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Abstract

The main result of this paper is the solution to the optimal stopping problem of maximizing
the variance of a geometric Lévy process. We call this problem the variance problem.
We show that, for some geometric Lévy processes, we achieve higher variances by
allowing randomized stopping. Furthermore, for some geometric Lévy processes, the
problem has a solution only if randomized stopping is allowed. When randomized
stopping is allowed, we give a solution to the variance problem. We identify the Lévy
processes for which the allowance of randomized stopping times increases the maximum
variance. When it does, we also solve the variance problem without randomized stopping.
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1. Introduction

In this paper we solve the optimal stopping problem of maximizing the variance of a
geometric Lévy process. We call this problem the variance problem. It is distinguished from
classical optimal stopping problems in that we maximize the variance and not the expectation.
The nonlinear structure of the variance moves the problem outside the scope of classical optimal
stopping problems, and, thus, we cannot directly rely on results from, e.g. [7] and [9].

As in Markowitz mean-variance analysis [3] we identify the variance of a stock price with a
risk. In the context of risk management, where an investor wishes to sell an asset, the variance
problem provides the worst-case scenario, that is, the value function is an upper bound for the
risk (variance) for any strategy and the optimal strategy is the strategy at highest risk.

The results in this paper extend the results of [6], in which the variance problem is solved
for various diffusions. However, we face different technical issues in working with geometric
Lévy processes. Whereas the optimal stopping times for the diffusions in [6] are hitting times,
this is not the case for all geometric Lévy processes. For some geometric Lévy processes,
the solution is of another kind. Furthermore, for some of these processes, we achieve higher
variances by allowing randomized stopping. For some processes the variance problem has a
solution only if randomized stopping is allowed. This is in contrast to classical optimal stopping
problems and variance problems for diffusions where randomized stopping times do not change
the value function.
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Variance optimal stopping 129

Mathematically, the problem addressed in this paper is the following. Let X be a Lévy
process, let F be the augmented natural filtration satisfying the usual conditions, and let T
denote the set of stopping times with respect to F (all terms are defined as in [2]). The main
problem we consider is to find a stopping time τ ∗ ∈ T such that

sup
τ∈T

V[eXτ ] = V[eXτ∗ ]. (1)

We call this problem the variance problem.
Initially, we identify the Lévy processes for which the variance problem is trivial to solve.

If X is a deterministic process then T contains only almost surely (a.s.) deterministic times
and the variance for any stopping time is 0. Let ψ(β) = log(E[eβX1 ]) denote the Laplace
exponent. If ψ(2) > 0 and the Lévy process is nondeterministic, then ψ(2) > 2ψ(1) by
Jensen’s inequality. Therefore, V[eXt ] = E[e2X1 ]t − E[eX1 ]2t = eψ(2)t − e2ψ(1)t → ∞ for
t → ∞ and the variance problem is unbounded.

In the following we consider Lévy processes withψ(2) < 0. Lévy processes withψ(2) = 0
are considered separately (see Theorem 2).

In [6], the variance problem was solved for various diffusions. This was achieved using
a method of embedding the problem into the following classical optimal stopping problem,
which we call the quadratic problem:

sup
τ∈T

E[(eXτ − c)2] = E[(eXτ∗ − c)2], c > 0. (2)

The solution to the variance problem in this paper is also based on this embedding method,
and the solution to the quadratic problem is presented in Theorem 1 below. As shown in [6], it
holds that if τ ∗ is optimal for (2) and solves

E[eXτ∗ ] = c (3)

then it is also an optimal stopping time for variance problem (1).
The processes studied in [6] all have a combination of τ ∗ ∈ T and c ∈ R that solve both

(2) and (3). But some Lévy processes do not. Let X̄∞ = supt≥0Xt . The problem of finding a
combination of τ ∗ and c that solves both (2) and (3) arises from possible discontinuities in the
distribution of X̄∞. Discontinuities exist exactly when 0 is irregular for (0,∞) (see Lemma 1),
and continuity of the distribution of X̄∞ ensures that the variance problem has an excess
boundary time solution. It is sometimes possible to use the embedding method even when
the distribution of X̄∞ has discontinuities. We derive two equations that each give sufficient
conditions that the embedding method can be used to find an excess boundary time solution
(see Theorem 2).

When there is no excess boundary time that solves both (2) and (3), we solve the variance
problem by introducing randomized stopping times. The concept is to allow stopping decisions
to depend not only on the Lévy process, but also on a random variable independent of the Lévy
process. As argued in [9], this may be powerful when solving optimal stopping problems with
constraints because it sometimes easily gives a wider class of solutions to the unconstrained
problem. We see in Theorem 4 that the class of randomized optimal stopping times for the
quadratic problem (2) is so wide that one of them also solves (3). Thus, for any Lévy process,
it is possible to solve the variance problem with the embedding method if we maximize over
the randomized stopping times.
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130 K. S. T. GAD AND J. L. PEDERSEN

We return to the original variance problem, where randomization is not allowed. In the
case there is no combination of τ ∗ and c that solves both (2) and (3), the situation depends
on the jump structure and the drift of the Lévy process. For compound Poisson processes, the
randomized stopping times can be mimicked because the processes stay for a positive time
at 0 before the first jump. This positive time is independent of the rest of the behavior of the
process and in Theorem 6 we show how this is used as the independent random information
needed. The processes which are not compound Poisson processes moves from 0 right away.
In Theorem 7 we show that, for these processes, it holds that if there is no excess boundary
time solution then the randomized solutions cannot be mimicked and there is no stopping time
in T giving as high a variance as that obtained by the randomized solution. If the jump part
is not a compound Poisson process then the filtration grows sufficiently fast that we may find
a sequence of stopping times from T for which the variance converges to the variance of the
randomized solution. But if the jump part is a compound Poisson process then the filtration
does not generate sufficient information and there is a gap between the value function of the
variance problem with and without randomized stopping times (see Theorem 7).

2. The quadratic optimal stopping problem

In this section we solve the quadratic optimal stopping problem (2) for Lévy processes with
ψ(2) < 0. This problem has some resemblance to the optimal stopping problem presented
in [1] and is solved by a similar method.

The quadratic problem is a classical optimal stopping problem for a Lévy process with gain
functionG(x) = (ex − c)2. AsG is continuous, and Lévy processes are Feller processes, then
the state space can be divided into a stopping region and a continuation region (see [7]), with an
optimal stopping time being the first time the process reaches the stopping region. To get a first
idea of the stopping region, note that, from Jensen’s inequality, a Lévy process with ψ(2) < 0
has E[X1] < 0 and, thus, it converges to −∞ when t goes to ∞ (see [2, Theorem 7.2]).
Hence, when maximizing E[(eXτ − c)2], it is clear that the value c2 may be obtained by never
stopping the process. Therefore, it is never optimal to stop the process if (eXt − c)2 < c2 and
the stopping region has to be above log(2c).

We use the following notation for the excess boundary times. For y ∈ R, define

τ+
y = inf{t ≥ 0 | Xt ≥ y} and τ++

y = inf{t ≥ 0 | Xt > y}.
Recall that

X̄∞ = sup
t≥0

Xt .

