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Abstract. We explore a Boltzmann scheme for studying the evolution of compact binary popu-
lations in globular clusters. We include processes of compact binary formation by tidal capture
and exchange encounters, binary destruction by exchange and dissociation mechanisms and bi-
nary hardening by encounters, gravitational radiation and magnetic braking, as also the orbital
evolution during mass transfer, following Roche lobe contact. From the evolution of compact-
binary population, we investigate the dependence of the model number of X-ray binaries NX B

on two essential cluster properties, namely, the star-star and star-binary encounter-rate param-
eters Γ and γ (Verbunt parameters). We find that the values of NX B and their expected scaling
with the Verbunt parameters are in good agreement with results from recent X-ray observations
of Galactic globular clusters.
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1. Introduction
In this era of high-resolution X-ray observations with Chandra and XMM-Newton,

studies of compact binaries in globular clusters (henceforth GC) have reached an unprece-
dented level of richness and detail, so that such observational studies can be compared
with results obtained from theoretical modeling of binary dynamics in globular clusters
(see Hut et al. (1992) for a review). In this study, we introduce a method for studying
the evolution of compact binaries in GCs wherein we use a Boltzmann equation to trace
the time evolution of such populations. We emphasize that the formalism we describe is
not a Fokker-Planck description but the original Boltzmann one, which in principle is
capable of handling both the combined small effects of a large number of frequent, weak,
distant encounters and the individual large effects of a small number of rare, strong, close
encounters.

The dynamical properties of a GC core with mean density ρ, velocity dispersion vc

and core radius rc can be described by the two quantities Γ ≡ (ρ2/vc)r3
c and γ ≡ ρ/vc as

pointed out by Verbunt (2002), which we shall refer to as Verbunt parameters hereafter.
Γ is a measure the total two-body encounter rate within a GC core and γ measures the
rate of encounter of a single binary with the surrounding stars (Verbunt 2002). If the GC
core is assumed to be virialized (vc ∝ ρ1/2rc), the specification of these two quantities
uniquely determines ρ, rc and vc .

A dynamically formed compact binary between a non-degenerate star and a compact
star may in general be detached and becomes an X-ray binary (henceforth XB) after the
non-degenerate companion fills its Roche-lobe through evolution of the binary. Evolution
of such pre X-ray binaries (henceforth PXB) is governed by orbital angular momentum
loss and stellar evolution of the companion. In this study, we focus on the evolution of
compact binary population in both the XB and PXB phase using our Boltzmann scheme,
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with particular attention to (a) period distribution of XBs and (b) number of XBs, which
we relate to observations.

2. Model of compact binary population evolution in globular clusters
We consider a binary population described by a number distribution n(a, t), where

a is the binary separation, interacting with a unevolving uniform background of stars
representing the core of a globular cluster consisting equal mass stars of m+f = 0.6M�,
a fraction kX of compact stars of mX = 1.4M� and a fraction kb of primordial binary
fraction. n(a, t) is defined such that n(a, t)da is the total number of compact binaries in
the core within the radius interval a to a + da.

2.1. A Boltzmann evolutionary scheme
We explore a Boltzmann evolutionary scheme, wherein the evolution of n(a, t) is described
by the collisional Boltzmann equation (Spitzer 1987):

∂n

∂t
= R(a) − nD(a) − ∂n

∂a
f(a), (2.1)

where R(a) is the total formation rate with the GC core, per unit a, of compact binaries
with radius a, D(a) is the destruction rate per binary of compact binaries of radius a and
f(a) ≡ da/dt is the total orbital evolution rate of the compact binaries (see Sec. 2.4).
Eqn. (2.1) is the governing evolution equation a of compact binary population in an
unevolving GC core (see Banerjee & Ghosh (2007) for derivation).

