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THERMAL STRESSES NEAR THE SURFACE OF A 
GLACIER 

By T. J. O. SANDERSON 

(British Antarcti c Survey, Madingley Road, Cambridge CB3 oET, England) 

ABSTRACT. Stresses occur in the uppermos t 10 m of a glacier as a result of temperature fluctuations at 
the surface. A model is se t up of a typical year 's surface tempera ture variation, a nd the progress of tempera 
ture waves through the glacier is calculated using Fourier theory of heat conduction . Short-period fluctuations 
a re ra pidly a ttenua ted , a nd a t 10 m depth the annual cycle is reduced to 5% of its surface amplitude . As the 
tempera ture of the ice vari es it undergoes small volume ch a nges; stresses a re calcula ted on the assumption 
that a ny tendency of the ice to expa nd or contract la terally r esults in the crea tion of just enough stress to 
cause the ice to rem a in unstra ined. It is found that in the top 2 or 3 m stresses of thermal origin are gen erally 
in excess of those due to gross deformati on o r overburden pressure. For the case of high-density ice Glen 's 
flow la w is used, and conditions are found to be favourable for the formation of surface rumples of wavelength 
a bout 10 m. For the case of firn or snow a N ewtonian flow la w is assumed, a nd it is found that under cold 
conditions fracture under tension can occur. Cracks of therma l origin may be responsible for the initial 
fo rmation of crevasses, and they also provide a n explanation for background noise encountered when seismic 
shoo ting at low tempera tures . Calculations a re made of the strain-ra te fi eld surrounding a crack and it is 
found tha t therma l effects ca n lead to a ppreciable stra in-ra te a n omalies for stra in-ra te measurem ents near 
cracks. The magnitude of the effec t is eas ily sufficient to a ccount for anomalous fluctuating stra in-ra tes 
found by workers using wire stra inmeters on the Barnes I ce Cap. 

R ESUME. COll trailltes d 'origille thermique pres de la surface d'un glacier. Les fluctuations thermiques d a ns les 
10 m superieurs d 'un glacier provoquent d es contrain tes. On a construit un mod ele d es variations annuelles 
typiques de la tempera ture de surface e t I'on ca lcule la progression d es ondes d e ch a leur a travers le glac ier en 
utili sant la theorie d e F ourier pour la conduction de la chal eur . Les fluctua tions d e courtes period es sont 
ra pidemen t a ttenuees e t, a 10 m de profondeur, le cycle annuel es t reduit a 5% d e son a mplitude a la surface. 
Lorsque la temperature d e la glace va ri e, celle-ci subit des pe ti ts cha ngements d e volume ; les contra intes sont 
ca lculees dans I' hyp o these que la tendan ce de la glace a se dila te r ou a se contracter lateralement provoque 
la crea tion dans la glace d e contra intes juste suffisantes pour que la glace res te immobile. On trouve que d a ns 
les niveaux superi eurs sur 2 ou 3 m les efforts d'origine thermique sont genera lem ent superieurs a ceux dus 
a ux gra ndes deforma tions ou a la press ion d e surcharge. Pour la glace dense, o n a utilise la loi d'ecoulem ent 
d e Glen et les conditions ont ete trouvees fa voriser la forma tio n d 'ondula tions d e surface de longueur d 'onde 
d e 10 m. Pour le n eve ou la neige, on admet un ecoulem ent N ewtonien et I'on trouve que, en conditions 
froides, des ruptures a la trac tion peuvenL survenir. Des fissures d 'origine thermique p euven t etre resp o nsables 
d e la formation initia le d e crevasses et peu vent auss i expliquer le bruit de fond constate lors des tirs sismiques 
a basses temperatures. On calcule le ch a mp d es vitesses de d e fo rma tion autour d ' une crevasse et I'on consta te 
que les effets thermiques peuvent conduire a des anomalies d a ns les mesures de ces vitesses de deforma tion 
pres d es crevasses. L 'ordre d e grandeur cle cet effet suffit a isem ent a rend re compte d es fluctuations a n orm a les 
cles vitesses de defor mation qu 'ont trouve les chercheurs utilisant des jauges d e contrainte a cable sur le 
Ba rnes Ice Cap. 

Z USAMMENFASSUNG . Thermische Spalllllllzgell Ilahe der OberJliiclze eilles Gletschers. In d en obersten 10 m eines 
G letschers treten Spa nnungen infolge von T emperaturschwankungen an d er Oberflache auf. Fur die 
T empera turanderung a n der Oberflach e wa hrend eines typisch en J ahres wird ein M odel! entwickelt; die 
Fortp Aanzung von T empera turwellen durch den Gletscher wird mit Hilfe der W a rmeleittheorie von Fourier 
berechnet. Kurzperiodische Schwankungen erfahren eine rasch e Dampfung ; in 10 m Tiefe betra g t die 
A mplitude des J ahreszyklus nul' noch 5 % ihres Wertes a n d er Oberflache. Das Eis erfahrt mit den T empera
tUl"schwankungen kleine V olumena nderungen ; die Spa nnungen werden unter d er Annahme b erechnet, 
dass j ede Neigung d es Eises zu einer se itlichen Ausdehnung od eI' Kontra ktio n gerade soviel Spa nnung 
erzeugt, dass das Eis keine Deformation erl e idet. Es zeigt si ch , class in den obersten 2 bis 3 m die Spa nnungen 
thermischen U rsprungs im allgemeinen j e ne ubersteigen , die von der Gesam td eforma tion od er dem U ber
lagerungsdruck herruhren . Fur den Fall von Eis hoher Dichte wird das Fliessgesetz von Glen herangezogen , 
wobei sich gunstige V oraussetzungen fur clie Bildung einer Oberftaehenknitterung mit einer Wellenla nge von 
10 m ergeben. Fur d en F all von Firn od er Schnee wird ein N ewtonsches Fliessgesetz angenommen , w as bei 
niedrigen T empera ture n zum Auftre ten von Brlichen unter Zugsp a nnungfuhrt. Risse thermischen Ursprungs 
durften der Anlass fur die Bildung von Spa lten sein ; sie lassen sich auch zur Erkla rung des Hintergrund
ra uschens bei seismisch en Sprengungen u n ter tiefer T empe ra tur heranziehen . F ur des Verformungsfeld 
in der U mgebung eines Risses werden Bereehnungen a nges tellt, wobei sieh ergibt, d ass thermisch e Effekte 
zu beaehtli chen V erformungsanoma lien bei Deforma tionsm essungen in Rissna h e fuhren konnen. D as 
Ausmass des Effektes reicht ohne weiteres a us, urn die ungewohnlich Auktuierenden Verformungen erkla ren 
zu konnen, die beim Einsa tz von Dra h ts p a nnungsmessern auf d em Barnes Ice Cap beobachtet wurden . 
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I. INTRODUCTION 

Many floating ice masses show strikingly regular patterns of melt pools during the summer 
ablation season. Figure 1 shows the pools on George VI Ice Shelf, Antarctica (lat. 71 0 S., 
long. 68° W. ); similar pools have been reported on the Ward Hunt Ice Shelf, northern Canada 
(Koenig and others, 1952, p. 66) and Bessels Fjord, north-east Greenland (Post and 
LaChapelle, 1971, p. 101 ) . The pools apparently form in the troughs of regular surface 
undulations, of wavelengths 450 m, 250 m, and 40 m for these three cases, and although 
many explanations have been advanced for the formation of these undulations (Hattersley
Smith, 1957), none can be regarded as conclusive. While searching for a more satisfactory 
solution, an analysis has been made of thermal stresses set up in the top 5 or 10 m of an ice 