When we solve the quadratic and the variance problems, we repeatedly need the following
fluctuation identity, which is a minor generalization of [1, Lemma 1]. If x, y, β ∈ R and
E[eβX̄∞] < ∞, then

Ex[eβXτ+y 1(X̄∞≥y)] = eβx
E[eβX̄∞ 1(X̄∞≥y−x)]

E[eβX̄∞] , (4)

where the subscript on the expectation refers to the starting value of the process. The proof
follows in the same way as the proof of [1, Lemma 1].

As in [2], we say that we have continuous fit if the value function is continuous at the
boundary of the stopping region, and we say that we have smooth fit if the value function is
differentiable at the boundary of the stopping region.
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Theorem 1. Let X be a Lévy process with ψ(2) < 0. Then τ+
yc

and τ++
yc

are both optimal
stopping times of the quadratic problem (2), where yc = log(2cE[e2X̄∞]/E[eX̄∞]).

(a) IfX is spectrally negative then yc = log(2c(φ(0)− 1)/(φ(0)− 2)), where φ is the right
inverse of ψ .

(b) There is always continuous fit at yc, and there is smooth fit at yc exactly if the distribution
of X̄∞ is continuous at 0.

Proof. We choose τ ∗ = τ+
yc

as a candidate for an optimal stopping time and define the
corresponding function v∗(x) = Ex[G(Xτ∗)]. By [5, Lemma 1], ψ(2) < 0 implies that
E[e2X̄∞] < ∞ and E[eX̄∞] < ∞, and yc and v∗(x) are well defined. Then we use the well-
known sufficient conditions (see [2, Lemma 9.1]) that τ ∗ is an optimal stopping time if the
following conditions hold:

(i) Px(there exists limt→∞G(Xt) < ∞) = 1,

(ii) v∗(x) ≥ G(x) for all x ∈ R,

(iii) (v∗(Xt ))t≥0 is a right-continuous supermartingale.

We show that each of the three conditions are fulfilled.
(i) Whenever ψ(2) < 0, the Lévy process converges to −∞ when t goes to ∞ and, thus,

the requirement is fulfilled.
(ii) It follows from (4) and the definition of yc that

v∗(x) = Ex[(eXτ+yc − c)2]
= c2 − 2cEx[eXτ+yc 1(X̄∞≥yc)] + Ex[e2X

τ
+
yc 1(X̄∞≥yc)]

= c2 − 2cex
E[eX̄∞ 1(X̄∞≥yc−x)]

E[eX̄∞] + e2x
E[e2X̄∞ 1(X̄∞≥yc−x)]

E[e2X̄∞] (5)

= (c − ex)2 + 2cex
(

1 − E[eX̄∞ 1(X̄∞≥yc−x)]
E[eX̄∞]

)
− e2x

(
1 − E[e2X̄∞ 1(X̄∞≥yc−x)]

E[e2X̄∞]
)

= G(x)+ ex
(

eyc
E[eX̄∞ 1(X̄∞<yc−x)]

E[e2X̄∞] − ex
E[e2X̄∞ 1(X̄∞<yc−x)]

E[e2X̄∞]
)

≥ G(x)+ ex
(

eyc
E[eX̄∞ 1(X̄∞<yc−x)]

E[e2X̄∞] − ex
eyc−xE[eX̄∞ 1(X̄∞<yc−x)]

E[e2X̄∞]
)

(6)

= G(x).

(iii) Let Y be an independent copy of X, and let X̄[t,∞) = sups∈[t,∞) Xs . Note that X̄[t,∞)

is equal in law to Xt + Ȳ∞. Then use (5) and the definition of yc to obtain

E[v∗(Xt + x)] = E[c2 − 2cex+Xt
E[eȲ∞ 1(Ȳ∞≥yc−(x+Xt )) |X]

E[eȲ∞]

+ e2(x+Xt )E[e2Ȳ∞ 1(Ȳ∞≥yc−(x+Xt )) |X]
E[e2Ȳ∞] ]

https://doi.org/10.1239/aap/1427814584 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814584


132 K. S. T. GAD AND J. L. PEDERSEN

= c2 − 2c

E[eX̄∞]E[eȲ∞+x+Xt 1(Ȳ∞+x+Xt≥yc)]

+ 1

E[e2X̄∞]E[e2Ȳ∞+x+Xt 1(Ȳ∞+x+Xt≥yc)]

= c2 − 2c

E[eX̄∞]eyc (Ex[eX̄[t,∞)−yc 1(X̄[t,∞)≥yc)] − Ex[e2(X̄[t,∞)−yc) 1(X̄[t,∞)≥yc)])

≤ c2 − 2c

E[eX̄∞]eyc (Ex[eX̄∞−yc 1(X̄∞≥yc)] − Ex[e2(X̄∞−yc) 1(X̄∞≥yc)])
= v∗(x).

Hence, for s ≤ t it follows that E[v∗(Xt ) | Fs] = E[v∗((Xt − Xs) + Xs) | Fs] ≤ v∗(Xs).
Thus, v∗(Xt ) is a supermartingale. We then need to prove that v∗(Xt ) is right continuous in t .
As Xt is right continuous in t, it is sufficient to prove that x �→ v∗(x) is continuous. From (5),
it follows that the jump size of v∗ at x is

P(X̄∞ = yc − x)

(
−2cex

eyc−x

E[eX̄∞] + e2x e2(yc−x)

E[e2X̄∞]
)

= P(X̄∞ = yc − x)eyc

E[e2X̄∞]
(

−2c
E[e2X̄∞]
E[eX̄∞] + eyc

)

= 0.

Thus, v∗ is continuous and, hence, τ+
yc

is an optimal stopping time for the quadratic problem.
We can prove that τ++

yc
is also an optimal stopping time in the same way as for τ+

yc
. The

only difference is that we need the following modification of (4): whenever x, y, β ∈ R and
E[eβX̄∞] < ∞, we have

Ex[eβXτ++
y 1(X̄∞>y)] = eβx

E[eβX̄∞ 1(X̄∞>y−x)]
E[eβX̄∞] . (7)

(a) WhenX is spectrally negative, X̄∞ ∼ Exp(φ(0)) and it follows that yc = log(2c(φ(0)−
1)/(φ(0)− 2)).

(b) Finally, we present the statements about the continuous fit and the smooth fit. As v∗ is
continuous, we have continuous fit at yc. It follows from (ii) that there is smooth fit at
yc exactly if h(x) = eycE[eX̄∞ 1(X̄∞<yc−x)] − exE[e2X̄∞ 1(X̄∞<yc−x)] is differentiable
in yc. For ε > 0, we have h(yc + ε)− h(yc) = 0 and

h(yc)− h(yc − ε) = eycE[eX̄∞(1 − eX̄∞) 1(X̄∞<ε)](+eyc − eyc−ε)(−E[eX̄∞ 1(X̄∞<ε)]).
Thus, (1/ε)(h(yc) − h(yc − ε)) → e−ycP(X̄∞ = 0), and, hence, we have smooth fit at yc
exactly if the distribution of X̄∞ is continuous at 0. This completes the proof.

