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Abstract . 
We have integrated the motion of the four Jovian planets on Myr timescales in fictitious solar 

systems in which the orbits differ from those of the real solar system. A change of < 1 % in the 
major axis of any one of the planets from its real value can lead to chaotic motion with a Lyapunov 
exponent larger than 10""5 yr~ 1 . A survey of fifty solar systems with initial conditions chosen at 
random from a reasonable probability distribution shows the majority of them to be chaotic. 
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1. Introduction 

In the past few years evidence has appeared suggesting that the orbits of the planets 

are chaotic. Sussman and Wisdom (1988) integrated the motion of the outer planets 

for 845 Myr and found that Pluto's orbit is chaotic with a maximum Lyapunov 

exponent of 1/20 M y r - 1 . Laskar (1989), using analytical averaging of the equations 

of motion to speed up the calculations, integrated the motion of all nine planets for 

200 Myr and found that the inner solar system is chaotic with a maximum Lyapunov 

exponent of 1/5 M y r - 1 . Nobili et al. (1989) concluded from their integration of the 

outer planets that "the outer solar system over 100 Myr shows dynamical features 

that are typical of non-regular regions of motion in the phase space of non-integrable 

dynamical systems." These results raise a number of questions. 

First, how certain are we that the orbits are chaotic? Wisdom (this volume) has 

confirmed some of the results using his new mapping technique, and Laskar (1990) 

has identified the physical mechanism responsible for chaos in his integration (which 

has now been corroborated by Laskar et al. 1991), but the Lyapunov exponent of 

a nonlinear dynamical system can be a sensitive function of the position in phase-

space, and hence our ignorance of the exact planetary masses and initial conditions 

will always leave us with some uncertainty (see, e.g., Milani et al. 1989). 

Second, if the planetary orbits are chaotic, why do they look so regular? The 

integration of Sussman and Wisdom (1988) shows that the orbit of Pluto does 

not undergo any major changes over 845 Myr, approximately 40 times longer than 

the inverse Lyapunov exponent of 20 Myr. The inner solar system has presumably 

survived in roughly its present configuration for at least several Gyr, much longer 

than the inverse Lyapunov exponent of 5 Myr found by Laskar (1989). There is no 

evidence in the numerical integrations of any sudden changes in the orbits, e.g., 

in the eccentricity or major axis of one of the planets, as has been observed in 

integrations of the motion of asteroids located in chaotic regions of phase space 

(Wisdom 1987). We would like to know the probability of such changes occurring, 

as it does not appear possible to rule them out if the orbits are chaotic. 

Finally, what role, if any, has chaos played in determining the general charac-

teristics of our solar system? Are the planetary orbits any more or less chaotic than 

one would have expected? Is there a reason for this? 
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In this paper we discuss some preliminary numerical experiments that address 

these questions. Our goal is not to study chaos in the real solar system, but rather 

to study a number of solar systems similar to the real solar system to determine 

how common chaos is, what the typical size of the maximum Lyapunov exponent 

is, and what the consequences of chaos are for the planetary orbits. To reduce the 

computational expense we have included only four planets, which are given the 

correct masses for the four Jovian planets (and also the correct order, i.e., the 

planet closest to the Sun has Jupiter's mass, the second closest has Saturn's mass, 

etc.). The Jovian planets contain most of the mass in the solar system and are only 

weakly perturbed by the other planets, so it is not a bad approximation to study 

them in isolation. If we find that chaos is common in solar systems with four planets 

then it can only be more common in systems with nine planets. 

We have done two types of experiments. In the first we started the planets on 

the correct orbits for the Jovian planets of the real solar system, but with small 

changes to the initial major axes. In the second we started the planetary orbits from 

initial conditions chosen at random from a reasonable probability distribution. The 

integrations were followed for 1-5 Myr in the first type of experiment and for 1 Myr 

in the second. We used the 13th-order Stornier multistep method with a stepsize 

of 36 days; the energy was usually conserved to better than one part in 10 9 . 

