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Abstract. Based on the conventional sequential-accretion paradigm, we have proposed that,
during the migration of first-born gas giants outside the orbits of planetary embryos, super Earth
planets will form inside the 2:1 resonance location by sweeping of mean motion resonances (Zhou
et al. 2005). In this paper, we study the subsequent evolution of a super Earth (m1 ) under the
effects of tidal dissipation and perturbation from a first-born gas giant (m2 ) in an outside orbit.
Secular perturbation and mean motion resonances (especially 2 : 1 and 5 : 2 resonances) between
m1 and m2 excite the eccentricity of m1 , which causes the migration of m1 and results in a hot
super Earth. The calculated final location of the hot super Earth is independent of the tidal
energy dissipation factor Q′. The study of migration history of a Hot Super Earth is useful to
reveal it’s Q′ value and to predict its final location in the presence of one or more hot gas giants.
When this investigation is applied to the GJ876 system, it correctly reproduces the observed
location of GJ876d around 0.02 AU.
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1. Introduction
The search for habitable planets is an essential step in the quests to unravel the origin of

the Solar System and find life elsewhere. To date, more than 250 exoplanets are detected
mainly by radial velocity survey of nearby solar-type stars†. In the database, there are
17 planets with mass less than 25 Earth mass (M⊕), and among them 8 planets have
orbits with period < 10 days. They are GJ876d, HD69830b, GJ674b, HD160691d, 55Cnc
e, Gl581b, HD219828b and GJ436b. We call them ‘hot super Earths’.

According to the conventional core-accretion scenario of planet formation, planets form
in a protoplanetary disk around the host protostar. Through the sedimentation of dust,
cohesive collisions of planetesimals, many embryos will form by accreting and clearing
the planetesimals in their feed zone (a band centered on the embryo with a width of
∼ 10 Hill radius) and result in dynamically isolated bodies. In a disk with several (fd)
times of minimum mass solar nebular, the isolation mass is (Zhou et al. 2007),

Miso = 0.51 × 10−2M⊕ηk
3/2
iso , (1.1)

where
η = (fdfice)3/2( a

1AU )3/4( M∗
M�

)−3/2 .

log(kiso) =
√

b2 + 0.61c − b,
b = 2.8 + 0.33 log η,
c = 3.6 + 0.67 log η + log Tdep ,

(1.2)

† http://vo.obspm.fr/exoplanetes/, http://exoplanets.org/.
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fice = 1 for embryos inside the ice line and fice = 4.2 outside that, Tdep is the timescale
of depletion of gas disk.

According to equation (1.1), the isolation mass inside the ice line (a ≈ 2.7 AU in so-
lar system) is to small to become a super Earth. Unless their nascent protostellar disks
are highly compact, the observed super Earths are unlikely formed in situ. Some extra
mechanisms are required to account for the excitation of eccentricity and the merge of
isolated embryos into super Earths. In Zhou et al. (2005), we have proposed two mecha-
nisms that may lead to the excitation of eccentricities of embryos: (1) During the type-II
migration of a first-born gas giant planet outside the orbits of embryos, the locations of
its mean motion resonances (mainly 2:1 resonance) sweep through the embryos region;
(2) During the dispersal of the gas disk, the location of secular resonance between the
gas giant and embryos sweeps through the inner orbits. Additional mechanisms have also
been discussed by Raymond et al. (2007).

In this paper, we suppose a super Earth has formed through one of the above mecha-
nisms, and study the subsequent evolution after the gas disk was depleted and the gas
giant has stop its migration. First we briefly review the secular evolution of two planets
under tidal dissipation. Then we show some numerical results in section 3. Conclusions
are presented in section 4.

2. Secular dynamics under tidal dissipation
2.1. Tidal perturbation timescale

We adopt a two-planet system as a model. Suppose two planets with mass mi(i = 1, 2)
(in the order from inner to outer) moving around a star with mass m∗ in the same orbital
plane. Let m1 be an Earth-like planet, and m2 a gas giant, Si,Ωi , ai , ri are the radius,
spin rate (with spin axis perpendicular to the orbital plane), semi major axis, distance
from the star of planet i (i = 1, 2), respectively. The acceleration to the relative motion
of mi caused by the tidal interaction between the star and planet mi has the form of
(Mignard 1979, Mardling & Lin 2002)