Remark 1. Recall that 0 is regular for (0,∞) if τ++
0 = 0 a.s., and 0 is irregular for (0,∞)

if τ++
0 > 0 a.s. By [2, Theorem 6.5], the latter is a subclass of Lévy processes with bounded

variation, and it contains compound Poisson processes and processes with strictly negative
drift. Finally, by [8, Lemma 49.6] we obtain τ+

y = τ++
y a.s. for y > 0, if X is not a compound

Poisson process.
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Lemma 1. Let X be a Lévy process with ψ(2) < 0.

(a) If 0 is regular for (0,∞) then the distribution of X̄∞ is continuous.

(b) If 0 is irregular for (0,∞) then the distribution of X̄∞ has discontinuity points that
includes 0. If, additionally, X is not a compound Poisson process then 0 is the only
discontinuity point for the distribution of X̄∞.

Proof. (a) Assume that 0 is regular for (0,∞). Clearly, P(X̄∞ = 0) = 0. From Remark 1,
it follows that τ+

y = τ++
y a.s. for y > 0 and, thus, for y > 0,

P(X̄∞ = y) = P(τ+
y < ∞)− P(τ++

y < ∞) = 0.

Recall that ψ(2) < 0 implies that X converges to −∞. Thus, X̄∞ < ∞, and it follows that
the distribution of X̄∞ is continuous.

(b) Assume that 0 is irregular for (0,∞). We prove the statement by contradiction and,
thus, assume that P(X̄∞ = 0) = 0. Then τ++

0 < ∞ a.s. Let Y1 = Xτ++
0

and X(1) = X, and,
for n ∈ {2, 3, . . .}, let Yn = X

(n)

τ++
0

and X(n)t = X
(n−1)
τ++

0 +t −X
(n−1)
τ++

0
. It follows from induction,

the strong Markov property, and the fact that τ++
0 < ∞ a.s. that, for all n ∈ N, the Lévy

processes X(n) are identically distributed and a.s. well defined. Let τ++
0 (X(n)) = inf{t ≥

0 : X(n)t > 0}. Then the sequences (Yn)n∈N and (τ++
0 (X(n)))n∈N are both independent and

indentically distributed(i.i.d.) For all N ∈ N,

X∑N
n=1 τ

++
0 (X(N))

=
N∑
n=1

Yn.

From the law of large numbers, it follows that
∑N
n=1 τ

++
0 (X(n)) → ∞ a.s. when N → ∞.

Since Yn ≥ 0 for n ∈ N, then, for X, there will a.s. exist arbitrarily large t ∈ (0,∞) with
Xt ≥ 0. But this is in contradiction to Xt → −∞ a.s. when t → ∞.

Lemma 2. Let X be a Lévy process with ψ(2) < 0 which is not a compound Poisson process.
If yc = 0 from Theorem 1 and τ is an optimal stopping time for the quadratic problem such
that P(τ > 0) > 0, then τ ≥ τ++

0 .

Proof. If 0 is irregular for (0,∞), the statement follows easily. If 0 is irregular for (0,∞),

we prove the statement by contradiction and assume that P(τ < τ++
0 ) > 0. First note, by

Blumenthal’s 0–1 law, that τ > 0 a.s. It holds that v∗(x) = Ex[G(Xτ++
0
)] and, by (6), it follows

that G(x) < v∗(x) for x < 0 because P(X̄∞ = 0) > 0. By [8, Exercise 50.4], the assumption
that P(τ < τ++

0 ) > 0 implies that P(Xτ < 0) > 0. Hence, P(v∗(Xτ ) > G(Xτ )) > 0 and it
follows that E[G(Xτ )] < E[v∗(Xτ )] ≤ v∗(x) since v∗(Xt ) is a supermartingale, leading to a
contradiction with the fact that τ is optimal.

Example 1. Let X be a Lévy process such that −X is given by the Cramér–Lundberg model
with exponential jumps, that is, Xt = −dt + ∑Nt

n=1 Zn, where d > 0, N is a Poisson process
with parameter λ > 0, and (Zn)n∈N is an i.i.d. sequence of random variables independent
of N with Z1 ∼ Exp(α) for some α > 0. From [4, Chapter 4.2], it follows that P(X̄∞ = 0) =
1−λ/αd and, for (0,∞), the density of X̄∞ is f (x) = (λ/αd)(α−λ/d)e−(α−λ/d)x . Therefore,
ψ(2) < 0 corresponds to α > 2 + λ/d . When this condition is fulfilled, we find that, for
β = α − λ/d,

E[eX̄∞] = α

λd

(
2β − 1

β − 1

)
and E[e2X̄∞] = α

λd

(
2β − 2

β − 2

)
.
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From Theorem 1 we find that the optimal stopping point is yc = log(4c(β−1)2/((β−2)(2β−
1))). By Remark 1, it follows that τ+

yc
= τ++

yc
.

Example 2. Let X be a compound Poisson process given by Xt = ∑Nt
n=1 Zn, where N is a

Poisson process with parameter λ > 0, and (Zn)n∈N is an i.i.d. sequence of random variables
which is independent of N and for which P(Z1 = α) = 1 − P(Z1 = −α) = p for some
p ∈ (0, 1). When p < 1

2 , the distribution of X̄∞/α is geometric with P(X̄∞ ≥ kα) =
(p/(1 − p))k and, when p ≥ 1

2 , then X̄∞ = ∞ a.s. Therefore, assume that p < 1
2 , and we

then obtain E[eX̄∞] = (1 − 2p)/(1 − p − eαp) and E[e2X̄∞] = (1 − 2p)/(1 − p − e2αp).
By Theorem 1, it follows that the optimal stopping point is yc = log(2c(1 − p − eαp)/(1 −
p − e2αp)). Both τ+

yc
and τ++

yc
are solutions.

3. The variance optimal stopping problem

In this section we solve variance problem (1) for those processes where the method of
embedding can be applied. Recall that if there exists some stopping time τ ∗ and some constant
c such that both (2) and (3) are fulfilled, then τ ∗ solves the variance problem. Indeed, for all τ,
we have

V[eXτ ] ≤ E[(eXτ∗ − c)2] − (E[eXτ ] − c)2 (8)

= V[eXτ∗ ] − (E[eXτ ] − E[eXτ∗ ])2. (9)

The existence of a combination of τ ∗ and c that fulfills both of the two requirements is not
certain. We show that it depends on whether at least one of the following equations has a
solution:

E[eX̄∞]
2E[e2X̄∞]ey = E[eX̄∞ 1(X̄∞≥y)]

E[eX̄∞] , (10)

E[eX̄∞]
2E[e2X̄∞]ey = E[eX̄∞ 1(X̄∞>y)]

E[eX̄∞] . (11)

We call these the embedding equations.

Theorem 2. Let X be a Lévy process with ψ(2) < 0. If the embedding equation (10) has a
solution ŷ then τ+

ŷ
is an optimal stopping time for variance problem (1). If embedding equation

(11) has a solution ŷ then τ++
ŷ

is an optimal stopping time for variance problem (1).