To search for evidence of chaos we integrated the variational equations along 

with the equations of motion to follow the phase-space separation d (determined 

from the positions and velocities of all the planets, measured in AU and A U / yr) 

between two nearby systems as a function of time. We then plotted 

7(0 = J log 
d(t) 

[d(0) 
(1) 

versus ί on a log-log scale (see Benettin et al. 1976). For regular systems 7 de-

creases roughly as 1/t, but for chaotic systems, for which d(t) grows exponentially 

with time, 7 eventually stops decreasing and approaches a constant (the maximum 

Lyapunov exponent). If the plot shows 7 decreasing asl/t until the end of the inte-

gration it can mean either that the system is regular or that the system is chaotic 

but that the chaos is too weak to be detected in the time interval considered. In the 

sections that follow we simply report the value of 7 at the end of the integration, 

but in each case where we say the integration was chaotic we have inspected the 

plot of 7 versus t and have verified that 7 had stopped decreasing. 

2 . Experiments on Solar Systems Close to the Real Solar System 

In these experiments we varied the initial major axis of the four Jovian planets, one 

at a time, by amounts ranging from —10% to +10%. Figure 1(a) shows the results 

obtained by varying the initial major axis of Uranus. In four of the seven integrations 

that appeared chaotic (the second, fourth, fifth, and sixth from the left) the chaos 

was clearly related to a low-order resonance between the mean motions of Uranus 

and another planet (the 2:5 and 1:3 resonances with Saturn, and the 2:1 resonance 

with Neptune), but in the other three integrations it was not obvious if the chaos 

resulted from one particular resonance. Figure 1(b) shows the results from varying 
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Fig. 1. Lyapunov exponents measured in 5 Myr integrations of the outer planets in which 
the initial major axis of one planet differed from its real value by the indicated amount. 
The dashed lines separate the integrations that appeared chaotic (i.e., 7 had stopped 
decreasing with time) from those that did not. (a) Results from the four-planet JSUN 
system, (b) Results from the two-planet JS system. 

the initial major axis of Saturn in a two-planet solar system containing only Jupiter 

and Saturn. The figure focuses on the chaotic zone near the 5:2 resonance between 

the mean motions of Jupiter and Saturn. Note that the Lyapunov exponent can be 

as large as 10~" 4 yr _ 1 . This figure looks similar if all four planets are included in 

the integration, but we have shown the results from a two-planet solar system to 

emphasize that this is sufficient to give chaos. 

Similar results were obtained when the initial major axes of Jupiter and Neptune 

were varied: chaotic zones with Lyapunov exponents of > 10""5 y r - 1 were found in 
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the vicinity of low-order resonances between the planetary mean motions. A change 

of order 1% or less in the major axis of any of the Jovian planets is enough to move 

the solar system into one of these chaotic zones. A number of these chaotic systems 

were integrated for times 100-500 longer than the inverse Lyapunov exponent. No 

signs of any "macroscopic instability,, were observed (e.g., sudden changes in the 

major axes or eccentricities, orbits crossing or escaping), although the eccentricity 

of Uranus did sometimes get perturbed to values as large as 0.19. 

We chose the initial orbital elements for these experiments in the following way. 

The three longitudes λ, ω, and Q were chosen at random between 0 and 2π. For the 

eccentricities and inclinations we chose e 2 and i 2 at random in the ranges 0-2e^mB 

and 0 - 2 i 2

m s , where the rms values are taken from the time averages of Applegate 

et al. (1986) for the Jovian planets: e r m s = 0.04, i r m s = 0.086°. For the major axes 

we chose log(a) at random between log(4 AU) and log(35 AU). The choice of major 

axes was rejected if the planetary "feeding zones" overlapped, where the width 2Δα 

of the feeding zone of a planet of mass m is given by (Lissauer 1987) 

with B = 3 . For example, if Jupiter is at aj = 5.2 AU, Saturn must be at as > 7.6 AU. 