Fig. I . Melt pools on George VI Ice Shelf, Antarctica, at separation approximately 450 m. (Photograph by Charles 
Swithinbank. ) 

shelf or indeed any glacier as a result of thermal expansion and contraction due to surface 
temperature variations. Temperature variations due both to the annual temperature cycle 
and to typical cyclonic conditions have been taken into account. Such temperature fluctua
tions have been mentioned before in connection with surface undulations on ice shelves 
(Zubov, 1955, p. 41 ) and on sea ice (Wright and Priestley, 1922, p. 344), and thermal cracks 
in sea ice have been explained using the model of flexure of a thin elastic floating plate (Evans 
and Untersteiner, 1971 ). Here we are concerned with ice of great thickness . Whilst it 
appears from the following analysis that thermal stresses cannot be invoked as an explanation 
of periodic surface rumples of the wavelength found , the treatment and results reveal that 
thermal stresses are dominant in the top 2 or 3 m of a glacier and may result either in the 
formation of shorter-wavelength rumples or in fracture under tension. 
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2 . T E MPERATU RE VARIATIONS NEAR THE SURFACE OF A GLACIER 

We shall first look at the way in which temperature variations at the surface of a glacier 
are transmitted downwards by heat conduction. This is a standard problem in heat con
duction theory : we begin by taking a simple sinusoida l variation of surfa ce temperature a nd 
apply this as a boundary condition to find the appropriate solution to the Fourier equation 
of heat conduction (Carslaw and Jaeger, 1959, p. 64- 66 ; Paterson, 1969, p. 169). L et us 
begin by taking a surface temperature of: 

T (o, t ) = To+ T r cos wrt, 

where T is temperature as a function o f depth y and time t, To is the m ean annual tempera
ture, T r is the amplitude of the tempera ture variation and Wr/27T is the frequency of the 
varia tion. 

W e r equire solutions to the Fourier equation : 

(p T oT 
k- = -

01' ot ' 

where k is the therma l diffusivity of ice. 
Neglecting transien t time-dependent terms in the general solution , which are importa nt 

only when the tempera ture fluctua tion is fi rst set up, we find the stead y-sta te solution of 
Equa tion (2) for bounda ry conditions g iven by Equation ( I) to be: 

T(y,t) = To+ T r exp [-y(;;)!] cos [wrt-y(;;Y] . 
Solutions of this form for different phase, frequency, and amplitude are superposable, so 

we can construct a solution for any surface boundary condition which can be expressed as a 
sen es : 

n 

T ( 0 , t ) = To + L Tr cos (wrt - cpr), 
1' = 1 

where rPr is a dimensionless phase term. This is equiva lent to saying tha t any boundary 
condition can be treated which satisfies Dirichlet's conditions and is therefore susceptible to 
Fourier analysis ; this will of course a lways be true for any realistic surface temperature 
conditions provided we a llow sufficiently many terms in the expansio n, but the ha ndling is 
much simplified if we can idealize the real bounda ry condition into a sequence of only a 
sma ll number of terms in Equation (4 ) . 

Two things should be noticed a bout the character of the solution given by Equation (3). 
F irst, a ny surface va riation of temperature becomes attenuated with d e pth according to the 
factor 

The presence of a -(wr)! term in the exponent means that rapid temperature fluctua tions 
a re m ore quickly a ttenuated than slower ones. Because of this we find that diurnal tempera
ture variations are a ttenuated to 5 % of their surface amplitude by the time they reach 50 cm 
depth , while the a nnual cycle is attenuated to 5 % only when it reaches 10 m depth. I t is 
therefore found tha t at most depths the a nnual cycle dominates other shorter-period varia
tions. Secondly, the phase term y (wr/2k)! has the effec t that more ra pid fluctuations are more 
ra pidly transmitted ; thus we find tha t the tempera ture minima of a varia tion with a period of 
sixteen days propagate to 3 m depth in a time of I 1.3 d, while the minima of the a nnual 
cycle ta ke 53 d . 
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3. TEMPERATURE DATA AND A SIMPLE MODEL 

We shall first carry out an analysis for the conditions prevailing in the area of G eorge VI 
Ice Shelf where the regular pa tterns of melt pools a re observed , and later consider alternative 
situations. Actual surface temperature data may be found from synoptic meteorological 
observation results for air temperature, which are available for the Fossil Bluff region of 
G eorge VI Ice Shelf throughout the year 1968 (personal communication from D. W. S. 
Limbert) . The m ean daily tempera tures are plotted for the year in Figure 2(a). Superimposed 
on this there is also the continuing diurnal variation, which is of amplitude about 5 deg, but 
this has been omitted since such high-frequency temperature variations a re effectively 
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Fig. 2. M ean daily temperatures throughout they ear : (a) data recorded at Fossil Bluff, I968; (b) empirical model reproducing 
principal f eatures (Equation (5)) . The dashed line shows the mean annual temperature. 

attenuated within the top metre of ice. Any calculations concerning ice very near the surface 
are in any case unjustified because of the unknown effects of air p ercolation, radiation absorp
tion, melt percolation, and the drifting of surface snow. Also displayed (Fig. 3) is a graph of 
half-monthly m ean temperatures, with an a nnua l sinusoidal curve fitted to them. The 
fitted curve has an amplitude of I I deg about a n annual mean of - I I cC, or 262 K. The 
plot of daily temperatures throughout the year shows that this simple annual sinusoidal 
model is a gross simplification, for in fact quite long and marked cold and warm spells occur 
throughout the year, especially in winter, and there is a large day-to-day variation within 
these spells . The a mplitude of these shorter-period variations is of the same order as that of 
t he annual cycle so that they cannot a priori be neglected. 
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Fig. 3. Half-monthly mean temperaturesfor Fossil Bluff, 1968, displayed with a fitted annual sinusoidal curve and a dashed line 

to show mean annual temperature. 

An empirical model has been constructed to take better account of the most important 
features of the data. Such features are: 

(i) the annual cycle, of am plitude 1 1 deg; 
(ii) an irregular variation of period in the region of two months, amplitude some 7 deg. 

This shows up in Figure 3; 
(iii) an irregular cycle of period about 17 d, amplitude about 7 deg; 
(iv) smaller variations over periods of between 3 and 7 d, of amplitude about 3 deg. 

We shall not enter here in to discussion of the origin of these quasi-regular weather cycles, 
which are presumably associated with the natural periods of stability of cyclones in the region, 
since it is enough for our purposes to know that they exist. That they are real features can 
be seen from a spectral analysis of the data. Such an analysis has been carried out using the 
technique of maximum entropy, and the power spectrum (Fig. 4 ), shown here considerably 
smoothed to reduce noise, displays significant peaks at periods of 16.7 d, 6.2 d, 3.9 d, and 
3 d. The variation (ii) of period about two months, could not be resolved with a single 
year's data, but is included in order to simulate the marked warm spell, the "kern lose winter", 
which is a characteristic feature of Antarctic weather patterns (Van Loon, 1967) . It is 
apparent here between June and September in Figures 2(a) and 3. 
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Fig. 4. Maximum entropy power spectrum of mean daily temperature variations for Fossil Bl!ifJ, 1968, showing power plotted 
logarithmically against period. 
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A further important feature is that all the subsidiary fluctuations (ii), (iii), and (iv) are 
more pronounced in winter than in summer, which is due to the resistance afforded by the 
large mass of ice in a polar environment to any tendency for the surface air temperature to 
rise much above ooe; it acts as a buffer. This characteristic has been included by means of a 
modulating envelope of half period one year, which multiplies sinusoidal variations of period 
62 d, 16.7 d, 6.2 d, and 3.9 d. The full expression is then: 

(5) 
.J = 2 

with To = - 11 °C = 262 K, 

T, = II deg, w, = 1.992 X 10-7 S- I (period I year) , 
T2 = 7 deg, W 2 = 1.I73 X 10- 6 S- I (period 62 d), 
T3 = 7 deg, W3 = 4.362 X 10-6 S-I (period 16.7 d), 
T4 = 4 deg, W 4 = 1.182 X IO- S S- I (period 6.2 d ) , 
Ts = 2 deg, Ws = 1.874 X IO- s S- I (period 3.9 d). 

The amplitudes of the various waves have been chosen simply by eye and trial, and the 
resulting curve is shown in Figure 2 (b). The agreement in general form, although not in 
particular detail, is readily seen. It is sufficient that the model represent a possible year's 
temperature data; there would be no great surprise if one year they occurred according to 
the model given. 