(a) Assume that 0 is regular for (0,∞). Then the embedding equations coincide and there
exists a solution ŷ. If, additionally, X is spectrally negative then

ŷ = 1

φ(0)
log

(
2φ(0)−1
φ(0)−2

)
.

(b) Assume that 0 is irregular for (0,∞). Then if

E[eX̄∞]2 > 2E[e2X̄∞]E[eX̄∞ 1(X̄∞>0)], (12)

the embedding equations have no solutions. Assume, additionally, that X is not a
compound Poisson process and that (12) is not satisfied, then at least one of the embedding
equations has a solution.

(c) Assume that ψ(2) = 0. Then, for all τ ∈ T , we have V[eXτ ] < 1, but V[eXt ] → 1 as
t → ∞.
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Proof. From Theorem 1, both τ+
ŷ

and τ++
ŷ

are solutions to the quadratic problem with
parameter c = (E[eX̄∞]/2E[e2X̄∞])eŷ . Thus, the left-hand side of the embedding equations
give the parameter value of c needed for τ+

ŷ
and τ++

ŷ
to solve the quadratic problem. From (4) we

deduce that the right-hand side of the embedding equations give the respective values E[eXτ+ŷ ]
and E[eXτ++

ŷ ]. This proves that, when ŷ solves as least one of the embedding equations, then
τ+
ŷ

and τ++
ŷ

respectively solve the variance problem.
Next, we investigate the existence of a solution to the embedding equation (10). First, note

that E[eX̄∞] ≤ E[e2X̄∞] and, thus, for y = 0, the left-hand side is less than or equal to 1
2 ,

whereas the right-hand side is 1. For y → ∞, the left-hand side increases continuously to ∞,
whereas the right-hand side converges to 0.

(a) As 0 is regular for (0,∞), then, by Lemma 1, the distribution of X̄∞ is continuous.
Hence, the right-hand side of (10) is also continuous and, hence, the embedding equation (10)
has a solution. As the distribution of X̄∞ is continuous, the embedding equations coincide
and, thus, they both have a solution. In the special case where X is a spectrally negative Lévy
process, we recall that X̄∞ is exponentially distributed with parameter φ(0) and, hence, the
result is straightforward.

(b) The left-hand side of the embedding equations are equal. As a function of y, the right-
hand side of (10) is left continuous, and the right-hand side of (11) is the right-continuous
version. Thus, if the right-hand side of (11) is smaller than the left-hand side of (11) for y = 0
then the embedding equations have no solutions. This corresponds to (12). The right-hand
sides of (10) and (11) have discontinuities only at points where the distribution of X̄∞ has
discontinuities. If X is not a compound Poisson process then 0 is the only discontinuity point
for the distribution of X̄∞ and, thus, if (12) does not hold then the embedding equations must
have a solution.

(c) Consider a τ ∈ T . If τ = ∞ a.s. then V[eXτ ] = 0. If P(τ < ∞) > 0 then E[eXτ ] > 0
and, thus,

V[eXτ ] < E[e2Xτ ] ≤ E[e2Xτ 1(τ<∞)] ≤ lim
t→∞ E[e2Xτ∧t ] = 1.

Next, recall thatψ(2) = 0 implies that e2Xt is a martingale and recall thatX is not deterministic.
Thus, V[eX1 ] > 0 and we obtain ψ(1) = log E[eX1 ] < 0. Therefore, V[eXt ] = eψ(2)t − eψ(1)t

→ 1 as t → ∞.

Remark 2. Let Yt = Xt + x be a Lévy process starting at x. Then, for any stopping time τ,

V[eYτ ] = V[eXτ+x] = e2x
V[eXτ ].

Therefore, a stopping time is optimal for the variance problem of process Y , if it is optimal for
the variance problem of processX. Whenever the variance problem forX is solved by a hitting
time, then so is the variance problem for Y . However, the stopping region will be shifted by
the starting value x.

Remark 3. When X is a spectrally negative process, it is usually possible to calculate φ(0)
and, therefore, we may determine the optimal stopping time for the quadratic problem given in
Theorem 1. Furthermore, as the distribution of X̄∞ is Exp(φ(0)), we can solve the embedding
equations and find a solution in order to determine the optimal stopping time for the variance
given in Theorem 2. However, if X is not spectrally negative, we need to determine E[eX̄∞]
and E[e2X̄∞] in order to apply Theorem 1, and to solve the embedding equations in order to
apply Theorem 2. These are, in most cases, impossible to calculate as the distribution of X̄∞
is often not known.
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Figure 1: The dotted lines indicate the (y, c) values for which τ+
y solves the quadratic problem with

parameter c, and the solid lines indicate the (y, c) values for which c = E[exp(Xτ+
y
)]. When the two

lines intersect, the y-value of the intersection gives a value for which τ+
y solves the variance problem.

Left: the Cramér–Lundberg process of Example 3 with α = 3, d = 4, and λ = 2. Right: The compound
Poisson process of Example 4 with p = 1

11 and α = log(2).

Example 3. Consider the negative Cramér–Lundberg Lévy process given in Example 1. Again,
assume that α > 2 + λ/d and recall the distribution of X̄∞ given in Example 1. For
y > 0, we compute E[eX̄∞ 1(X̄∞≥y)] = (α/λd)((β/(β − 1))e−(β−1)y) and write embedding
equation (10) as

e−βy = (2β − 1)2(β − 2)

4β(β − 1)2
. (13)

This equation has a solution, and it follows from Theorem 2 that the variance problem has
solutions τ+

ŷ
and τ++

ŷ
with ŷ solving (13). For example, if α = 3, λ = 2, and d = 4, then

ŷ = 2
5 log( 45

16 ) ≈ 0.413 630. See Figure 1.

Example 4. Consider the compound Poisson process given in Example 2 with p = 1
11 and

α = log(2). Recall from Section 2 that X̄∞ has a geometric distribution with P(X̄∞ ≥
k log(2))=( 1

10 )
k . Thus, the left-hand side of (12) equals 27

64 ,whereas the right-hand side equals
9

40 . As 9
40 <

27
64 , it follows that the embedding equations have no solution and, therefore,

Theorem 2 does not give a solution for the variance problem of this process. See Figure 1.

4. Randomized stopping

Theorem 2 only offers a solution to the variance problem if one of the embedding equations
has a solution. In this section we introduce randomized stopping in order to overcome this
problem. When the embedding equations have no solution, an immediate complication arises
because it is not easy to find a constant c and stopping time τ ∗ such that both (2) and (3) are
solved, and so the embedding method cannot be applied. By taking the supremum over a wider
class of stopping times we overcome this problem.

We introduce randomized stopping times for an optimal stopping problem by expanding the
filtration without removing the Markov property of the process. We create this expansion by
introducing a random variable U, which is defined on the same probability space as X, and
which is uniformly distributed on [0, 1] and independent of X. We note that this may require
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that we augment the probability space on whichX is defined. We then define the new filtration
(F̂t )t≥0 by F̂t = σ(U) ∨ Ft . We let T̂ be the set of stopping times with respect to the new
filtration F̂t , and we refer to these as randomized stopping times. Randomized stopping times
are discussed in a discrete-time setup in [9], where it was shown that the value function of
a classical optimal stopping problem does not change when randomized stopping times are
introduced. This result carries over to the quadratic problem, but it does not carry over to
the variance problem. The verification theorem in the proof of Theorem 1 is based on the
optional sampling theorem, and, hence, it also holds for a classical optimal stopping problem
with randomized stopping. This is due to the fact that the Lévy process remains a Markov
process with the augmented filtration. In particular, the stopping times of Theorem 1 also solve
the quadratic problem with randomized stopping.

