age. However, this finding could actually be caused by issues arising from data 

provenance: the GDD is comprised of estimates generated from multilevel Bayesian 

multilevel framework and relies on covariate information to support countries and 

demographics with limited individual-level intake data. It is also possible that these 

demographic-specific trends simply do not exist: perhaps in the long-term, these demographic 

groups do indeed closely follow their country’s trends. In all graphs within Figure 3, the 

extremes (such as the very low or high values) tend to be clustered together. This is consistent 

with the choice of distance metric, CORT, which incorporates both raw-value proximity and 

trend behaviours (additional CORT details and formulae provided in Supplementary 1). 

The next analysis explores inter-country similarity based on trends within their entire 

nutritional profile (1990-2018): MTSclust with the CORT distance metric is applied to all 48 

nutritional variables. As the clustering is performed on all variables, one could describe the 

output as a “World Nutrition Intake Trend Classification” (Figure 4). As the figures 

demonstrated, the generated cluster assignments from the high-dimensional MTS clustering 

are highly correlated with geography. This is even the case when increasing the number of 

target clusters to six. Furthermore, the groupings of the K=6 result are almost all subsets of 

the K=4 result, suggesting that the clustering is stable. Cluster IDs 4 and 6 in the respective 

classifications are identical. The members of these groups are: Bulgaria, Djibouti, Estonia, 

Israel, Lebanon, Mongolia and Palestine. These countries are diverse in terms of economics 

and geography, so it is a surprising grouping. This finding could suggest these countries have 

nutritional intake trends that are disparate relative to others: potentially a cluster grouping of 

outliers. For Figure 4(B) (K=6 clusters), the groupings of clusters can be loosely described by 

geography as follows: Cluster 1 is dominated by African and South East Asian countries; 

Cluster 2 is similar to Cluster 1 with African and South East Asian countries; Cluster 3 is 

largely composed of former Soviet countries; Cluster 4 contains several coastal countries 

from the mediterranean, as well Latin America and a few coastal East Asian countries; 
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Cluster 5 contains Western countries (North America, Europe, Australia); Cluster 6 is not 

visually correlated to geography as described above. 

5. Discussion 

This study investigated country-level nutritional trends and identified groups of countries 

with similar profiles using a variety of approaches including bivariate clustering, and a 

high-dimensional approach. The bivariate time-series clustering, based on nutritional 

deficiency and sugar-sweetened beverage intakes, identified four distinguishing trends among 

countries, but no demographic trend was identified. Whilst one can say that these 

country-level trends between 1990-2018 are not dominated by binary subgroups like sex or 

age, we should caveat that the lack of evidence to support them as potential effect modifiers 

could be due to insufficient statistical power. Future studies could attempt to perform a 

narrower and focused analysis into these particular country trends leveraging adequately 

powered analytical techniques such as regression analyses. On the other hand, the generated 

cluster assignments from the high-dimensional MTS clustering, which is the “World 

Nutrition Intake Trend Classification”, are highly correlated with geography. It is worth 

noticing that cluster IDs 4 and 6 in the respective classifications are almost identical, but they 

are diverse in terms of economics and geography, suggesting that this cluster is potentially a 

collection of countries with trends that is disparate relative to others. This finding therefore 

highlights the possible value in exploring clustering algorithms with outlier detection, such as 

DBSCAN, and also K-value selection strategies. 

Azzam et al. (7) clustered consumption data from Food Balance Sheets to test whether there 

is a global convergence towards a Western diet and they identified 16 countries with 

consumption consistent with this. In contrast to our study, they explored Food Balance Sheets 

and collated consumption data into an index at each time point. Despite this difference, all 16 

countries they identified were also grouped together in this project’s generated ‘World 

Nutrition Intake Trend Classification’ (Figure 4). In addition, this project identified a further 

34 countries with similar trends (see Cluster 2 of Figure 4A). Similarly, almost all of the 16 

countries were also present in the K=6 ‘World Nutrition Intake Trend Classification’, with the 

exception of Belgium, Czechia and Hungary (see ‘Cluster 5’ of Figure 4B). 

