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Abstract. We give explicit examples of asymmetric Riemann surfaces (that is,
Riemann surfaces with trivial conformal automorphism group) for all genera g a 3 . The
technique uses Schreier coset diagrams to construct torsion-free subgroups in groups of
signature (0; 2,3, r) for certain values of r.

1. Introduction. Suppose F is a co-compact Fuchsian group acting properly
discontinuously on the hyperbolic plane H2. The group F then has a presentation

(au bu..., ag, bg,xu... ,xs \ x?> = . . . =x?' = f[ x,,f[ [ay, bj\ = 1),
/=i ;=i

which is encapsulated by its signature (g;mi,m2,.. . ,ms), where g is the genus of the
surface H2/r and mum2,... ,ms are the orders of the maximal finite subgroups in F. In
the case where g = 0 and s = 3, F is called a triangle group. The hyperbolic area of a
fundamental region for the action of F on HI2 is proportional to

where, necessarily, /n(F)>0.
If F is torsion-free, so that it acts freely on H2 and has signature (g;—), then

5 = H2/F is a Riemann surface of genus g a 2. Its group of conformal automorphisms
Aut(5) is isomorphic to N(T)/T, where N(T) is the normaliser of F in PSL(2, R), the
orientation preserving conformal isometry group of the hyperbolic plane. In this paper we
construct Riemann surfaces S for all genera g s 3 where Aut(5) is trivial, by searching for
appropriate F amongst the subgroups of certain triangle groups. It is worth recalling that
any genus 2 surface, being hyperelliptic, admits a conformal involution. In [2], an infinite
family of such surfaces is constructed, although the set of genera not accounted for is also
infinite.

2. Coset diagrams for triangle groups. Consider the triangle group A = &(p,q,r)
having signature (0;p,q,r) and presentation

(xi, x2, x31 x? = xl = xri = x^Xj = 1) a <x, y \ x" = y" = (xy)r = 1).

If F is a subgroup of finite index n in A then the action of the triangle group on the right
cosets of F induces a homomorphism 9: A-» Sn = Sym{l, 2 , . . . , «} . By theorem 1 of [3], F
will be torsion-free when 0{x), Q(y) and 6{xy) are regular permutations—that is, they are
composed entirely of p-cycles, ^-cycles and r-cycles respectively. At this stage, we just
insist that 6{y) is regular. We then depict this representation using a (slightly simplified)
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Schreier coset diagram D: for each g-cycle in 0(y) draw a shaded <?-gon, labelling its
vertices in an anticlockwise direction with the points from the cycle; for each point
i e {1,2, . . . , n) and its image / under 6(x), draw a directed arc running from i to / (except
for those i fixed by 6{x) which are left unconnected by arcs).

On the other hand, suppose D is some diagram composed of n vertices grouped into
shaded q-gons, and such that each vertex is incident with either no directed arcs or
precisely two—one incoming and the other outgoing. The arcs and <7-gons induce
permutations a, j8 e Sn according to the above scheme. These permutations are unique up
to relabelling of the vertices and satisfy ap = /39 = (a/3)r = 1, where p and r are the orders
of the permutations a and a/3. Hence we define a homomorphism 0:A = A(p,q,r)—*Sn

by 6(x) = a and 9( v) = /3, and refer to D as a diagram for A. If k e {1,2, . . . ,«}, and Gk

is the stabiliser in G = (d(x), 0(y)) of k, then d~\Gk) is a subgroup Tk of index n in A.
For different vertex labellings and different k the subgroups Tk are conjugate in A, so
without loss of generality we simply refer to the subgroup T arising from D. By
construction, the permutation 9(y) is regular, and if 6(x) and 6{xy) are also regular, then
r is torsion-free (again by [3]).

The relations xp = yq = (xy)r = 1 induce a natural embedding of a diagram D into an
orientable surface by defining the faces of the embedding to be the cycles of 8(x), 0(y)
and 6(xy), ignoring repetitions. By Theorem 2 of [4], the genus of this embedding
coincides with the genus of S = H2/r, where T is the group arising from D. We can thus
compute the genus of this surface either by using the Riemann-Hurwitz formula
n/i(A) = fi(T) (where n is the number of vertices of D and hence the index of T in A) or
by taking an Euler count on the vertices, g-gonal sides, arcs and faces of D. Note that
taking a face of the third kind—that is, one that is unshaded and not the interior of an
x-cycle—and counting the number of <?-gonal sides adjacent to it gives the length of a
cycle of 6{xy). Hence, for the group T arising from D to be torsion-free, this count must
be r for each such face of the embedding.