Theorem 3. Let X be a Lévy process with ψ(2) < 0, and consider the quadratic optimal
stopping problem with randomized stopping. LetU be a random variable uniformly distributed
on [0, 1] and independent of X. Let yc = log(2cE[e2X̄∞]/E[eX̄∞]), p ∈ [0, 1], and Y =
1(U<p). Then τ ∗ = Yτ+

yc
+ (1 − Y )τ++

yc
is also an optimal stopping time.

Proof. The result follows from the facts that τ ∗ is a stopping time with respect to the
augmented filtration, and the expected gain at τ ∗ equals the expected gain at τ+

yc
and τ++

yc
.

By Remark 1, we see that, for some Lévy processes, τ+
y = τ++

y for all y ≥ 0 and the
stopping times τ ∗ in Theorem 3 do not introduce a new class of optimal stopping times for the
quadratic problem. However, if 0 is irregular for (0,∞) then, for some discontinuity points
y of the distribution of X̄∞, we have τ+

y < τ++
y . In this case the introduction of randomized

stopping times creates a new family of optimal stopping times for the quadratic problem such
that τ+

yc
≤ τ ∗ ≤ τ++

yc
. With the wider family of stopping times we can solve the variance

problem in all cases.

Theorem 4. Let X be a Lévy process with ψ(2) < 0.

(a) If at least one of the embedding equations (10) and (11) has a solution, then the optimal
stopping times given in Theorem 2 are also optimal for the variance problem with
randomized stopping.

(b) If the embedding equations (10) and (11) have no solutions, let

ŷ ≡ inf

{
y ≥ 0 : E[eX̄∞]

2E[e2X̄∞]ey >
E[eX̄∞ 1(X̄∞≥y)]

E[eX̄∞]
}
. (14)

Let U be uniformly distributed on [0, 1] and independent of X, and let Y = 1(U<p),
where

p = (E[eX̄∞]/2E[e2X̄∞])eŷ − E[eXτ++
ŷ ]

E[eXτ+ŷ ] − E[eXτ++
ŷ ]

. (15)

Then τ ∗ =Yτ+
ŷ

+ (1 − Y )τ++
ŷ

is optimal for the variance problem with randomized
stopping. Moreover, the distribution of X̄∞ has a discontinuity in ŷ, and if 0 is irregular
for (0,∞) and X is not a compound Poisson process, then ŷ = 0.

Proof. (a) The optimal stopping times given in Theorem 2 solve the corresponding problems
with randomized stopping. This result follows in the same way as in the proof of Theorem 2.
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(b) From the proof of Theorem 2(b), it follows that if the embedding equations (10) and (11)
have no solution, then the distribution of X̄∞ has a discontinuity in the value ŷ, defined in (14).
The inequality in (14) holds for every y > ŷ. Thus, from (7), it follows that

E[eX̄∞]
2E[e2X̄∞]ey > E[eXτ++

y ]

for every y > ŷ. As both sides are right-continuous in y and as the embedding equations have
no solution, then the same holds for y = ŷ. On the other hand, the inequality in (14) does not
hold for any y < ŷ. As E[exp(Xτ+

ŷ
)] is the left-continuous version of E[exp(Xτ++

ŷ
)] then

E[eX̄∞]
2E[e2X̄∞]eŷ ≤ E[eXτ+ŷ ].

Hence, p ∈ [0, 1] and it follows from Theorem 3 that τ ∗ is an optimal stopping time for the
quadratic problem with parameter c = (E[eX̄∞]/2E[e2X̄∞])eŷ . Then we need only to prove
that E[eXτ∗ ] = c:

E[eXτ∗ ] = pE[eXτ+ŷ ] + (1 − p)E[eXτ++
ŷ ]

=
(
(E[eX̄∞]/2E[e2X̄∞])eŷ − E[eXτ++

ŷ ]
E[eXτ+ŷ ] − E[eXτ++

ŷ ]

)
E[eXτ+ŷ ]

+
(

E[eXτ+ŷ ] − (E[eX̄∞]/2E[e2X̄∞])eŷ

E[eXτ+ŷ ] − E[eXτ++
ŷ ]

)
E[eXτ++

ŷ ]

= E[eX̄∞]
2E[e2X̄∞]eŷ

= c.

If the Lévy process is not a compound Poisson process then, by Lemma 1, the distribution
of X̄∞ has a discontinuity point only at 0. Therefore, ŷ = 0 and the optimal stopping time is a
combination of τ+

0 = 0 and τ++
0 .

Example 5. LetX denote the compound Poisson process considered in Example 4 withp = 1
11

andα = log(2). Recall that we cannot solve the variance problem for this process by Theorem 2.
From (15) we calculate p = 7

32 . Let Y be a random variable independent of X and with
P(Y = 1) = 1 − P(Y = 0) = p. By Theorem 4, it follows that τ ∗ = Yτ+

0 + (1 − Y )τ++
0 =

(1 − Y )τ++
0 is an optimal stopping time for the variance problem with randomized stopping.

See Figure 2. The variance for this stopping time is

V[eXτ∗ ] = pE[e2X
τ
+
0 ] + (1 − p)E[e2X

τ
++
0 ] − (pE[eXτ+0 ] + (1 − p)E[eXτ++

0 ])2 = 0.390 625.

We determine the best stopping time of the form τ+
y and τ++

y fory ≥ 0. It is sufficient to consider
stopping times of the form τ+

k log(2) for k ∈ N. For these, V[exp(Xτ+
k log(2)

)] = 0.4k − 0.04k .

Inspection of this function reveals that the maximal value is obtained for k = 1 with V[eXτ+log(2) ] =
0.36. This is a smaller variance than that obtained from our solution τ ∗ from Theorem 4.
However, the stopping time τ ∗ is not a stopping time with respect to the filtration generated
from X.
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Figure 2: An illustration of Example 5, with p = 1
11 and α = log(2). The dotted line indicates the (y, c)

values for which τ+
y and τ++

y solve the quadratic problem with parameter c, and the solid line indicates
the (y, c) values for c = E[exp(Xτ+

y
)]. The dashed line and the cross illustrate how, by randomizing

between τ+
0 and τ++

0 , we may obtain a (τ, c) such that both requirements are fulfilled.

5. The variance problem without randomized stopping revisited

As demonstrated in Example 2, the embedding equations do not always have a solution.
In this section we want to solve the variance problem without randomized stopping when the
embedding equations have no solution. At first, one may hope that some new approach reveals
an excess boundary solution for the variance problem when the embedding equations have no
solution. However, Theorem 5 below reveals that this is not possible.

Theorem 5. Let X be a Lévy process with ψ(2) < 0. Assume that the embedding equations
have no solution. Then the variance problem with randomized stopping does not have an
optimal stopping time of the form τ+

y or τ++
y for any y ∈ R.