5.1. Policy Implications 
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The World Health Organization (WHO) classifies countries into six regions according to 

WHO’s planning, reporting, and analysis needs 
(43)

. In a similar manner, the “World Nutrition 

Intake Trend Classification”, which was one of the outputs of this study, could potentially be 

used to subdivide regions for future nutrition-related policy, reporting and analysis. For 

instance, WHO specified 6 global nutrition targets for 2025 in 2012 and the United Nation 

listed zero hunger as one of the sustainable development goals (SDGs) in 2015 (44). While 

these global targets focus on nutrition, the relationship between economy and nutrition should 

also be investigated given that evidence has shown that countries with higher income levels 

had greater nutrition intake (45, 46). The “World Nutrition Intake Trend Classification” can, 

therefore, serve as an indicator to identify countries or regions with similar backgrounds for 

policy references and assessments. Regionalisation of nutrition policies in such a manner 

could help to ensure that interventions are tailored to the specific needs of different regions 

(47). Our findings demonstrate that nutritional patterns are not necessarily completely 

described by geographic location, so regionalisation defined by clustering may be a more 

targeted approach, recognising that nutritional challenges and patterns can vary substantially. 

Additionally, these methods could be utilised to support policy monitoring and evaluation: 

one could re-explore these subdivided regions in ten years’ time, to potentially identify 

changes of countries between clusters, or larger structural shifts of the clusters. For the 

purpose of policy planning, one could also potentially use these clustering results to project 

trends into the near future. Regionalisation (facilitated by clustering) could allow for more 

efficient prioritisation of resources: by identifying regions with the most pressing nutritional 

needs or those where interventions are likely to have the greatest impact, policymakers can 

strategically allocate limited resources. Methods-wise, one could re-apply the MTS clustering 

on one of our clustering output sub-groups (such as Cluster 1 in Figure 4A) to try to 

granularly explore whether there are any unidentified differences within each cluster 

grouping. 

Furthermore, one may also use the generated ‘World Nutrition Intake Trend Classification’ to 

support the creation of population health ‘policy learning networks’ (48): countries 

undergoing similar trends in nutritional deficiency may benefit from sharing strategies and 

proposals to alleviate this. The entities that would benefit from such networks would be very 

niche, specifically, this would be of benefit to government bodies and NGOs tackling 

nutritional deficiency and agricultural policy. These networks can facilitate the exchange of 
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knowledge, experiences, and best practices among countries facing similar nutritional 

challenges. By fostering collaboration and shared learning, policymakers can identify 

effective strategies and adapt them to their specific contexts. This can help to accelerate 

progress towards global nutrition targets. For instance, countries in the same cluster can share 

successful policies for reducing sugar-sweetened beverage consumption or improving access 

to a targeted nutritional intake variable. While this study focuses on novel applications of 

methodology, future studies could build upon these findings to perform more granular 

investigations into nutritional deficiencies in an outcome-guided manner. 

Understanding global nutrition trends can be of interest to global health governance. By 

identifying groups of countries with similar nutritional profiles, policymakers can develop 

targeted interventions to improve nutrition and reduce disparities. For example, countries 

with high levels of sugar-sweetened beverage intake could implement policies to reduce 

consumption, such as taxes or marketing restrictions (49). Countries with high levels of 

nutritional deficiency could implement policies to improve access to nutritious foods, such as 

subsidies or education programs. 

5.2. Strengths and limitations 

Regarding the developed clustering program, a matrix of dissimilarities was created as part of 

the high-dimensional MTS cluster analysis, and one could convert this to Cartesian 

coordinates using multidimensional scaling (MDS). This could potentially be used by future 

studies in a very specific case where one wishes to adjust for country-level nutrition intake 

trends. This adjustment helps to isolate the impact of specific interventions or policies on 

health, providing valuable insights for policymakers. For example, if researchers are studying 

the impact of a sugar-sweetened beverage tax on obesity rates, they could use the MDS 

matrix to adjust for the overall nutritional similarity between countries, ensuring that the 

observed effects are not simply due to pre-existing differences in dietary patterns. 