We are now in a position to find the form of temperature with depth for Equation (5) 
applied as a boundary condition. To do this we need to force Equation (5) as nearly as 
possible into the form of a series as in Equation (4) , which is then readily treatable. This can 
be achieved by noticing that lw, is at least an order of magnitude smaller than any of w 2 , w3, 

W4' or w s, and that we can therefore treat the envelope sin (w,t/2) as a slowly varying function 
of t. This means that we treat it as a constant for the purposes of differentiation with respect 
to t and so can write Equation (5) as : 

S = 5 

T (o, t ) = To+ T, cos w,t+ L [Ts sin w2't] cos wst, 
S = 2 

where we regard terms Ts sin (Wlt /2) as the constant terms Tr in the expansion in Equation 
(4) . 

It is then straightforward to proceed directly to the complete steady-state solution as a 
function of depth and time. It is: 

T (y, t ) = To+ Tl exp [- y (;~rJ cos [w 1t - y (;~r] + 

+ sin w2,t {~ Ts exp [ - y (;~r] cos [w st - y (;;Y]} , (6) 
s = 2 

where k is equal to 1.091 X 10- 6 m 2 S-I. This is plotted in Figure 5 to show temperature 
variation over the year at depths of 0.5, I , 2, 3,4, 5, and 10 m. The effects of selective attenua
tion and phase delay can be seen clearly. 

The value used in Equation (6) for the thermal diffusivity k is calculated for ice typical of 
George VI Ice Shelf. Diffusivity is strongly density dependent and this dependence can be 
expressed by the empirical formula (Van Dusen, 1929): 

1 
k = - (2.1 + 42P+216p3) X IO-S m2 s- ', 

cp 
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Fig. 5 . Progress of a model temperature wave through the top 10 m of a glacier. 

where c is the specific heat capacity of ice, taken as 2.01 X 103 ] kg- ! K - !, and p is the density, 
expressed in Mg m- 3. Density profiles have been taken for George VI Ice Shelf to 10 m 
depth, and show the ice in the melt area to be of quite uniform high density, lying within the 
range 0.gO±0·02 Mg m - 3 (personal communication from]. L. W. Walton). This very high 
value for surface density is a result of the extensive summer melt which characterizes most 
of the region: almost all the year's snowfall, some 50 cm, is melted each summer and either 
runs off the ice shelf down tide cracks and moulins or forms pools on the surface. Any net 
accumulation over the year, which seldom amounts to more than a few centimetres (personal 
communication from]. F. Bishop), is a result of refreezing of melted snow. It is interesting 
to note that these conditions correspond closely to those on the Ward Hunt Ice Shelf 
(Hattersley-Smith and others, 1955, p. 22- 23). Under the more commonly found polar 
conditions of snow and firn in the top ten metres we expect lower values for the purely con
ductive thermal diffusivity (k = 0.613 X 10- 6 m2 s- ! for p = 0.6 Mg m - 3 ; k = 0.407 X 10- 6 

m 2 S- I for p = 0.4 Mg m - 3); however, it is found from field measurements on the rate of 
propagation of cold waves through snow and firn (MacDowall, 1964) that the presence of air 
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passages enables convective processes of propagation to compensate for the reduced con
ductivity of low-density snow. The effective diffusivity is almost the same as that for pure ice, 
if not slightly greater. Our results for temperature-wave propagation should therefore be 
applicable to all types of surface cover. 

For the purposes of calculating thermal stresses due to rates of expansion and contraction 
of the ice mass as its temperature rises and falls we shall be concerned primarily with the 
temperature- time gradient aT/ at as a function of time and depth. This can be calculated 
directly from Equation (6) by differentiation, and we shall again neglect the small terms 
arising from the differentiation of the envelope term sin (w)t/2). We find: 

aa~ (y, t ) = - w) T) exp [ -y (;~) !J sin [W)t - y (;~YJ -

- sin ~)t {! 5ws Ts exp [- y (;;YJ sin [wst- y (;;YJ} . (7) 
s = 2 

An important feature of the form of aT /at with depth is that where terms in the expression 
for T (y, t ) attenuate according to exp [- y (ws/2k)!] terms in aT/at (y, t ) attenuate according 
to Ws exp [- y (ws /2k)i] which is a product of two terms in ws, one increasing and the other 
decreasing. So, although the exponential term will always eventually dominate the linear 
term, the temperature- time gradients due to quite short-period fluctuations can still be 
important at 2 or 3 m depth ; it is not the case, as it is with T (y, t), that the longest-period 
wave dominates at all depths. We can in fact find the frequency of surface temperature 
variation which for a given amplitude gives the maximum values of aT /a t at a given depth: 
by maximizing the amplitude term T sws exp [ - y (ws/2k)!] with respect to Ws we get 
Ws = 8k/yz for the value of Ws giving maximum aT/ at at depth y . At I m depth the wave 
of period 8.5 d dominates ; at 2 m, 33 d ; at 3 m, 75 d ; and at 6 m, 300 d. 

The treatment so far rests heavily on the assumption that a conductive model is valid; 
it has taken no account of heat transfer due to melt-water percolation and refreezing. This 
has been found to be extremely importa nt on, for instance, Isachsen's plateau , Spitsbergen 
(Sverdrup, 1935), where the percolation of summer melt through firn caused a very rapid 
elimination of the winter cold wave, amounting to values for aT/at at 3 m of I deg d- I over 
a period of a bout a day and of 0.5 deg d - I over a period of about ten days. These compa re 
with values using Equation (7) of o. I deg d - I and 0.07 deg d - I at 3 m for similar periods. 
However , for George VI Ice Shelf it is clear that we are not in a region of permeable firn , so 
that the contribution of percolating melt water is likely to be very small; further , since any 
contribution there is will tend to accelerate the warming process, we can regard the calcula
tions of stress which follow as setting a lower limit on those actually present. 

4. THE RMAL STRESSES IN HIGH-DENSITY ICE 

Theory of thermal stresses 

The problem we wish to solve is that of the stresses in a thermally fluctuating region of 
some 5 m thickness attached to a large mass of ice which is thermally stable but which may 
anyway be creeping longitudinally under the stresses of external constraints and its own weight. 

Let us begin by looking at the simpler case of a thermally active region at the surface of a 
completely static, unstraining larger block of ice. Because the surface layer is much greater 
in lateral extent than in thickness and is everywhere joined to the larger mass (indeed they 
have no well-defined boundary), we can say that any temperature changes in the surface layer 
cannot give rise to large-scale movement (expansion or contraction) of the layer rela tive to 
the stable block beneath. This is an application of Saint Venant's principle concerning edge 
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effects: if a surface rests on and adheres to a massive block as described and undergoes thermal 
variations, we should expect the tendency towards thermal expansion and contraction to lead 
to actual motion only in the vicinity of a free boundary. Far away from the edges no relative 
motion of the surface layer and the block can occur. The same condition of zero actual strain 
applies in the case of sea ice or lake ice which is restrained by rigid banks at its boundary. 
We are therefore treating the case of laterally restrained thermal expansion and contraction: 
any tendency of the ice to expand or contract results not in strain but in the creation of just 
enough stress to restrain the tendency. It will also be assumed that the ice does not fracture 
under tension, an assumption which will be justified once we have calculated the stresses 
involved. 

In order to calculate the stresses we use a method in which we in effect transform our 
spatial frame of reference to an expanding frame of coordinates. We choose these expanding 
coordinates so that they expand at the same rate as would an unrestricted body undergoing 
thermal expansion: they therefore represent the frame in which the material in question 
would be stress-free. So, if the material is subject to a temperature- time gradient of aT/ at 
and has a linear coefficient of expansion a, it tends to remain stress free by expanding at 
rate a a T/ at. To treat it we therefore transform from real-space coordinates Xi to expanding 
coordinates x/, related by: 

1 = 1,2,3. 