Proof. Let τ ∗ be an optimal stopping time for the variance problem given in Theorem 4,
and let ŷ be as given by (14). It follows from (9) that for some τ to solve the variance problem,
we need E[eXτ ] = E[eXτ∗ ]. However, from the proof of Theorem 4, it follows that

E[eXτ∗ ] = E[eX̄∞]
2E[e2X̄∞]eŷ and E[eXτ+ŷ ] > E[eX̄∞]

2E[e2X̄∞]eŷ > E[eXτ++
ŷ ].

The inequalities are strict because the embedding equations have no solution. From (4) and (7),

it follows that E[eXτ∗ ] �= E[eXτ+y ] and E[eXτ∗ ] �= E[eXτ++
y ] for all y. Thus, there will not be

any solutions of the form τ+
y or τ++

y for y ∈ R.

5.1. Compound Poisson processes

LetX be a compound Poisson process with jump intensity λ. That is, the Poisson processN
that counts the number of jumps has parameter λ. Assume that the embedding equations have
no solution, and consider the optimal stopping time of the variance problem with randomized
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stopping, given in Theorem 4. From Theorem 6 below, it follows that one may mimic τ ∗ by a
stopping time in T . The idea of the proof is based on the observation that F contains information
about the process N , and N is independent of both Xτ+

ŷ
and Xτ++

ŷ
. Hence, we may use

the process N to choose between the two stopping times τ+
y and τ++

y instead of using the
random variable Y .

Theorem 6. Let X be a compound Poisson process with ψ(2) < 0 and jump intensity λ > 0.
Let T be the first jump time of X. Assume that the embedding equations have no solution, and
let ŷ and p be given as in Theorem 4. Then

τ̃ ∗ = Ỹ τ̃+
ŷ

+ (1 − Ỹ )τ++
ŷ

is an optimal stopping time of the variance problem without randomized stopping where
τ̃+
ŷ

= t0 ∨ τ+
ŷ

, t0 = (−1/λ) log(p), and Ỹ = 1(t0<T ).

Proof. First note that τ ∗ is a stopping time of T . For every t < t0, we have

{τ̃ ∗ ≤ t} = {τ̃+
ŷ

≤ t, Ỹ = 1} ∪ {τ++
ŷ

≤ t, Ỹ = 0} = {τ++
ŷ

≤ t, Ỹ = 0} = {τ++
ŷ

≤ t} ∈ Ft ,

and, for t ≥ t0,

{τ̃ ∗ ≤ t} = ({τ+
ŷ

∨ t0 ≤ t} ∩ {Ỹ = 1}) ∪ ({τ++
ŷ

≤ t} ∩ {Ỹ = 0}) ∈ Ft .

Thus, τ ∗ ∈ T .
Recall that, on the event {Ỹ = 1}, Xτ̃+

ŷ
and Xτ+

ŷ
have the same distribution. Let τ ∗ be the

optimal randomized stopping time given in Theorem 4(b). Then, for β = 1, 2, we have

E[eβXτ̃∗ ] = pE[eβXτ̃+ŷ | Ỹ = 1] + (1 − p)E[eβXτ++
ŷ | Ỹ = 0]

= pE[eβXτ+ŷ | Ỹ = 1] + (1 − p)E[eβXτ++
ŷ | Ỹ = 0]

= pE[eβXτ+ŷ ] + (1 − p)E[eβXτ++
ŷ ]

= E[eβXτ∗ ].
Hence, we see that V[eXτ̃∗ ] = V[eXτ∗ ] and we conclude that τ̃ ∗ is an optimal stopping time of
the variance problem without randomized stopping.

Example 6. Let X denote the compound Poisson process considered in Example 4, with
p = 1

11 and α = log(2). Recall that, for this process, we cannot use Theorem 2 to solve
the variance problem. Using Theorem 4, we obtain a randomized solution, τ ∗, and we have
seen that no stopping time of the form τ+

y or τ++
y gives as high a variance as τ ∗. However,

by the use of Theorem 6, we may actually find a stopping time of T , giving the same
variance as the randomized solution τ ∗. Let Ỹ = 1{Nt0 =0} and t0 = − log( 25

32 ), and define
τ̃ ∗ = Ỹ t0 + (1 − Ỹ )τ++

0 . Then it follows that τ̃ ∗ ∈ T and τ̃ ∗ solve the variance problem
without randomized stopping with as high a variance as that obtained by using τ ∗.

5.2. Lévy processes which are not compound Poisson processes

In this section we consider Lévy processes of bounded variation with ψ(2) < 0 which are
not compound Poisson processes.

https://doi.org/10.1239/aap/1427814584 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814584


Variance optimal stopping 141

Theorem 7. Let X be a Lévy process of bounded variation with ψ(2) < 0 which is not a
compound Poisson process, and letd denote the drift ofX. Assume that the embedding equations
have no solution. Let τ ∗ ∈ T̂ be the randomized optimal stopping time given in Theorem 4.
Then V[eXτ ] < V[eXτ∗ ] for all τ ∈ T .

(a) If Xt − dt is not a compound Poisson process then supτ∈T V[eXτ ] = V[eXτ∗ ].
(b) If Xt − dt is a compound Poisson process then supτ∈T V[eXτ ] < V[eXτ∗ ].
Proof. For τ = 0,we have the inequality V[eXτ ] < V[eXτ∗ ], and, by Blumenthal’s 0–1 law,

it is enough to consider τ > 0 in T . Assume that V[eXτ ] = V[eXτ∗ ]. It follows from Theorem 4
that ŷ = 0, and from (8) and (9) that τ solves the quadratic problem with parameter E[eXτ∗ ] and
E[eXτ ] = E[eXτ∗ ]. By Lemma 2 we obtain τ ≥ τ++

0 and, hence, E[eXτ ] ≤ E[exp(Xτ++
0
)], as

eXt is a supermartingale. However, from the proof ofTheorem 5, it follows that E[exp(Xτ++
0
)] <

E[eXτ∗ ]. Therefore, E[eXτ ] < E[eXτ∗ ] and we cannot have V[eXτ ] = V[eXτ∗ ].
(a) Let αqt be the q-fractile of Xt . That is, αqt = inf{α ∈ R : P(Xt ≤ α) > q}. It follows

from [8, Theorem 27.4] that the distribution of Xt is continuous and, hence, for every t > 0
and q ∈ (0, 1), we have P(Xt ≤ α

q
t ) = P(Xt < α

q
t ) = q.

Next, we choose a sequence of stopping times, (τn)n∈N ⊂ T , in the following way:

τn = inf

{
t >

1

n

∣∣∣∣ Xt > 0

}
1
(X1/n∈(α(1−p)/2

1/n , α
(1+p)/2
1/n ))

+1

n
1
(X1/n /∈(α(1−p)/2

1/n , α
(1+p)/2
1/n ))

.

That is, if the process at time 1/n is not between the fractiles α(1−p)/2
1/n and α(1+p)/2

1/n , then the
process is stopped. On the other hand, if the process at time 1/n is between the two fractiles
then the process is stopped at the first time after 1/n when it gets above 0. We show that the
variance at the stopping time τn approximates the variance at the randomized stopping time
given in Theorem 4.