2.2. Compact binary formation processes
A compact binary can be formed by (a) tidal capture (tc) and (b) exchange encounter
(ex1) as discussed below. If rtc(a) and rex1(a) represents the rates of these processes
respectively, then

R(a) = rtc(a) + rex1(a), (2.2)

where a is the radius of the compact binary so formed.
In tidal capture formation, a compact star, during its close passage by an ordinary star,

loses its kinetic energy by raising non-radial oscillations on the later by its tidal force
so that they become bound, provided the first periastron separation rp is shorter than
a critical value (Fabian et al. 1975). After getting bound, the binary is usually highly
eccentric, and circularizes within several periastron passages to the radius a ≈ 2rp . We
consider a simplified analytical approach involving the impulsive approximation (Spitzer
1987) which assumes that all the energy is deposited on the stellar surface instantly
during the first periastron passage. It can be shown that (Banerjee & Ghosh 2007), for
a Maxwellian velocity distribution, the rate function is nearly uniform in a for small a
and falls off fairly sharply from about a ≈ 7R�, as shown in Fig. 1 (left panel).

Compact binaries can also be formed by exchange encounter between a compact star
and a primordial non-compact stellar binary. During a close encounter between the com-
pact star and the stellar binary, the compact star being generally heavier, preferentially
replaces one of the binary members to form a PXB. We use the well-known Heggie,
Hut & McMillan (1996) exchange cross section to estimate the (Maxwellian averaged)
ex1 exchange rate as a function of binary radius a. For primordial binaries, we take the
widely-used radius distribution fb(a) ∝ 1/a (i.e., a uniform distribution in ln a). In this
case, the ex1 rate will be constant with a (see Banerjee & Ghosh (2007) for details) as
shown in Fig. 1 (left panel).
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Figure 1. Left: A comparison of the dynamical rates. ‘ex1’ and ‘ex2’ rates have been multiplied
by a factor of 50 and 60 respectively to make them visible in the same plot, while ‘dss’ rate
have to be multiplied by a factor of ∼ 109 . Right: Hardening rate ȧ of a compact binary as a
function of the orbital radius a. For a < 2R� (solid line), mass transfer occurs representing the
XB phase. Along abscissa, both orbital radius a and orbital period P scales are shown.

2.3. Compact binary destruction processes
A compact binary can be destroyed primarily by two processes, viz.(a) exchange en-
counter (ex2) and (b) dissociation (dss). Accordingly, the total destruction rate is:

D(a) = rex2(a) + rdss(a) (2.3)

In an exchange encounter (ex2) of a PXB with a compact star, the latter can replace the
low-mass companion of the binary, forming a double compact-star binary. This, in effect,
destroys the binary as an X-ray source as accretion is not possible in such a system, and
it is essentially impossible for one of the compact stars in such a system to be exchanged
again with an ordinary star in a subsequent exchange encounter, since mf = 0.6M� is
much lighter than mX = 1.4M�. As before, we estimate the Maxwellian averaged ex2
rate using the exchange cross section formula of Heggie, Hut & McMillan (1996), which
is proportional to a as demonstrated in Fig. 1 (left panel).

As the compact binaries in the GC core are hard, they can only be dissociated by the
small number of stars that constitute the high-velocity tail of the Maxwellian distribution.
Thus dissociation constitutes a negligible channel for compact binary destruction (see
Banerjee & Ghosh (2007) and references therein for details).

2.4. Compact binary hardening processes
As explained in detail in Banerjee & Ghosh (2006) (henceforth B06), the processes that
harden binaries are of two types, viz., (a) those which operate in isolated binaries, and
are therefore always operational, and (b) those which operate only when the binary
is inside a globular cluster. In the former category are the orbital angular momentum
loss by gravitational radiation and magnetic braking, and in the latter category is that of
collisional hardening. Collisional hardening refers to the process of preferential hardening
due to repeated encounter by the background stars, according to Heggie’s law (Heggie
1975). As discussed in detail in BG06, collisional hardening, which is proportional to
a, dominates at larger orbital radii, while gravitational radiation and magnetic braking,
which increase steeply with decreasing a, dominate at smaller orbital radii. It is these
processes that harden a compact binary from its PXB phase, up to the point of Roche
lobe contact (aL ≈ 2R�), whence it turns on as an X-ray binary (XB) – either a CV
or a LMXB, depending on the nature of the degenerate accretor. A typical form of
hardening rate as a function of a is shown in Fig. 1 (right panel). At the minimum at
a ∼ 14R�, gravitational radiation hardening (J̇orb/Jorb ∼ a−4) takes over from collisional
hardening. Magnetic braking, having a steeper dependence on a (Verbunt-Zwaan scaling,
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Figure 2. Three-dimensional surface n(a, t) describing the model evolution of population-dis-
tribution function of compact binaries for GC parameters ρ = 6.4 × 104 M� pc−3 , rc = 0.5 pc,
vc = 11.6 km sec−1 (roughly corresponding to 47 Tuc).