If we then require that the material remain unstrained in real space we are introducing 
an effective strain-rate of: 

aT 
- aT!' 

relative to the stress-free frame x/ and are therefore introducing the stress associated with it. 
We shall assume that this stress is simply that required for the strain-rate concerned 

according to the empirically determined flow law for ice. This assumption is not exact, 
although it is one generally made in related literature (for instance Gatewood, 1957, p. I). 
An exact analysis involves taking complete account of the thermodynamics of irreversible 
processes, and finding values for Onsager's "cross-coupling" coefficients for a material with 
a non-Newtonian flow law (Boley and Weiner, 1960, p. 1- 40). Ifsuch an analysis were possible 
it should lead only to minor modifications of the stresses involved (Boley and Weiner, 1960, 
p. 41 - 44); the "cross-coupling" is an expression of a relationship analogous to the comple
mentary relationship between stretching and heating a rubber band: if much expanded it 
will warm slightly, and if much warmed it will contract slightly. Only very tiny errors are 
involved, however, in calculating the stresses in a stretching rubber band on the assumption 
that it remains isothermal. 

The advantage of the formulation in terms of the expanding coordinates is that we can 
now readily treat the real case in which the thermally active layer rests on top of a continuum 
which is itself undergoing gross strain. If the ice mass as a whole is undergoing longitudinal 
strain-rates Ei relative to the real coordinates Xi, then it is undergoing longitudinal strain-rates 

aT 
i. " = i.· - a-

t t at' (8) 

relative to the thermal stress-free system x/. We shall not enter here into any treatment of 
shear stresses: the shears in the vertical plane are in the case of an ice shelf anyway negligible, 
and shears in the horizontal plane may be eliminated from the analysis by choosing Xi along 
the principal axes. The orientation of the principal axes is unaltered by the transition to the 
frame x/ . 
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We are now in a position to make an analysis of stress. An elastic model is unrealistic, 
since ice responds elastically only over a time scale of 5 to 10 s (Gold, 1958) . We shall there
fore consider creep, and for high-density ice we shall use as flow law the form most widely 
accepted on the basis of theoretical expectation and experimental confirmation, that IS 

(Paterson, 1969): 

(9) 

In this equation, expressed here relative to the system xi', we have an expression for the 
strain-rate it' as a function of the stress deviator C1t*, the temperature T, and the effective 
stress T. The quantities A, Q, and n are empirically determined constants and R is the gas 
constant. 

The use of the stress deviator C1t* instead of the stress ai expresses the observed fact that 
strain-rate is independent of hydrostatic pressure, and is related only to the deviation of stress 
from hydrostatic pressure (Rigsby, 1958). The two quantities are related by: 

C1i* = at -t(al + C12+ a3). ( 10) 

The Boltzmann exponential term in Equation (9) expresses the increasing ductility of ice 
as temperature increases (Glen, 1955). 

The effective stress T arises from the second invariant of the stress-deviator tensor, which is 
expressed by: 

The term T n- I appears in the flow law as a result of general requirements on the form of 
flow law allowable (Nye, 1957; Glen, 1958): because randomly oriented polycrystalline ice 
(which is what we are assuming glacier ice to be) is isotropic the law must be independent of 
axis orientation and therefore be expressible as a general relationship involving only the three 
invariants of the stress deviator and the strain-rate tensors. On requiring that under given 
stress conditions the components of strain-rate be proportional to the components of stress 
deviator, following the Levy-Mises equation, we find that we may eliminate terms involving 
the third invariant; and we find also that by Equation ( ID) the first invariant vanishes 
identically, so that we are left with a relationship involving only the second invariants. We 
posit: 

with i' arising from the second invariant of the strain-rate tensor 

2i'2 = £/2+ i 2'2 + i/2+ 2(£I2'2+ i 13'2 + £2/2) 

and it has been found by experiment that n lies in the range between 1.5 and 4.2 for conditions 
of steady-state deformation. The experimental results are summarized in, for instance, 
Weertman (1973). We shall ignore here the possibility of fatigue hardening, for which no 
evidence exists, and shall ignore any transient flow characteristics; such transients correspond 
to the time taken to establish stable deformation mechanisms in secondary creep and generally 
die out in a few hours (Glen, 1955). We shall use here the value ofn = 3. 

For the purposes of the analysis in hand we can treat stresses as invariant under the 
transformation between frames Xi and xi'. This is justified because stress has dimensions 

Force 
- = [MJ[TJ-2[L] -I . 
Area 

Now mass and time are invariant between (slowly moving) inertial frames, and although 
length is not strictly invariant since we are transforming between relatively expanding frames, 
it will be seen that we are dealing with strains in the order of 10- 3, so that errors arising from 
the treatment of stress as invariant are tiny. 
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Because the volume of ice is changing we no longer have the familar equation for the null 
divergence of the velocity field 

but instead have the equation 

where 3a oT/at represents the rate of change of volume per unit volume. However, by 
substituting Equation (8) into Equation ( 13) we find 

£1' + i 2' + i/ = 0 

in the stress-free frame, as one might expect. 
Through Equation (9) this means we have also: 

cr 1* + cr2*+ cr/ = o. (14) 

We proceed as follows. At a point, the factor A exp [-Q/RT] 7 2 in Equation (9) is the 
same for all components cri*, and we can therefore write it as y and say: 

i/ = ')'0'1*' 

and 

Hence 

or 

where 

From Equation ( 14) we can write 

cr3* = - (cr,* + cr2*), 

and hence by Equation (15) 

so that we can express 7 in terms of ex and cr,*. Shear stresses are being assumed negligible so 
that Equation (I I) becomes 

and therefore we have 

272 = [1 + ex2+( I + ex)2] cr,*2, 

by virtue of Equations (15) and (16), leading to 

7 2 = ( I + ex + ex2) cr,*2. ( 17) 

Our expression for strain-rate as a function of stress deviator is then, by Equations (9) and 
(17) : 

i/ = A exp [- Q/RT](I + ex + ex2) cr,*2cri*. 

We can therefore calculate thermal stresses according to the formula 

* _ (il' exp [Q /RT])! 
crI - A ( I + ex + ex2) , 

and use Equation (15) for the other principal stress cr2*. 
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We notice that I +0(+a2 is necessarily positive non-zero, and so cannot lead to a 
singularity. 

Numerical results for stresses 
Equations ( 18) and ( 15) can now be used to calculate the thermal stresses associated with 

realistic values for the parameters T, aT/ at, El> and E2 • To begin with we shall look at the 
case of an ice sheet not itself undergoing gross strain. That is: 

and therefore by Equation (8) 

E/ = E2 ' = - a aT/at. 

I depth 3.0m ~ ~ ~ 
oof--------f~~~--_+r------4_ \+~++~------~_F~~/ ----+_ \ ____ ~C)~---------. ___ :J ~OU OU~ c:::=== 

-0.5 

I depthl, .Om ~ ~~ • 
o.ot=====-=-~--7"c'-------.-J---f=----=:....::::~---\-v-r=-=-----_-.J~r---ftc:::===-----

I depth 5.0 m ,---- ~ 
O.OE==========:::::;;;-;::------------4:~===::::::=---

00~~==~d~e~p~th~10~.0~m======================~==================================~~= 
month of year 

I [ 

F M A M A 5 o N 0 

Fig. 6. Progress of the stress wave-.form through the top IO m of a glacier, for the case of a glacier not undergoing gross strain. 
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Thus 

IX = I, 

and the stresses are 

0"1* = 0"2* = _(a (a T/ at ) :~p [Q /RT]Y, 

with a = 5.3 X 10- 5 deg- I (Hobbs, 1974, p. 347), Q/R = 7.293 X 10 ' deg (Weertman, 1973), 
and A = 1.05 X 10- 12 N - 3 m6 S- I (from Paterson, 1969, p. 83). 