It holds that

E[eXτn 1
(X1/n /∈(α(1−p)/2

1/n ,α
(1+p)/2
1/n ))

] = E[eX1/n ] − E[eX1/n 1
(X1/n∈(α(1−p)/2

1/n ,α
(1+p)/2
1/n ))

]

is bounded from below by

E[eX1/n ] − eα
(1+p)/2
1/n P(X1/n ∈ (α(1−p)/2

1/n , α
(1+p)/2
1/n )) = E[eX1/n ] − eα

(1+p)/2
1/n p,

and from above by

E[eX1/n ] − eα
(1−p)/2
1/n P(X1/n ∈ (α(1−p)/2

1/n , α
(1+p)/2
1/n )) = E[eX1/n ] − eα

(1−p)/2
1/n p.

As E[eX1/n ] converges to 1 as n tends to ∞ and as Xt converges to 0 in probability as t
converges to 0, it follows that both α(1−p)/2

1/n and α(1+p)/2
1/n converge to 0 as n tends to ∞.Hence,

E[eXτn 1
(X1/n /∈(α(1−p)/2

1/n ,α
(1+p)/2
1/n ))

] converges to 1 − p as n tends to ∞.

Next, let H(x) = Ex[eXτ++
0 ]. Then

E[eXτn 1
(X1/n∈(α(1−p)/2

1/n ,α
(1+p)/2
1/n ))

] = E[H(X1/n) 1
(X1/n∈(α(1−p)/2

1/n ,α
(1+p)/2
1/n ))

]. (16)

We claim that, for every q ∈ (0, 1), there exists some tq > 0 such that, for t < tq, we have
α
q
t ≤ 0. We prove the statement by contradiction. Thus, assume that there exists a q ∈ (0, 1)
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and a sequence tn → 0 such that, for every n, αqtn > 0. Then

P(lim sup
n→∞

Xtn > 0) = lim
n→∞ P

( ∞⋃
k=n

{Xtk > 0}
)

≥ lim
n→∞(1 − q) = 1 − q.

However, this is in contradiction to 0 being irregular for (0,∞). As H is nondecreasing, we
conclude that (16) is bounded from below by

E[H(α(1−p)/2
1/n ) 1

(X1/n∈(α(1−p)/2
1/n ,α

(1+p)/2
1/n ))

] = H(α
(1−p)/2
1/n )p,

and from above by

E[H(α(1+p)/2
1/n ) 1

(X1/n∈(α(1−p)/2
1/n ,α

(1+p)/2
1/n ))

] = H(α
(1+p)/2
1/n )p.

Both terms converge to H(0)p as n tends to ∞. Since it follows from (4) that H is continuous
and increasing on (−∞, 0], and since there exist some tq > 0 such that, for t < tq, we
have αqt ≤ 0. Therefore, E[eXτn 1

(X1/n∈(α(1−p)/2
1/n ,α

(1+p)/2
1/n ))

] converges toH(0)p as n tends to ∞.

Taken together, these results imply that, when n tends to ∞,

E[eXτn ] → (1 − p)+H(0)p = (1 − p)E[eXτ+0 ] + pE[eXτ++
0 ] = E[eXτ∗ ].

Similarly, it follows that E[e2Xτn ] → E[e2Xτ∗ ], and hence, V[eXτn ] → V[eXτ∗ ].
(b) We prove the statement by contradiction. Assume that there exists a sequence, (τn)n∈N ⊂

T such that limn→∞ V[eXτn ] = V[eXτ∗ ]. The proof is quite lengthy and, therefore, is broken
into parts to clarify the structure.

Part (i). It follows from (9) that limn→∞ E[eXτn ] = E[eXτ∗ ] = c. Let τ ∈ T and y < 0 be
given. Then

E[eXτ ] = E[eXτ 1(τ<τ++
0 ) 1(Xτ>y)] + E[eXτ 1(τ<τ++

0 ) 1(Xτ≤y)] + E[eXτ 1(τ≥τ++
0 )]

≤ P(τ < τ++
0 , Xτ > y)+ ey + E[eXτ 1(τ≥τ++

0 )]
≤ P(τ < τ++

0 , Xτ > y)+ ey + E[eXτ++
0 ].

Thus, to obtain limn→∞ E[eXτn ] = c, then, for any ε > 0 and y < 0, we need, for large
enough n, P(τn < τ++

0 , Xτn > y)+ ey − (c− E[exp(Xτ++
0
)]) ≥ −ε. AsX is not a compound

Poisson process, it follows from Theorem 4 that ŷ = 0. Thus, E[exp(Xτ++
0
)] < c, and we may

choose ε and y small enough that (c − E[exp(Xτ++
0
)])− ε − ey > 0. We conclude that there

exists p > 0, y < 0, and N ∈ N such that for all n > N ,

P(τn < τ++
0 , Xτn > y) ≥ p. (17)

Part (ii). Let T denote the first jump time of the process. Assume that P(τ < T ) > 0 for
some τ ∈ T . With t∗ as in Lemma 3(a) below, it follows that

E[eXτ ] = E[eXτ 1(T≤t∗)] + E[eXτ 1(T >t∗)] = E[eXτ 1(T≤t∗)] + e−dt∗
P(T > t∗) ≥ e−(d+λ)t∗ .

Now, for each n, where P(τn < T ) > 0, let t∗n be as in Lemma 3. If there are infinitely
many such n then to have limn→∞ E[eXτn ] = c, it must hold that, for any ε > 0 then for
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large enough n, E[eXτn ] < c + ε and, thus, e−(d+λ)t∗n < c+ ε. Hence, we need, from a certain
step, t∗n ≥ − log(c + ε)/(d + λ). By Lemma 3(b), it follows that if P(τn < T ) > 0 then
P(τn < T , τn < t∗n ) = 0. Therefore, for large enough n, it must hold that

P

(
τn < T, Xτn >

log(c + ε)d

d + λ

)
= P

(
τn < T, τn <

log(c + ε)

d + λ

)

≤ P(τn < T , τn < t∗n )
= 0.

Let u1 = log(c + ε)d/(d + λ). Note that d < 0, as 0 would be regular for (0,∞) otherwise.
Hence, there exist u1 < 0 and N ∈ N, such that for all n > N ,

P(τn < T , Xτn > u1) = 0. (18)

Part (iii). Let Y = sup{Xt | t ∈ [T , τ++
0 )} 1(T <τ++

0 ). We want to show that Y < 0 a.s. Let
Tn = inf{t > T : Xt > −1/n}. Note that this is an increasing sequence of stopping times
bounded by τ++

0 . Hence, the sequence of stopping times will a.s. converge to some random
time T̃ , with T̃ ≤ τ++

0 a.s. From the quasi-left-continuity we obtain X
T̃

= limn→∞XTn ≥
limn→∞(−1/n) = 0 and, hence, T̃ = σ+

0 . It then follows that

P(Y = 0) = P(Tn < τ++
0 for all n ∈ N)

= P(XTn < 0 for all n)

≤ P(X
T̃

= 0)

= P(Xσ+
0

= 0)

= 0.