A family of examples, D'm, m ^ 4 , o n 12m vertices and where the embedding is planar
is illustrated in Figure 1—in fact the diagrams we shall use for our construction (where for
transpositions in 6m(x) we have replaced the two arcs running between a pair of vertices
by a single undirected edge). Counting the number of triangular sides adjacent to the two
unshaded faces we see that 6m{xy) is composed of two cycles of length 6 m , m s 4 . Clearly
0m(x) and 6m{y) have orders two and three respectively, so that the group Fm arising
from Dm has index Ylm in the triangle group A(2,3,6m), m £ 4 . Note that Fm is not
torsion-free in this case, having signature (0; 24m).

A A A A —- A A

A A A A —- A A
Figure 1.
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An automorphism of a coset diagram D for some A is a permutation a E Sn of its
vertices such that cr9(x) = 6{x)a and aO{y) = 9(y)a. The automorphisms form a group
under composition, Aut(D), which is then the centraliser in Sn of G = (0(JC), 6(y)).
Observe that <r is uniquely determined by its effect on a vertex of D, so that in particular,
if cr fixes a vertex it must be the identity permutation. By Theorem 2.5 of [6] and
Theorem 1 of [4], Aut(D) is isomorphic to N^(T)/T, where NJJ*) is the normaliser in A of
the group T arising from D. Hence, Aut(D) acts as a group of conformal automorphisms
of the Riemann surface 5 = H2/r, but of course in general, it will be a subgroup of the full
automorphism group Aut(S). We are interested in when the two coincide.

Suppose that A is non-arithmetic and maximal, in the sense that it is not properly
contained in any triangle group. If T is a subgroup of finite index in A and g e N(T), the
normaliser in PSL(2, R) of T, then g is contained in the commensurator of T,
Comm(r) = {g E PGL(2, R) | T.g^Tg commensurable}—where two Fuchsian groups are
commensurable if their intersection has finite index in both. Since Comm(F) is contained
in Comm(A), we have g e Comm(A). By a theorem of Margulis [1], and since A is
non-arithmetic, Comm(A) contains A as a subgroup of finite index. An elementary area
calculation using the Riemann-Hurwitz formula gives that Comm(A) is also a triangle
group, and hence by maximality Comm(A) = A. Thus, g E A and so N(T)/T = NA(F)/F,
that is, Aut(S) = Aut(D).

Finally, we describe a method for combining diagrams to obtain new ones. Suppose
Dl and D2 are diagrams for the same triangle group L(p,q,r), where the groups Yx and
F2 arising from them have index Mj and n2 in A respectively. A f-handle [u,v], is a pair
of vertices u and v such that #,(*):U->M, 6J(X):V->V and 6i(xy)':u-*v, i = l or 2.
Suppose that between them, the diagrams Dj and D2 contain the p f-handles
[«iiVi],, [U2,V2],,. .. ,[UP,VP],. The composition of Dx and D2 is then the diagram D
obtained by connecting Dx and D2 with the two p-cycles («[, u2,..., up) and
(vuvp,... ,v2): that is, drawing directed arcs from vertex ux to u2, u2 to M 3 , . . . ,up to
uu t>i to Up, vp to u p _ i , . . . , and v2 to i^.

Clearly, the permutations a and )3 arising from D are elements of Srtl+n2, with /3
composed entirely of q -cycles and a having order p. A cycle of a/3 that does not pass
through any of the vertices M, and u, is unaffected by composition (up to the obvious
relabelling of the vertices of one of the diagrams). If («,-, witU wi<2,..., wit,-\, vh wi<t+u...)
and (M/+1,ivI+lil,wI+lf2i,...)»v1+li,_i,u1+1,»v,+1,,+1,...) are the cycles in a/3 that pass
through the handles [«,, vt] and [uI+1,u1+1] respectively before composition, then after, the
first becomes (u,,wl+ul, wI+1>2,... ,w,+u-uVi,wltt+u...), again, up to relabelling. Thus,
for all i, the lengths of these cycles is unchanged, and so a/3 has order r. We define 8 in
the usual way, giving that D is also a diagram for A(p,q,r) with the resulting group T
having index n^ + n2 in A.