About 3 /4 of the choices of major axes were rejected by this criterion; the motivation 

for the criterion is that it seems unlikely that the planets would form so close 

together that their feeding zones overlap. For each integration we monitored the 

planetary orbital elements, the minimum separation between the planets, and the 

phase-space separation d as a function of time. The results of fifty of these random 

solar systems are summarized in Figure 2. We divide the fifty systems into three 

groups. 

In the first group are the eight highly chaotic systems whose final 7 values were 

> 1 0 ~ 3 y r - 1 . These systems are what we might loosely refer to as macroscopically 

unstable. In four of the systems the ordering of the major axes switched during 

the integration, and this would likely have happened in the other four if the inte-

grations had been continued (these highly chaotic integrations were stopped after 

times ranging from 10 4 -10 5 yr because they were rapidly becoming inaccurate). 

Figure 2(a) shows that in all eight systems there was a close encounter between 

the planets (within < 1AU in six of the eight cases), but Figure 2(b) shows that 

it would have been difficult to predict this from the initial conditions. While these 

eight systems were clearly chaotic, the precise Lyapunov exponents are uncertain 

because 7 had not converged to a limit by the end of the integrations. 

In the second group are the twenty-four systems that were chaotic but that 

did not exhibit the type of macroscopic instability seen in the previous group. The 

systems in the second group were all integrated for 1 Myr, 20-400 times longer than 

the inverse Lyapunov exponent, but no major changes in the orbits were observed: 

the eccentricities and inclinations remained small, the major axes did not change 

by much, and the planets remained well separated. 

3 . Experiments on Randomly-Chosen Solar Systems 

(2) 
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Fig. 2. Lyapunov exponents measured in 1 Myr integrations of fifty randomly-chosen solar 
systems. The dashed lines separate the integrations that appeared chaotic (i.e., 7 had 
stopped decreasing with time) from those that did not. The abscissa gives the minimum 
planetary separation (a) measured during the integration and (b) computed on the as-
sumption that the planetary orbital elements (other than the longitude λ) remain fixed at 
their initial values. The real JSUN planetary system (with the present-day orbital elements 
as the initial values) would be at abscissa 3.7 AU in (a) and 4.2 AU in (b). 

In the final group are the eighteen systems that appeared perfectly regular over 

the 1 Myr integrations, with no signs of chaos. 

Figure 2(a) shows, at least for the chaotic systems, a correlation between the 

minimum planetary separation measured during the integration and the final value 

of 7. But Figure 2(b) shows the correlation to be much weaker if we predict the 

minimum planetary separation from the elliptical orbits on which the planets were 

initially placed. Note in Figure 2(b) that ten of the chaotic systems started with 
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the planets on orbits that appeared to be more widely separated than are the orbits 

of the Jovian planets in the real solar system. 

We have done some additional experiments which are not included in Figure 2. 

We integrated twenty-five systems where the orbits started with e = i = 0. These 

proved to be much less chaotic than the fifty systems described above: twenty-one 

of the twenty-five appeared regular over a 1 Myr integration, the other four were 

chaotic with 7 in the range 10~ 4 -10"" 3 yr - 1 . We also integrated twenty systems in 

which the orbits were initially close enough that the feeding zones would overlap 

according to equation (2) with Β = 3 but not with Β = 2. These systems proved 

to be much more chaotic than the fifty described above: twelve of them had final 7 

values > 10"3yr""1 (these integrations were stopped before 1 Myr had elapsed), six 

were chaotic with 7 in the range 10" 5-10"" 3yr~ 1 , and two appeared regular. 

4 . Summary 

We draw several conclusions from these experiments. First, chaos appears to be a 

common feature of planetary systems, even when the planets are started on orbits 

that are well separated. Second, it is somewhat surprising how close the real solar 

system is to chaotic zones with large Lyapunov exponents (10"~ 5 -10~ 4 yr" 1 ) , al-

though the significance of this is not clear. Finally, it is not surprising that Pluto 

and the planets of the inner solar system have existed on rather stable orbits for 

times much longer than the inverse of their reported Lyapunov exponents, because 

our experiments suggest that this is the rule rather than the exception. 
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K.Aksnes - How would the picture of Lyapunov stability change if you were to 

change the masses of the planets? 