Fi,tid = −(1 + λ−1)
9ni

2Q′
i

(
m∗
mi

)(
Si

ai

)5 (
ai

ri

)8

[3vir r̂ + (viφ − riΩi)φ̂], (2.1)

where r̂, φ̂ are the unit vector of radial and transversal direction of the orbital plane,
Vi = vir r̂ + viφ φ̂ and ni are the Kepler velocity and mean motion of planet i(i=1,2),
respectively, Q′

∗ and Q′
i are the effective tidal dissipation factor of the star and planet i

defined as Q′ = 3Q/(2kL ), where Q−1 = tan(2ε) is the effective dissipation function, ε is
the tidal lag angle (Goldreich & Soter 1966), kL is the Love number or twice the apsidal
constance for gaseous planets, and

λ =
(

Q′
∗

Q′
i

) (
m∗
mi

)2 (
Si

S∗

)5

(2.2)

is the ratio of tidal dissipation in the planet to that in the star. If λ � 1, tidal dissipation
in the planet dominates the evolution.

The values Q′
∗ inferred form the observation of circularization period in various stellar

clusters are ∼ 1.5× 105 for young stars with age less than 0.1 Gyr, and ∼ 106 for mature
stars (Terquem et al. 1998, Dobbs-Dixon et al. 2004). The Q′ value for Jupiter inferred
form Io’s orbit evolution ranges from 5 × 104 to 2 × 106 (Yoder & Peale 1981). And for
Earth, Q′

E ≈ 60 (Yoder 1995). Thus for a gas giant planet with Jupiter mass, suppose
Q′

∗ ≈ Q′
J = 105, from Eq. (2.2), λ ∼ 10, while for a terrestrial planet with Earth mass,

λ ∼ 104. So in the case of tidal interaction between an Earth-like planet and a star, tidal
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dissipation in the planet dominates the evolution, thus we neglect the contribution of
tide in star in the following study.

Take m1 as an example. Under the perturbation of tidal effect, the averaged equations
(over a period of orbital motion) governing the evolution of planet m1 are,

< ȧ1 >tide= −2a1τ
−1
tide

[
f1(e1) − (Ω1

n1
)f2(e1)

]
,

< ė1 >tide= −9e1τ
−1
tide

[
f3(e1) − 11

18 (Ω1
n1

)f4(e1)
]
,

< �̇1 >tide=< λ̇1 >tide= 0.

(2.3)

where �1 , λ1 are the longitude of perihelion and mean longitude of the orbit of m1 (with
volume density ρ1), respectively, and

τtide =
4Q′

1

63n1

(
m1

m∗

) (
a

S1

)5

= 2.4 × 107Q′
1

( a1

0.1AU

) 1 3
2

(
m∗
m�

)− 3
2

(
m1

m⊕

)− 2
3

(
ρ1

3g cm−3

) 5
3

yr. (2.4)

Functions used are:

f1(e) = (1 + 31
2 e2 + 255

8 e4 + 185
16 e6 + 25

64 e8)/(1 − e2)15/2 ,

f2(e) = (1 + 15
2 e2 + 45

8 e4 + 5
16 e6)/(1 − e2)6 ,

f3(e) = (1 + 15
4 e2 + 15

8 e4 + 5
64 e6)/(1 − e2)13/2 ,

f4(e) = (1 + 3
2 e2 + 1

8 e4)/(1 − e2)5 ,

f5(e) = (1 + 3e2 + 3
8 e4)/(1 − e2)9/2 ,

f6(e) = (1 + 15
7 e2 + 67

14 e4 + 85
32 e6 + 255

448 e8 + 25
1792 e10)/(1 + 3e2 + 3

8 e4),

f7(e) = (1 + 45
14 e2 + 8e4 + 685

224 e6 + 255
448 e8 + 25

1792 e10)/(1 + 3e2 + 3
8 e4).

(2.5)

The evolution of spin rate Ω1 is subjected to,

I1Ω̇1 = − m∗m1

m∗ + m1
r1 × F1,tide (2.6)

where I1 ≈ 2
5 m1S

2
1 is the inertial momentum of m1 . The averaged change rate is

< Ω̇1 >tide=
5
2
τ−1
tide

(
a1

S1

)2 [
f2(e1) −

(
Ω1

n1

)
f5(e1)

]
. (2.7)

A stable equilibrium configuration occurs at

Ω1,eq =
f2(e1)
f5(e1)

n1 . (2.8)