Hence, there exist some u2 < 0 such that P(Y > u2) <
1
2p, and this implies that, for all p > 0,

there exist u2 < 0 and N ∈ N such that for all n > N,

P(τn ∈ [T , τ++
0 ), Xτn > u2) <

1
2p. (19)

Part (iv). Combining (18) and (19) we obtain, with u = max{u1, u2},
P(τn < τ++

0 , Xτn > u) = P(τn ∈ [T , τ++
0 ), Xτn > u)+ P(τn < T , Xτn > u)) < 1

2p.

Combining this with (17) it follow that, for all p > 0, there exist y, u < 0 and N ∈ N such
that for all n > N,

P(τn < τ++
0 , Xτn ∈ (y, u]) > 1

2p. (20)

Part (v). First, we recall from the proof of Theorem 1 that

G(x) = v∗(x)− e2x

E[e2X̄∞] (e
−x

E[eX̄∞ 1(X̄∞<−x)] − E[e2X̄∞ 1(X̄∞<−x)]).

Define

D(x1, x2) = e2x1

E[e2X̄∞] (e
−x2E[eX̄∞ 1(X̄∞<−x2)

] − E[e2X̄∞ 1(X̄∞<−x2)
]),
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and note that when x1, x2 ∈ (y, u],

D(x1, x2) ≥ D(y, u) ≥ ey

E[e2X̄∞] (e
−u − 1)P(X̄∞ = 0) > 0. (21)

Therefore, it follows that, for every τ ∈ T ,

E[(eXτ − c)2 1(τ<τ++
0 ,Xτ∈(y,u])]

= E[G(Xτ ) 1(τ<τ++
0 ,Xτ∈(y,u])]

= E[(v∗(Xτ )−D(Xτ ,Xτ )) 1(τ<τ++
0 ,Xτ∈(y,u])]

≤ E[(v∗(Xτ )−D(y, u)) 1(τ<τ++
0 ,Xτ∈(y,u])]

= E[v∗(Xτ ) 1(τ<τ++
0 ,Xτ∈(y,u])] −D(y, u)P(τ < τ++

0 , Xτ ∈ (y, u])
≤ E[G(Xτ++

0
) 1(τ<τ++

0 ,Xτ∈(y,u])] −D(y, u) 1
2p.

Hence, we obtain

V[eXτ ] = E[(eXτ − c)2] − (c − E[eXτ ])2
= E[(eXτ − c)2 1(τ<τ++

0 ,Xτ∈(y,u])]
+ E[(eXτ − c)2 1({τ≥τ++

0 }∪{Xτ /∈(y,u]})] − (c − E[eXτ ])2

≤ E[(eXτ++
0 − c)2 1(τ<τ++

0 ,Xτ∈(y,u])] −D(y, u) 1
2p

+ E[(eXτ − c)2 1({τ≥τ++
0 }∪{Xτ /∈(y,u]})] − (c − E[eXτ ])2

= E[(eXτ̂ − c)2)] −D(y, u) 1
2p − (c − E[eXτ ])2

≤ V[eXτ++
0 ] −D(y, u) 1

2p,

where τ̂ = τ 1(τ<τ++
0 ,Xτ∈(y,u])+τ++

0 1({τ≥τ++
0 }∪{Xτ /∈(y,u]}). We conclude that

sup
τ∈T ∗

V[eXτ ] ≤ V[eXτ++
0 ] −D(y, u) 1

2p,

where y and u are as given in (17) and (20). From (21) we haveD(y, u) > 0; thus, the statement
of the theorem follows. This completes the proof of Theorem 7.

The following lemma, used in the proof of Theorem 7, is intuitive. Before the first jump of a
compound Poison process, the process has not created any other information than the fact that
there have been no jumps. Hence, if a stopping time with respect to F has a positive probability
of stopping before the first jump then, given that the stopping time occurs before the first jump,
it is deterministic.

The lemma is the key reason why there is a gap between the variances at the stopping times
of the solutions to the variance problem with and without randomized stopping, and that is the
reason we have included a proof of it.

Lemma 3. LetX be a compound Poisson process with negative drift. LetT denote the first jump
time of the process, let τ be a stopping time with respect to F , and assume that P(τ < T ) > 0.
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Then there exists some t∗ ≥ 0 such that

(a) {T > t∗} ∩ {τ = t∗} = {T > t∗} a.s.,

(b) {T > τ } ∩ {τ = t∗} = {T > τ } a.s.

Proof. (a) Let F ∗
t = σ(Xs | s ∈ [0, t]). Then all sets in F ∗

t will either contain {T > t}
or be contained in {T > t}c. As τ is a stopping time with respect to F , then, for every
t ≥ 0, {τ ≤ t} is a.s equal to some set which is measurable with respect to F ∗

t . Thus, for all
t ≥ 0, it follows that {T > t} ∩ {τ ≤ t} = {T > t} a.s. or {T > t} ∩ {τ ≤ t} = ∅ a.s. As
P(τ < T ) > 0, we cannot have {T > t} ∩ {τ ≤ t} = ∅ a.s. for all t ≥ 0. Hence, we define
t∗ = inf{t ≥ 0 : {T > t}∩{τ ≤ t} = {T > t} a.s.} and there exists a sequence tn ↓ t∗ such that
{T > tn} ∩ {τ ≤ tn} = {T > tn} a.s. for every n. Hence, it follows that {T > t∗} ∩ {τ ≤ t∗} ⊇⋂∞
k=1({τ ≤ tk} ∩ {T > tk}) = {T > t∗} a.s Thus, we obtain {T > t∗} ∩ {τ ≤ t∗} = {T > t∗}

a.s. Besides, {T > t∗} ∩ {τ < t∗} ⊆ ⋃∞
n=1({T > t∗} ∩ {τ ≤ t∗ − 1/n}) = ∅ a.s. and part (a)

follows.
(b) Define a new process Yt = Xτ+t − Xτ , and let T Y denote the time of the first jump

of Y . Thus, if T > τ then T = T Y + τ . Note that P(T Y > t∗) > 0 because Y has the same
distribution as X. As T Y is independent of Fτ and using part (a), we find that

P(τ < T , τ �= t∗)P(T Y > t∗) = P(τ < T , τ �= t∗, T Y > t∗)
= P(τ < T , τ �= t∗, T > t∗ + τ)

= P(τ < T , τ �= t∗, T > t∗ + τ, τ = t∗)
= 0.

It must therefore hold that P(τ < T , τ �= t∗) = 0 and, thus, part (b) follows.

Example 7. In this example we show that there exist compound Poisson processes with
negative drift and ψ(2) < 0 for which the embedding equations have no solution. Let X
be the compound Poisson process of Example 4 with p = 1

11 and α = log(2). For this process,
we haveψ(2) < 0 and the embedding equations have no solution. We define compound Poisson
processes with negative drift by Yt = Xt − dt , where d > 0 is a constant. Then Y also has
ψ(2) < 0. When d converges to 0, then Y converges a.s. to X dominated by X. Therefore, by
choosing sufficiently small d , the embedding equations for Y also have no solution.
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