CLFroeschlé - Coming back to fictitious solar systems, what do you think of the 

increase of the masses as far as the stability is concerned? 

J. Wisdom - In response to the questions about what happens if the masses of the 

outer planets are enhanced, I show a plot of final logd versus mass enhancement 

factor for 100 different mass enhancements ranging from 1 to 30. Each integra-

tion covers 1 million years and was performed with the new mapping method. The 

plot shows that the outer planets become strongly chaotic with very small mass 

enhancements (about 1.5). This is very interesting. Recall Nacozy's (1976) result 

that, in much shorter integrations (only 10,000 years), the outer planets became 

strongly chaotic with a mass enhancement of 30. Perhaps longer integrations would 

show chaos for smaller mass enhancements. 

G.Quinlan - In most of our numerical experiments, the four planets were given the 

correct masses for Jupiter, Saturn, Uranus and Neptune, and therefore we cannot 

say for certain how things would change if the masses were given some other val-

ues. We did try some experiments where we enhanced the masses of the planets 

by factors ranging from 1 to 10. We wanted to study how the maximum Lyapunov 

exponents depended on the enhancement factors, but the relationship we found was 

complicated and difficult to interpret (this is evident in the plot that J. Wisdom 

has shown). It is difficult to separate effects of changing the masses from the effects 

of the other changes that occur at the same time (e.g., changes in the location of 

resonances). 

J. Laskar - In your study, you show that taking an outer solar system in a random 

manner, you end up most often in a system which looks much more chaotic than our 

actual solar system. I would like to stress out that the meaning of unstable for our 

solar system is very different than for another solar system. There is a constraint 

in our solar system which is that it needs to allow the apparition and persistence of 

life, which may be excluded in slightly unstable systems because of strong climatic 

variations. 

B.Buti - What is your definition of instability? Are you saying that the system 

could be unstable in a region which you define as highly chaotic? Is there any spe-

cific parameters which would differentiate stable and macro-unstable systems? 

G.Quinlan - Unfortunately, different people mean different things when they use 

the words stable and unstable when describing the motions of the planets. Some 

people say that the planetary motions are unstable if they cannot be described by 

quasi-periodic functions (according to this definition all chaotic solar systems are 

unstable). Jacques Laskar has suggested a special definition for our solar system: he 

says that the system should be considered unstable if the variation in the Earth's 

major axis and eccentricity is too large to allow life to survive on Earth. We have 

used the words stability or macroscopic stability to describe solar systems where the 

planetary orbits remain well separated and have low eccentricities and inclinations 

for all time, and we have used the word macroscopic instability to describe solar 
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systems where there are large (or drastic) changes in the planetary spacings, eccen-

tricities or inclinations. This is not a precise définition. 

J.Palis - Just a remark on the subject of stability: positive Lyapunov exponent 

does imply some degree of sensitivity with respect to initial conditions, but does 

not necessarily implies big instability or diffusion; indeed, a hyperbolic subsystem 

is persistent, dynamically stable. To guarantee big instability or diffusion, we need 

more data about the system. 

S.F.Dermott - Torques may have existed in the early solar system that drove the 

planets into resonances. These resonances are expected to be unstable, but is there 

any evidence that the planets (e.g., Uranus and Neptune that are close to a 2 : 1 

resonance) could migrate from initial resonant configurations to their present con-

figurations? 

G.Quinlan - This is an interesting question, but I don't know the answer right 

now. 

P.Goldreich - The width in semi-major axis of a libration zone, such as the 5 : 2 

resonance between Jupiter and Saturn, depends on the planets' eccentricities. The 

eccentricities vary as the result of chaotic secular resonances. The current config-

uration of the solar system has Jupiter and Saturn very close to, but outside, the 

5 : 2 resonance. Perhaps the planets' eccentricities were larger in the past and the 

critical argument spent time in libration. 

G.Quinlan - I don't think the secular variation of the eccentricities was large enough 

to push the 5 : 2 resonance into libration. 
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