Since the timescale to reach the equilibrium state (∼ τtide(S1/a1)2) is several orders less
than the tidal circularization timescale, we suppose such a state is reached. Substitute
Eq. (2.8) into (2.3), we derive the timescales of tidal evolution of m1 ,

τa−tide ≡
a1

ȧ1
= − (1 − e2

1)
15/2

2e2
1f6(e1)

τtide , τe−tide ≡
e1

ė1
= − (1 − e2

1)
13/2

f7(e1)
τtide . (2.9)

Note that, τa−tide � τe−tide when e1 ≈ 0. However, when e1 ≈ 1, τa−tide and τe−tide

could be very small, and τa−tide < τe−tide as long as e > 0.63425 . . ..
Due to the huge difference of Q′ between the Earth-like planet m1 and the gas giant

m2 , for our later investigation of tidal evolution with a1 < 0.63a2 , we neglect the tidal
effect in planet m2 .
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2.2. Secular evolution in the case of e1 � e2

When e1 � e2 , the secular evolution of m1 ,m2 under tidal dissipation and general
relativity effect can be approximated by the following equations (Mardling 2006):

ė1 = −Woe2 sin η − WT e1 ,
ė2 = Wce1 sin η,
η̇ = Wq − Wo( e2

e1
) cos η,

(2.10)

where η = �1 − �2 , α = a1/a2 , β =
√

1 − e2
2 , and

Wo = 15
16 n1(m 2

m∗
)α4β−5 ,

WT = τ−1
e−tide , Wc = 15

16 n2(m 1
m∗

)α3β−4 ,

Wq = 3
4 n1(m 2

m∗
)α3β−3 [1 −√

α(m 1
m 2

)β−1 + γβ3 ],
(2.11)

with γ = 4(n1a1/c)2(m∗/m2)α3 , the ratio of general relativity to quadruple contribution
of η̇. According to these equations, the secular evolution of e1 and e2 mainly passes three
stages:

(1) After a short time oscillation, the evolution of e1 and η reaches a state of librating
around a quasi-equilibrium configuration with e1 = eeq

1 and η = 2nπ or (2n+1)π , where
(Mardling 2006)

eeq
1 = e2

W0

|Wq |
=

5/4αe2

β2 |1 −√
α(m1/m2)β−1 + γβ3 | . (2.12)

(2) As η librates and e1 evolves to e1 = 0 gradually, a1 is damped according to
Eq. (2.9), thus m1 migrates inward efficiently.

(3) Finally e2 is damped on a timescale τc � τe−tide . During this timescale, the orbit
of m1 is almost circularized, and migration of m1 is effectively stop at a location a1f .

The location of a1f is what we want to find. However, due to the presence of resonance
motion, the evolution of the two-planet system in real situation is more complicate, as
we will show below.
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Figure 1. Maximum eccentricity (red solid line ) of m1 in an initial circular orbit of semi-major
axis a10 excited by m2 (black circle, with a20 = 0.1 AU, e20 = 0.1). The black dotted lines
with labels 2.0, 4.0, . . . denote the timescale (log(Ta−t ide /years)) of m1 from Eq. (2.9) at the
specific location of (a10 , e1 ) with Q′

1 = 100. The blue dashed line is obtained by two times of
the equilibrium values defined by Eq. (2.12).
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3. Numerical simulations
We study the migration of an Earth-like planet under the tidal and mutual planetary

perturbations with general three-body model. The system consists of a solar mass host
star (m∗ = 1M�), an Earth-like planet with mass (m1 = 5M⊕), and a Jupiter mass gas
giant (m2 = MJ , where MJ is Jupiter mass). Let m1 be initially in a nearly circular
orbit (e10 = 10−3), and m2 with initial elements a20 = 0.1 AU, e20 = 0.1. To shorten the
integration time, we let Q′ = 0.02, as the migration timescale is proportional to Q′.

By integration of the full equations of the general three-body system without tidal
dissipation, we plot the maximum eccentricity (e1max) of m1 excited by m2 in Figure 1.
The corresponding tidal-damping timescale obtained from equation (2.9) with (a10 , e1)
is also shown in the background of Fig. 1.

As we can see from Figure 1, the orbits of m1 at most locations with a10 < 0.16 AU have
Ta−tide < 10 Gyr. However, most of those orbits in the Hill unstable region around m2
with half width ∆ = (e20 +2

√
3h)a2 ≈ 0.034 AU (where h = [m2/(3m∗)]1/3) will be scat-

tered to far away in our coplanar model. According to Zhou et al. 2005, embryos formed
inside the location of the 2 : 1 resonance(a2:1 ≈ 0.063 AU) with m2 are dynamically
stable, so we focus on the evolution of orbits with initial semi major axis a10 � 0.063 AU.