The value used here for A is at the upper end of the range found experimentally 
(Weertman, 1973); stresses calculated from it are therefore the minimum to be expected. 
Figure 6 shows the stress as a function of time of year for depths 0.5, I, 2, 3, 4, 5, and 10 m. 
Figure 7 shows the values of (a) the maximum magnitude of stress 10'* I max occurring over 

stress {bars J 

0.0 0.5 1.0 1.5 

5 

\ 

E 
\ 

\ 

:: \ egy 
Cl. \ Cl> 
u 

\ 

10 \ 

Fig. 7. Comparison oJ therm.al stress with overburden pressure, as a Junction oJ depth. 

the year, (b) the mean magnitude of stress ~ over the year and (c) the overburden pressure 
- pgy due to overlying ice. It is seen that in the top 3 m of surface cover, stresses of thermal 
origin dominate those due to the weight of ice above. The mean stress over the year taking 
account of sign is very nearly zero: it is not precisely zero, since the symmetry of the surface 
temperature form is destroyed by the effects of selective phase delay of the temperature waves, 
and this combined with the cubic form of the flow law leads to a net bias of compressive stress 
over extensive stress at most depths. The magnitude of the effect is however entirely negli
gible, having a value at 3 m of 0.005 bars. 

We consider next the case of an ice shelf undergoing gross strain. Strain-rates measured 
on George VI Ice Shelf are typically in the order 

El = - 6 X 10- 3 a - I = - 1.9 X 10- 10 S- I, 

E2 = 2 X 10- 3 a - I = 0.6 X 10- 10 S- I, 

(personal communication from J. L. W. Walton) . The minus sign denotes compression. 
Use of these parameters in Equations (18) and (15) leads to the graphs in Figure 8. 

These results show that in the top 2 or 3 m of a glacier the thermal effects lead to stresses 
alternating quite rapidly between extensive and compressive, and these alternations are 
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enough to dominate the stress due to dynamic creep even when there is an overall strain of 
some ± IQ- IO S- I present. Such a strain is moreover at the upper end of the range of strain
rates to be expected on ice shelves (see for instance Thomas, 1973, table I ) . 

We can therefore safely say that, in the top 3 m of ice cover, stresses due to temperature 
change dominate those originating both in gross deformation and in weight of overlying ice. 
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.c 

depth 1.0 m 

depth 2.0 m 

depth 3.0 m 
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, ~ ," J 
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: :1 -'-.,,"-'0 ~-- -------'~ ' - '------/ J - _ _ - - - --
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0 .5~ depth 10 .0 m 

-: :~~~----------------------- ------------------------ ------ -- ---------------------------------------------------- -- -- --------------------------
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F A A 5 o N o 
Fig. 8. Progress of the stress waviform through the top ID m of a glacier, jor the case cif a glacier undergoing gross strain-rates 

£1 = - 1.9 X 10- 10 r l and €, = 0.6 x 10- 10 r I , The solid line shows the stress along the major principal axis, and the 
dashed line shows the stress along the minor axis, 
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Effects of the stresses 

We now have a picture of the surface cover of a glacier undergoing quite pronounced 
alternating compressive and extensive stress throughout the year. What effects can such 
stresses have? First of all let us determine whether our assumption that no tensile fracture 
occurs was justified, and then proceed to consider the possibility of other modes of permanent 
deformation. 

We have found that thermal stresses in high-density ice are generally in the order of 
0.5- 1.0 bar, and in any case always less than 4 bar; the corresponding strain-rates are less 
than 5 X 10- 9 s- '. The fracture behaviour of ice has been studied under conditions both of 
constant applied stress and of constant applied strain-rates. Butkovich (1954) finds the 
critical fracture stress under tension to lie in the range 13.7 to I B. 7 bar for the temperature 
range 0 to -40°C, and Gold ([lg71] ) finds that the critical strain-rate under compression is 
about 10- 7 s- '. We can therefore say that for high-density ice in the temperature range 
considered it is unlikely that fracture under thermal stress can occur unless local inhomo
geneities cause stress concentrations. 

The assumption of no fracture is therefore validated and we can consider the effect of the 
stresses as calculated. Let us look at the possibility of the formation of surface rumples due to 
buckling and boudinage under stress. This would be an effect analogous to the formation of 
rumples in the surface tarmac of a road during a heat wave. 

It might at first be objected that the magnitude of strain involved, which is in the range 
10- 4 to 10- 3 in the surface four metres, is too small to result in fold formation of significant 
amplitude, for geological orogenesis is generally concerned with continuing compressive 
strains of the order of 5 % to 25 %, or about 10- '. A strain of 10- 3, which anyway fluctuates 
about zero strain, might seem unlikely to result in folding of appreciable magnitude. An 
order-of-magnitude calculation shows that in fact such strains need not be insignificant: 
consider the case of a flexible incompressible bar, pinned at its ends and undergoing thermal 
expansion (this is the well-known problem of the buckling of railway tracks when warmed). 
Assuming that a straight bar distorts into an arc of a circle we find (Fig. g) that a small strain £ 

in a bar oflength L results in a deflection h at the highest point of 

h = (3£/B) ~L. 

L 
0---------------------------0 

unstrained 

h 

- strain e:-

Fig. 9. Buckling oJ a pinned incompressible bar subject to compressive strain. 

For the case of strain 10- 3 this amounts to o .olgL, or a deflection ofB.7 m for rumples 
of wavelength 450 m, and of I 9 cm for rumples of wavelength 10 m. These are large deflec
tions. The model of a pinned incompressible bar does not, of course, correspond closely to 
reality ; nor does the model we used above to calculate stresses on the assumption that deforma
tion is perfectly homogeneous pure shear, for it emerges that such deformation is generally 
unstable to the formation of folds. Reality lies somewhere between the two models, so that we 
should expect some buckling inhomogeneity to occur, but with an amplitude less than o.olgL; 
the model of a flexible bar sets an upper limit, perhaps a generous upper limit, on the allowable 
amplitude. 
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Let us try to calculate a wavelength for buckle formation. There is a fairly extensive 
literature on buckling and orogenesis of visco-elastic media under stress, due largely to Biot 
(1961 , 1965). The resulting predictions have been used before for glaciological applications: 
the surface undulations on the Ross Ice Shelf have been modelled as a gross folding of the ice 
shelf under compression (Kehle, 1964), and surface rumples on the Meserve Glacier, 
Antarctica, have been modelled as due to compression of a medium with exponentially 
decaying viscosity with depth (Holdsworth, unpublished). More recent work (Smith, 1975, 
1977) has stressed the importance of the fact that the material in question is non-Newtonian 
and it is Smith's development to which we shall refer. 

We shall need to look at the profiles of stress and viscosity with depth at various times 
during the year. For the "viscosity" of a non-Newtonian material we shall adopt the para
meter "effective viscosity", which characterizes the relationship between an increment in 
stress, Dcr*, and the resulting increment Di in strain rate. For an increment in longitudinal 
stress acting against a background of longitudinal stress this quantity is given by 

ocr* 
1) = a;' 

or, using the results found earlier in this Section, 

exp (Q/RT) 

and, for et = I, 

exp (Q/RT) 
1) = 

-1.0 0.0 .1.0 -1 .0 00 .1 .0 

5 

depth 
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Fig. 10. Stress as afunction of depth for six days of the year. 
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Inspecting the profiles of stress and of viscosity against depth (Figs 10 and I I ) we see that the 
form is essentially that of a series of two or three layers of som e 2 m thickness, alternately in 
compression a nd extension at stresses between 0.5 and I b ar. The form of Equation (19) 
used for the viscosity leads to singularities as the stress d eviator CJ,* passes through zero, 
implying that the viscosity b ecomes infinite at these points; this feature is due to the cubic 
form adopted for the power flow law, and disappears if we consider ice to show more nearly 
Newtonian behaviour at low stresses, as found by Butkovich a nd Landauer ( 1960). Apart 
from this feature, the viscosities of successive layers show a steady but quite minor increase 
with depth . 

10'-

5 
May 22 July 21 March 23 

deplh 

m 

10 10 10 

effec l ive vi scos ity • 
10'0 I N m'; s ) 10'5 2 x 1015 0 10'5 2.1 0'5 

0 

5 5 5 

Augu s t 20 

10 10 10 

Fig. If . Effective viscosity as a fUllctioll of depth for six days of the year. 