3. The construction. Consider the diagrams Dm for A(2,3,6m), m s 4, illustrated in
Figure 1. By [5], the triangle group A(2,3, r) is arithmetic exactly when r = 7, 8, 9,10,11,
12, 14 and 18, and a simple area calculation gives that A(2,3, r) is maximal for all r. We
observed in the previous section that 9m(xy) is composed of two cycles of length 6m while
6m(y) is obviously composed of 4m 3-cycles. Thus, both 9m(y) and 6m{xy) are regular
permutations.

The vertices ax,a2,... ,0-^ and dud2,... ,d.2m can be grouped into the 2-handles
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[a\,a2]2, [a3,a4h,- • • ,[a2m-ua2n,]2, [dud2]2, [di,dA]2,... ,[d7m-\,d2m\i- Since 6m{x) has
order two in this case, a single composition requires just two of these 2-handles. Perform
2m such compositions on Dm by joining the 2-handle [a,, a,+i]2 to the 2-handle
[d,+2, d,+3]2, where subscripts are taken modulo 2m. Alternatively, we achieve the same
result by considering the handles [aua2m-2\Am-(>, [a2,azm-^m-xo,• • •, [am-uam]2 and
joining them to the handles [d3, d^]^^, [^.^-m-ikm-io,-.. ,[dm+udm+2]2, respec-
tively; (this observation will become useful shortly). Call the resulting diagrams D'm.
Notice that after these compositions, the resulting 9'(x) is composed entirely of
transpositions, and so is a regular permutation. Thus, the groups T'm, m ^ 4 , arising from
the D'm are torsion-free in A(2,3,6m). These diagrams have 12m vertices, 12m triangular
sides, 6m edges, 4m shaded faces and 2 unshaded faces. An Euler count thus gives
2 - 2g = 12m - 12m - 6m + 4m + 2 = -2m + 2 =>g = m, m > 4.

Now, chasing a path around the diagram through the handles [ax, a^^im-t and
[^3, d2m\nm-(n we see that the element 6'((xy)4m~6(xy2ym~6) fixes the vertices flzm-2 and
d2m. Moreover, a careful but routine examination of the cycles in Q'(xy) and d'(xy2)
reveals that these are the only two vertices fixed by this element (essentially since 4m — 6
is the largest t for which Dm contains a r-handle, the handles [au 0^-2^-6 and
[d3, d2m]4m-6 being the only two such examples.) Thus, since any a e Aut(D^) centralises
e'((xy)Am-6(xy2)4m~6), it must either stabilise both tf;>m-2 and d^, or transpose them.
Notice that the vertex in D'm marked <8> and the vertex dx are the images of a2m-2 and d^
respectively under 6'(y2xy2xyx). Hence if (a2m-2,d2m) is a transposition in <r, then so is
(<8>, d^). But (fl2m-2> ̂ 2m) is a transposition in 6'(x) while (®, dx) is not, and so a does not
commute with d'(x), giving that cr must fix both 0^-2 and d2m, and is the identity. Thus,
Aut(D^)s Aut (H 2 /O is trivial.

Finally (and somewhat unfortunately) the case g = 3 is handled separately using the
diagram D in Figure 2. Chasing the action of 6(xy), it is easy to see that D is a diagram
for A(2,6,9) where 6(y) and 9{xy) are regular permutations. Also, A(2,6,9) is
non-arithmetic ([5]) and maximal. Composing the 2-handles [aua2]2 and [03,04)2 as well
as the pair [a5,fl6]2 and [fl7,a8]2 yields £>', in which the resulting 6 (x) is also regular. An
Euler count gives that HP/F has genus 3, and a simple calculation using the group theory
package MAGMA evaluates the order of the centraliser in 5i8 of (8'(x), d'(y)) (being
trivial).

Figure 2.
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