If planet m1 is initially located in lower order mean motion resonances with m2 , its
eccentricity will be excited, thus a fast inward migration of m1 is induced, according to
Eq. (2.9). Fig. 2 shows the evolution of two orbits either from 2 : 1 resonance location
(a10 = 0.063 AU) or from non-resonance location (a10 = 0.040 AU). During the subse-
quent passage through 5 : 2 resonance, the amplitude of eccentricity excitation is relative
large. Recall that, according to Eq. (2.9), the a−damping timescale is much smaller than
that of e-damping at high eccentricity. Thus a fast migration occurs until e1 decrease to
a small value ∼ 0.01 (Novak et al. 2003). Then a slow migration linked with the secular
dynamics occurs, with η = �1 − �2 librating along an equilibrium value(see Fig. 2b).
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Figure 2. Evolution of orbits with a10 = 0.063 (orbit A) and a10 = 0.040 (orbit B). (a) Evolution
track in a1 − e1 plane. The dashed line shows the width of 2 : 1 resonance obtained from the
circular restricted-three-body problem. The 5 : 2 indicates the 5 : 2 resonance location at the
place that the eccentricity of orbits A jumps up. The arrows indicate the evolution directions.
(b) Evolution of (�1 − �2 ) (in radian).
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Figure 3. Evolution of orbital elements for the two orbits shown in Fig. 2 with initial elements
a10 = 0.040, 0.063, respectively. The evolution of orbit with a10 = 0.040 fits with the secular
evolution described in section 2, but for the orbit with a10 = 0.063, the presence of the resonance
leads to a dramatic increase (decrease) of e1 (e2 ) at time t ≈ 8×104 year, when the orbit crosses
the 5 : 2 resonance in Fig. 2.

The migration induced by resonant eccentricity-excitation is different from that excited
by mutual secular perturbation. When we check the evolution of ai, ei , (i = 1, 2) during
the passage of 5 : 2 resonance, we find that a1 , e1 , e2 have dramatic decrease after the
crossing the 5 : 2 resonance (Fig. 3). The decrease of e2 causes the different final states
(i.e., the final state of orbit A and B) in (a1 , e1) plane of Fig. 2. The final location is
around 0.018 ∼ 0.025 AU, depending on the different evolutionary routines.
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Figure 4. Evolution track of orbits with a10 = 0.07074 (the exact location of 2 : 1 resonance,
orbit A) and a10 = 0.060 (orbit B). The arrows indicate the evolution directions.
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In order to show that the above track correctly reproduces the observed location of
extrasolar planets, we applied this study to the GJ876 system. GJ876 is a M dwarf
star located 4.72 pc away from us in the solar neighborhood. To date, two gas giant
planets, GJ876b and GJ876c, were observed to be located on orbits with period around
30 days and 60 days, an example of 2:1 mean motion resonance, and a hot planet GJ876d
with mass around 5.7M⊕ in an orbit with period 1.94 days(a = 0.0208 AU, e = 0). We
numerical simulate the evolution of an Earth-like planet inside a gas giant located in
the present orbit (a20 = 0.13 AU, e20 = 0.2243). Figure 4 shows the evolution track of
m1 . The final location is around 0.02 AU according to the simulation, which is almost
independent of the initial location of m1 .

4. Summary and discussions
Many super Earths are observed to be located inside the orbits of gas giants. These

super Earth and gas giant pairs may be a natural consequence of planet formation and
migration. Embryos formed prior and interior to the gas giants are induced to migrate,
collide, and evolve into close-in Super Earths (Zhou et al. 2005). In this report, we have
shown that, the migration of super Earths under tidal dissipation and the perturbation
from gas giants is mainly along the secular evolution paths. Although resonances be-
tween super Earths and gas giants may excite the eccentricity and speed the migration
timescale, the final evolution path can be well determined.

According to the investigation of this paper, we find that the study of the evolution
path provides useful information in the following ways: (i) the migration path shows the
evolution history, especially the evolution of e1 , e2 , a1 (Figs. 2, 4). (ii) Comparing the
observed location of the planet in the path, we can deduce the range of Q′ values for the
hot Super Earths. We will investigate in more details on these topics in the future.
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