Figure 12 shows the type of stress model we would wish to analyse, although, since the 
form of stress with depth is continually changing, we cannot expect to make an analysis of 
buckling behaviour which will be precisely valid throughout the year. The model of Figure 12 

is further complicated by the fact that our analysis of stress has considered successive layers 
to be in differently expanding coordinate frames, so that there are difficulties in expressing the 
boundary conditions at an interface. The treatment of buckling behaviour proceeds by 
considering the instability of small perturbations in the interface between two layers; we 
find out the rate at which a small perturbation grows or decays under the stress conditions 
applying, and thus determine the initial growth rate as a function of the wavelength of the 
perturba tion. The waveleng th which has the greatest initial growth rate is identified as the 
" dominant wavelength", and it is this wavelength which we should expect to find occurring. 
From the a nalysis of Smith ( 1975) we can see that the primary driving force of interfacial 
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d 

stress free 

Fig. I2. Schematic diagram of a typical surface thermal stress state. 

instability arises from a discontinuity in longitudinal stress deviator in passing from one layer 
to another; in his analysis, which is for homogeneous pure shear of a stratified viscous block, 
the stress discontinuity arises through the requirement that a stratified block of layers of 
different viscosities deform at a uniform strain-rate. The layers must therefore sustain 
different longitudinal stress deviators. In our case we again have an interfacial stress discon
tinuity, indeed a larger one, in which successive layers are under stresses of opposite sense. 
In the absence of a precise analysis, the most we can say is that such a physical situation would 
seem very likely to lead to buckling instability. As to the wavelength, we can make a fairly 
firm order-of-magnitude estimate by making a general survey of the results from the many 
possible models of buckling which have proved susceptible to an exact analysis (Fig. 13). It is 
found in general that the dominant wavelength is primarily a function of the layer thickness, 
and is very insensitive to other factors: it depends in a minor way on the viscosity ratios of 
successive layers, on the conditions of stick or slip at the boundaries, and, if gravitational forces 
are taken into account, on the ratio of deviatoric stress to gravitational stress. It is found, 
however, that for all but the most extreme cases we have a ratio Lld of buckling wavelength L 
to layer thickness d of between 4 and 6. 

Since we are concerned here with layers of thickness approximately 2 m we can assert that 
any surface rumples which are the result of thermal stress may be expected to be of wavelength 
between 8 and 12 m. Thermal stresses do not, therefore, provide an explanation of the rumples 
of the wavelength found on ice shelves. 

Analyses of buckling behaviour invariably restrict themselves to "incipient" buckling
that is, the initial growth rate of infinitesimal perturbations. No attempt is made to quantify 
post-buckling behaviour, and for this reason no estimate is made of the amplitude of folding 
at a late stage in the process. The fact that in our case the ice is undergoing periodic extension 
and compression instead of steady stress may increase the growth rate of rumples: for the 
formation of rumples under compression will result in regions of thinner ice in which stress will 
concentrate when the system is placed under tensile stress. The rumples should be accentuated 
by a process of necking. There is also the possibility of melt water and accumulation finding 
their way into fissures in the ice (Shumskiy, 1955) ; such processes would render the process of 
expansion and contraction irreversible, and lead to compressive stress dominating. This is 
especially true in the case of melt-water percolation, which will lead to additional stresses due 
to the volume change on freezing. 

For an unstraining ice mass we can say nothing about the preferred orientation of rumples 
since there is perfect symmetry in the horizontal plane, but we might expect quasi-hexagonal 
patterns as with cracks in frozen ground. For a straining ice mass we should however expect 
the rumples to form perpendicular to the principal axes oflongitudinal stress, for these are the 
directions in which the total stresses are a maximum. 
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(01 superficial layer 
-L-

L - 4.3 d 

(b I embedded layer 

--L--

folds boudins 

-.:;;;. 

-1r.%'11:::::i::::::·i:::il: ::1:::::-
inverse folds mullions 

L - 5 d 

Fig. 13. Modes of buckling under stress,' (a ) viscous layer resting on a semi-infinite viscous medium (Biot, 1961) ; (b ) non
Newtonian layer embedded in an infinite non-Newtonian medium (Smith , 1975, 1977). The shaded areas represmt the 
more competent (more viscous ) medium. 

5. THERMAL STRESSES IN FIRN AND SNOW 

Calculation if stresses 

We shall now pass on to an analysis of thermal propagation and stresses in firn and snow. 
As pointed out in Section 3, the effective diffusivity of firn of density about 0.50 Mg m- 3 is 
not significantly less than that of the high-density ice already treated, so the analysis of 
propagation of temperature waves can be carried over without modification. We can also 
retain the value quoted for the expansion coefficient a, since a connected structure of matter 
with air spaces expands at the same rate as a solid body of the same matter (it is just a matter 
of geometrical enlargement). Thermal strain-rates therefore remain the same. Since there is 
something of a contradiction in assuming that a firn layer could be subjected to the tempera
ture wave of our Fossil Bluff model and yet remain firn , when in fact Fossil Bluff is a region 
of extensive summer melt, we shall also look at the effect of surface temperature waves 
corresponding to more realistic lower mean annual temperatures. We shall do this simply by 
reducing the term To in Equation (5) from - I I QC to - 2 I QC and to - 3 I QC, but retaining 
the other parameters relating to the fluctuation of temperature about this mean. 

We shall not be able to follow the stress analysis of Section 4, since (a) the rheology of 
firn is not the same as that for ice, and (b) we shall find that we can no longer assume, as we 
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could for high-density ice, that no tensile fracture occurs. To show this let us look at the flow 
and fracture behaviour of firn, and in particular its behaviour under tension. 

Detailed study has been made of the densification of snow under compression, which can 
occur by a number of mechanisms, for instance: melting and refreezing; grain-packing by 
rearrangement; evaporation and condensation; grain-boundary diffusion of molecules; 
volume diffusion of molecules; plastic flow; and viscous flow (Anderson and Benson, 1963) . 

In the case of snow, densification proceeds primarily by the process of readjustment and 
closer packing of grains, while simultaneously there is the continuous process of "spheroidi
zation" of grains, which occurs by processes such as evaporation and condensation, diffusion, 
and plastic flow. Grain packing continues until a critical dose-packing density is approached, 
at a porosity of around 36- 40 % . After this point densification must proceed by mutual 
intrusion of particles (Benson, 1962). 

Feldt and Ballard ( 1966) have summarized the laboratory and field results for the consoli
dation of snow and have provided a theoretical formula in good agreement with these results 
which treats snow as subject to Newtonian (viscous) flow characteristics and as having a 
macroscopic coefficient of viscosity calculable according to: 

'Y] (1 -bp) 
'Y]c = - ---, 

v p 
where p is the porosity of the snow, and band 'Y] /v are empirically fitted constants. This form 
of relation is derived on the assumption that flow is dominated by the process of viscous flow 
of inter-particle bonds, and proceeds according to this until the critical density is reached. 
The critical porosity of 36-40% corresponds to density between 0.59 and 0.55 Mg m - 3• 

The parameter 'Y] / v is strongly temperature dependent, so that snow becomes rapidly 
more viscous at low temperatures; experimental data from various sources are given by 
Feldt and Ballard ( 1966, p. 156), and are plotted here in logarithmic form against temperature 
(Fig. 14) . A straight line has been fitted to this logarithmic plot. The data show a large 
degree of scatter, owing to the many factors which can affect the viscosity of a snow sample of 
given density and temperature; its method of formation or preparation, its degree of age
hardening, its grain-size, and also the rate of loading used when testing it. The best value for 
b was found to be 1. 78. 

10'8 

10'7 

V> 
N 

E 10'6 
Z 

10'5 
o 0 

~ 
~ 10" 

10" 

10" 

10'oO'--'---:-':--- L-----::'::---'---:-:'::-- ---'-------'-::----'---- --::-::-

temperature ' c 
Fig. I4. Logarithmic plot of ", I v agaillst temperature, to determille the relatiollship between SIlOW uiscosiry alld temperature. 