This project presents the first cluster analysis of trends in the Global Dietary Database (GDD). 

Other studies have analysed GDD trends although they are limited to single intake variables 

or particular countries 
(50)

. Specifically, this project leverages MTS clustering to ingest all 47 

GDD intake variables in a single exploratory analysis. The newly developed program, 

MTSclust, successfully identified intake trends against the backdrop of several nutritional 

studies which have failed to appreciate the temporal element of collected data 
(7, 10)

. Moreover, 
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this study conducted an analysis of nutritional profiles from two different perspectives, 

bivariate time-series clustering and high-dimensional MTS clustering, allowing us to create a 

more comprehensive picture of nutrition trends. MTSclust and the accompanying analyses 

are thoroughly documented, enhancing the reproducibility of our findings. Furthermore, the 

design choice of MTSclust which leverages sub-clustering algorithms that can readily handle 

dissimilarity matrices, ensures less information is lost. 

This study is not without limitations. The primary dataset (GDD) comprises of purely 

country-level data, so the scope of conclusions is immediately narrowed and is therefore at 

risk of ecological fallacy, which refers to the error of making inferences about individuals 

using aggregate data. To draw further inferences about nutritional profiles and health 

outcomes, one should investigate at the individual-level. A limitation of the MTSclust 

program is that the variables are compartmented for the calculation of trend similarities. 

While this helps generate more interpretable trends, it misses out on identifying more 

complex inter-variable trends. Multivariate time-series clustering provides a promising 

opportunity to analyse high-dimensional datasets with numerous nutritional variables, 

uncovering hidden patterns in data which might otherwise be too complex to detect. These 

methods could be applied to datasets similar to the GDD: studies could explore similar types 

of nutrition data or even other global public health data. One could perform a more granular 

investigation of intra-country patterns of nutrition intake: for instance (with an appropriate 

dataset) one could attempt to explore how dietary patterns in British counties have evolved 

over time. 

6. Conclusion 

In this study, the newly developed MTSclust program was applied to investigate global 

nutritional trends. The bivariate cluster analysis of sugar-sweetened beverage intake and 

nutritional deficiency successfully separated countries into four visually distinct groups of 

trends, although it did not identify any demographic-specific trends. The “World Nutritional 

Intake Classification”, generated through a high-dimensional cluster analysis, highlights how 

global nutritional trends (1990-2018) are closely related to geography. 

In conclusion, this study can be the foundation for the application of outcome-guided 

clustering techniques to further investigate the links between nutritional profiles and health 

outcomes. 
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Table 1. Performance on clustering with different numbers of classes 

 

  

Dataset Mean 

Accuracy 

Mean 

Time 

Mean  

Rand Index 

Mean Adj  

Rand Index 

MSTclust     

 Low vs high income  0.975 0.155 0.950 0.900 

  Male 0.978 0.159 0.957 0.915 

  Female 0.975 0.152 0.950 0.900 

 Low vs increasing income 0.691 0.369 0.573 0.146 

 Low vs middle vs high income 0.715 0.547 0.709 0.381 

DTWclust     

 Low vs high income  0.975 0.040 0.950 0.900 

  Male 0.975 0.042 0.950 0.900 

  Female 0.978 0.040 0.957 0.914 

 Low vs increasing income 0.787 0.055 0.662 0.321 

 Low vs middle vs high income 0.580 0.074 0.633 0.224 
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Figure 1. Violin plots for DTWclust tuning repeats. 
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Figure 2. Map of bivariate clustering results (MTSclust). 
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Figure 3. Time-series plots of median sugar-sweetened beverage intake. 
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Figure 4. World Nutrition Intake Trend Classification by different numbers of clusters. 
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