J̇orb/Jorb ∼ a−5), dominates at still shorter binary radius, during the mass transfer, which
is shown with the thick line in Fig. 1 (right panel). It is important to note that during
mass-transfer, the hardening rate remains nearly constant with a.

3. Results
A typical result from our computed evolution of the compact-binary distribution func-

tion n(a, t) is shown in Fig. 2. The distribution function is seen to evolve such that
the compact binary population grows predominantly, with a nearly uniform distribution
function at shorter radii (a < 10R�, say), and a sharp falloff longward.

The overall shape of the distribution function results from (a) the predominance of
tidal capture formation rate for shorter binary radii (see Fig. 1), (b) inflow of binaries
shortwards due to hardening and (c) higher ex2 destruction rate at larger radii. The
uniformity in the distribution function for about a < 10R� mainly results from that in
the tidal capture rate (Fig. 1).

The total number of X-ray binaries NX B in a GC at any given time can be computed
directly by integrating n(a, t) over the range apm � a � aL representing mass transfer,
where apm is the value of a corresponding to the period minimum P ≈ 80 min, and aL is
the value of a at the first Roche lobe contact and onset of mass transfer. We determine
NX B for a representative evolutionary time of ∼ 8 Gyr to study its dependence on the
Verbunt parameters Γ and γ. Fig. 3 (left panel) shows the computed surface NX B (γ,Γ).
As discussed in details in Banerjee & Ghosh (2007), the falloff of NX B towards increasing
γ from the fold is a signature of the increasing compact binary destruction rate with γ.
Thus, the value of γ(≈ 3 × 103) corresponding to the fold seems to be a good estimate
of the threshold γ above which the destruction processes dominate. However, the falloff
towards decreasing γ is only an artifact of the assumption of virialization in evaluating
the cluster parameters over the grid (Banerjee & Ghosh 2007). As can be seen in Fig. 3,
most of the observed GC with significant numbers of XBs (filled squares), lie close to the
fold of the NX B (Γ, γ) surface, indicating that the computed NX B approximately follows
the observed ones.

To further clarify these trends, we display in Fig. 3 (right panel) Γ/NX B vs. γ, for a
particular value of Γ. It has been shown in BG06 that the toy model of these authors
leads to the scaling that Γ/NX B is a function of γ alone (i.e.Γ/NX B ∼ g(γ)), which is a
monotonically increasing function of γ. The close bunching of the Γ/NX B − γ curves, as
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Figure 3. Left: Computed NX B (Γ, γ) surface. Right: Computed Γ/NX B as a function of γ,
showing scaling (see text). The computed curves for various values of Γ are closely bunched, as
indicated. For both the figures, the overplotted filled squares are the positions of the Galactic
globular clusters with significant numbers of X-ray sources from Pooley et al. (2003).

can be seen in Fig. 3, indicate that this scaling does carry over approximately to this more
detailed study, thereby giving an indication of the basic ways in which the dynamical
binary formation and destruction processes work. The above “universal” function g(γ) of
γ, except for a feature at low values of γ, is still a monotonically increasing one, reflecting
the increasing strength of dynamical binary-destruction processes with increasing γ.

4. Concluding remarks
This work is an initiative of using Boltzmann equation to study the evolution of com-

pact binaries in dense stellar systems. Not only we used simplified analytical models for
dynamical formation and destruction of compact binaries, but also restricted ourselves
only to systems like CVs and short period LMXBs, where the mass transfer occurs when
the donor is in its main sequence, so that its stellar evolution is unimportant. To obtain
a more realistic picture and consider other kinds of X-ray binaries, one should include
more detailed treatment of tidal capture and consider the effects of stellar evolution in
compact binary evolution. Such details can in principle be included in the Boltzmann
scheme as the scheme itself is sufficiently generic. Such developments are in progress.
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