DataJrom Feldt alld Ballard ( [966). 

https://doi.org/10.3189/S0022143000013836 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013836


TH E RM A L STR ESSES I N A GLA C I E R 

Literature on the tensile behaviour of snow is spa rse. It has however been shown 
(Shinojima, 1967) tha t behaviour under tension is only slightly different from that under 
compression . He finds, admittedly in a different range of densities and stresses, tha t the 
coefficient of viscosity under tension is typically greater tha n that under compression by a 
factor of 1.61 but shows the same dependence on density a nd temperature. T he greater 
viscosity under tension h as been explained (Salm, 1975) as due to the fact tha t the mechanism 
of flow assisted by pressure m elting under compression is n o longer availa ble. If we combine 
all these findings we can construct a genera l empirical formula for the effective macroscopic 
viscosity 7]e of firn under tension : 

or 

7] ( I - bp) 
7]e = I.6 17]c = 1.61 -'-'----=--'vp 

( I - q 8p) 
7]e = 3·59 X IO lOexp ( - 0.3450) , 

P 
where 0 is the temperature in degrees Celsius. O n this basis we can proceed directly to the 
stresses resulting from the strain-ra tes caused by tempera ture variations. In considering the 
possibility of fracture under tension, we sha ll be concerned not with the average stresses 
occurring in the fi rn cover , but wi th the m aximum stress occurring during the year ; for a 
crack to form we only require one occasion on which the cri tical fracture stress is exceeded . 
We calculate the stresses using the strain-ra tes used in Section 4 and the viscosity of Equation 
(20). Table I shows the m aximum stress calculated in this way, and also a "typical" value of 
high stress occurring during the winter period, when m os t of the high stresses occur. By 
" typical" we mean here a value of stress w hich is exceeded o n 50 d out of the 365 d during the 
year, a nd is therefore quite a common occurrence. T hese stress values are calculated for three 
different temperature regimes: those with mean annual temperatures of - I 1°C, - 2 I QC, and 
- 31°C . 

T he effect of tempera ture reduction is dra matic, to the extent tha t, if we assume n o 
cracking occurs, then stresses a t the surface attain absurdly high levels. If indeed no fracture 
did occur then we should expect these la rge stresses, a lternately tensile a nd compressive, to 
play a n influential role in the diagenesis of snow, for they a r e well in excess of the stresses due 

TABLE I. T H ERMAL STRESSES SET UP I N F I RN, FOR T H REE VA LUES OF MEAN ANNUAL T E MPE R ATURE. 

THE DIV[SION LI NE SH OWS T H E DEPTH TO W HICH CRAC K [ N [TlATION [S POSSII3LE 

T o = [ 1°C To = - 2 1°C T o = - 3 1°C 

Ty pical M aximum Typica l Maximum Typical Maximum 
D epth y stress stress stress stress stress stress 

m bar ba r bar bar bar bar 

0 4·5 820 150 3 X 10' 5 X [ 0 3 9 X 10 5 

! 0 ·33 4·9 [[ [60 36 [ 5 X 10 3 

0. 1 I 0.29 3· 7 9 .6 12 1 3 18 

2 o.o[ 0 .02 0.2 7 0.65 8·9 2 1.5 

3 0.00 0.00 0 .08 0 ·[ 3 2·5 4· 3 

4 0.00 0.00 0 .00 0 .02 0.6 1 0.62 
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to overburden of snow; we could picture the surface cover of a glacier as undergoing a vigorous 
alternating stress, which must result in accelerating of grain rearrangement and more rapid 
firnification. Let us however consider the possibility that fracture occurs and relieves the stress. 

The tensile strength of firn has been studied (Butkovich, 1956) and is found to be a function 
of density and temperature: the fracture stress is found to increase quite rapidly with increasing 
density, and to depend on temperature only by a factor of about 0.9 % deg- '. For firn of 
density 0.50 Mg m- 3 and temperature between - IOoC and -40°C we find the tensile 
strength to lie in the range 4. I to 5.2 bar. 

Table I shows stresses present as a function of depth, and we see that for To = - I 1°C 
tensile cracking can be initiated down to just over 0.5 m depth; for To = - 21 °C it can be 
initiated down to I m depth; and for To = -31 °C it can be initiated down to 3 m depth. 
Once initiated, we should expect the process of stress concentration at the tip of a crack to 
allow it to propagate well beyond the region in which the fracture stress is achieved (Parmerter, 
1975) and its eventual depth will be governed by the same rules as apply to crevasses 
(Weertman, 1977). Indeed the thermal crack will become a crevasse, and this observation 
leads to a possible explanation of the initial stages of formation of a crevasse, for crevasses are 
often found to form in places where the tensile stress driving gross deformation does not exceed 
4 bar, which is the minimum stress required to initiate a crevasse. The very high thermal 
stresses are enough to "nucleate" crevasses, which can then grow if the gross stress conditions 
are suitable. 

6. EVIDENCE 

There is certainly direct evidence that the propagation of temperature waves through snow 
and ice can give rise to more than just gentle expansion and contraction: Swithinbank (1957, 
p. 25) remarks on narrow cracks in surface snow observed only during winter on the Maudheim 
Ice Shelf and suggests that they are the result of thermal contraction; seismological observa
tion in Antarctica (Kaminuma and Takahasi, 1975) have shown that the propagation of the 
nocturnal cold wave gives rise to pronounced seismic events as the ice expands and contracts, 
especially when the temperature drops below -35°C. This is evidence that the formation 
of thermal cracks is likely, but the hypothesis of thermal straining and cracking also provides a 
satisfactory explanation of some otherwise unexplained experimental phenomena. Robin 
(1958, p . 48- 50) and Kapitsa and Sorokhtin (1963) experienced unusually high seismic 
background noise when carrying out seismic shooting in regions of surface temperature 
below about -30°C. Ifwe consider our calculations of stresses to be properly significant only 
below about I m depth, owing to the considerations mentioned in Section 3 and the fact that 
the surface snow is largely recent and unconsolidated, then our Table I provides an explana
tion of why significant fracture occurs only at temperatures below about - 30°C. It has also 
been found (Bentley, 1964, p. 344) that the amount of seismic noise at "Little America" 
station and at "Byrd" station shows seasonal variations, and is at a minimum during the early 
summer. The mean annual temperatures at these stations are - 22 °C and - 28°C respectively. 
It is possible that thermal cracks close up and weld themselves together during the summer, 
and only form again as winter approaches and stresses again reach the fracture strength. 
On the high plateau, at mean annual temperatures of about - 60°C, the fracture strength is 
reached throughout the year and seismic shooting noise is present always. 

We shall now try to say something about the width of a purely thermal crack and the 
character of the strain-rate field surrounding it. Let us consider a field of thermal cracks at 
spacing A (Fig. 15). They will open and close as temperature fluctuates, but the width of 
opening depends on the degree to which ice between cracks is free to expand and contract. 
At the very surface, immediately on the boundary of a crack, the ice is free to expand and 
contract in response to fluctuations in air temperature, but any disturbance is attenuated with 
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), 

Fig. J 5 . Diagram of the strain-rate field surrounding cracks undergoing thermal strain; appreciable strain occurs within a region 
of order Yo JUrrounding a crack. A wire strainmeter with its end units in the viciniry of a crack will register an anomalous 
apparent strain-rate. 

depth owing to the conduction properties already analysed and is also attenuated with 
distance inwards from a crack according to Saint Venant's principle concerning edge effects. 
Depth attenuation is frequency dependent, and occurs according to exp [-y(w/2k)iJ. We 
can therefore define a "skin depth" Yo, in analogy with electromagnetic theory, asyo = (2k/w)! 
representing the depth a t which temperature effects are attenuated by a factor I /e. We shall 
use this skin depth as a characteristic distance for the attenuation of thermal effects in the y 
direction, and shall make the further assumption that it also characterizes the attenuation 
with distance inwards from a crack, in the x direction. This is a way of expressing the principle 
that edge effects generally die away beyond the order of a " few thicknesses" from a free 
boundary. This means tha t we can approximately represent the strain-rate field as a function 
of x and y by 

EXX (X,y ) = (Exx ) 0 exp (-y /Yo) exp (- r/yo), 

where (EXX )O is the strain-rate which a free ice mass would undergo if subjected througho ut to 
the surface air temperature fluctuation , and 

r = ).. /2- lxl, 

is simply the distance away from a crack. 
W e can now calculate the rates of opening of cracks: we take the origin of coordinates as a 

stationary point by symmetry considerations, and then integrate strain-rate with respect to x 
to find the rate of movement Ve of a crack edge. This gives, for the surface, y = 0, 

iI/ 2 

Ve = J ExX (X, 0) dx 
o 

il/2 

= (EXX)O J exp [-( ).. / 2 - lx i) /yo] dx 

o 

= (EXX)oYo [I - exp (- " /2Yo)], 
and provided that " ~ Yo, i.e. that the crack spacing is very much greater than the skin depth, 
we can write 

Ve = (EXX) oYo, 
meaning that the velocity of opening and closure of a crack is: 

2Ve = 2 (EXX ) oYo' 
For the final maximum width W of a thermal crack we can write 

iI/2 

W = 2(EXX) max J exp [- ( " /2 - lx l)/yo] dx, 

o 
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where (EXX)max is the maximum strain of a free ice mass. This reduces to: 

W = 2 (EXX)maxYo' 

To make quantitative estimates we shall need values for skin depth. Many different fre
quencies of thermal fluctuation are present, with many different associated skin depths, but for 
the purposes of round numbers we shall look first at the case of a surface temperature oscilla
tion of amplitude 7 deg and of period about one month, for which the associated skin depth is 
about one metre. We find that: 

and 

and therefore 

2 Ve ::::! 1.6 X 10- 9 m S- l 

= 0.14 mm d- I • 

The maximum width of opening, in the absence of enhanced opening due to gross deforma
tion, is: 

W= 1.4 mm. 

These figures refer to a temperature wave with skin depth 1 m , so may be taken to give the 
order of magnitude of crack parameters in the region of the top metre and over a period of 
about one month ; shorter-period waves give rise to more rapid, but smaller, opening and 
closing, and longer period waves give rise to slower, but larger, opening and closing. We 
expect the true maximum width of a crack to be determined by the cycle of longest period 
(which has the greatest skin depth and hence the greatest horizontal extent) . An annual cycle 
of amplitude I I deg, and skin depth 3.3 m, gives rise to a maximum crack width of 7.7 mm. 
A crack of width the order of a few millimetres is easily wide enough to present an effective 
reflector to seismic waves, for the amplitude of firn oscillation due to the passage of a seismic 
disturbance is of a very much smaller magnitude, and is insufficient to bridge the air gap. 

Thermal straining is also of sufficient magnitude to provide a possible explanation of some 
anomalous effects encountered in work with recording wire strainmeters (Evans and others, 
1978) . In this work, strainmeters with gauge length 5 m were set up on the Barnes Ice Cap 
with a view to evaluating the consistency of strainmeter results with results obtained using 
more conventional stake networks over longer gauge lengths. It was found that strainmeter 
readings were subject to an unexplained fluctuation with a period of some lid. Strain
meters were set up on solid ice after clearing I m of surface snow, and the temperature of the 
strainmeter was monitored. Insufficient temperature data were recorded at the time to be 
able to establish a definite connection between temperature variations and strain-rate fluctua
tion, but it is extremely likely that it was caused by some effect connected with weather 
conditions in the area, since the fluctuation shows up practically simultaneously on the traces 
of three independent and quite widely separated strainmeters (some IQ km apart). It cannot 
therefore be simply a local strain-rate anomaly, and the hypothesis that the fluctuations are 
due to the passage of a kinematic wave leads to unreasonably large wave velocities. It is 
remarked in the paper that "cracks of up to I cm width, and exhibiting progressive opening, 
were observed. The snow pack was split above most cracks, indicating opening during the 
winter ... orientation tended to be variable". The facts of irregular orientation and opening 
during the cold of the winter are quite strong indicators that the cracks are of thermal origin, 
although the fact that they occur in high-density ice contradicts our earlier assertion (Section 
4) that thermal stresses cannot achieve the fracture strength of high-density ice. However, the 
origin of the cracks is irrelevant to their subsequent flexure under thermal stress. The spacing 
of the cracks was of order 5 m and the strainmeters were always set up so that although they 
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were often close to cracks their line of action n ever actually crossed any. Gross stra in-rates 
observed were of the order of 10- 10 S- I and fluc tuating strain-ra te was of a mplitude about 
2 X 10- 11 S- I a bout this value, with a n apparent period of a bout I I d , although all these 
statistics are based on a data se t covering only 2 1 d . 

Consider a stra inmeter se t up as in Figure 15, with the two end units set up a t distance 0 
away from a crack. By integra tion of Exx between the stationary origin and the stra inmeter 
end units we find that the velocity V8 of an end unit is given by 

A/2 - 6 

V8 = I (Exx)o exp [- (A/2 -lxJ)uo] dx, 
o 

or 

for 

,\ ~ Yo ' 
The rela tive velocity of the two end units is ther efore 

2 V8 = 2 (EXX) oYo exp (-SUo), 
and the apparen t strain-rate registered, calcula ted for the entire gauge length of A- 20, IS 

2 (EXX)oYo exp ( - SUo) 
EXX = -,-_ :..:..c:;::....;:._ ....:...,,...:-_ .::::....::.:. 

A- 20 

The distance 0 is unfortuna tely not known, and is also a critical p a rameter in the expression 
fo r EXX ' H owever , since the crack sp acing on the Barnes Ice Ca p was of the order of 5 m and 
this is a lso the gauge length of stra inmeter being used , it is fair to say that strainmeter end 
uni ts must often have been in the "vicinity" of cracks- tha t is within one skin depth of them. 
For a wave of period I I d the skin d ep th is 0.58 m , and we shall carry out the calcula tion for a 
wave of amplitude 3 deg, corresponding to tha t recorded on the Ba rnes Ice Cap. So, we take 
o as 0.58 m, a nd take the gauge leng th to be 5 m. Then 

Exx = 9 X 10 - 1 I S- I , 

m ay be taken as a rough es tima te of the apparen t stra in-ra te due to thermal effects. It is seen 
that this is easily of sufficient m agnitude to account fo r the flu ctua tion observed, and is indeed 
la rge enough to accoun t for all the stra in-rate observed , including the gross strain a bout which 
the fluctua tion occurred. I t is unlikely for the case of the Ba rnes I ce Cap tha t the gross 
stra in-ra te is connected with thermal activity, since conventiona l, long gauge-leng th strain 
rosettes were found to give fa irly acceptable agreem ent with stra in m e ter results. It is clear 
nonetheless tha t thermal stra ining in the vicinity of cracks can be of a t least the sam e order as 
gross dynamic stra in, and steps should be taken to a void it by use of long gauge-len g th strain 
ne tworks or stra inmeters set up well away from a ny crack, or to eliminate it by taking enough 
m easurements (o f tempera ture, cross-correla ted stra inmeters, crack location and activity, 
etc. ) tha t temperature effects are known and therefore subtractible . 

7. CONCLUSIONS 

Let us summa rize our findings : 

H igh density ice ( T o = - I I QC) 

(i) T herma l stresses are apprecia ble within the top 3 m and a re generally in the range 
0·5 to 1.5 ba r. 

(ii) Fracture cannot occur unless assisted by stress concen tra tions. 
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(iii) Conditions are favourable for the formation of surface rumples of wavelength about 
IQ m and initial amplitude less than 20 cm. This is therefore not an explanation for 
the melt pools described. 

Firn and snow regions ( To below about - 20 QC) 

(i) Thermal stresses are dependent on temperature and often exceed 4 bar in the top 3 m. 
(ii) Fracture can certainly occur, and propagate itself. 

(iii) Thermal stresses and strains provide explanations for: 

(a) observations of surface cracking during cold weather; 
(b) seismic shooting noise in cold polar regions; 
(c) initiation of crevasses in regions of relatively low overall stress; 
(d) anomalous strain-rate measurements near cracks. 
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