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Abstract. Mass loss on the AGB removes most of the envelope and leaves a compact remnant to
become a white dwarf and perhaps first the central star of a planetary nebula. The envelope mass
provides an upper limit on the material available to form the PN, and the terminal mass loss rate
plus the small remnant mass left on the core determines how much of that would still be available
to form the PN after the star has evolved far enough to the blue. Given a mass loss formula
based on observations or models, we can find the deathline where −dMstar/dt = (M/L) dL/dt
and can find the contours of constant mass loss rate on a plot of M vs. L. From such plots we
can derive the mass available for a PN and the lowest mass single star that can produce a PN
of a given mass. However, some details important for PN formation remain uncertain, including
the maximum mass loss rate achieved and the envelope mass left when AGB mass loss ceases.
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1. Introduction
The study of mass loss on the AGB for single stars can yield several results of interest

for the study of planetary nebulae: (a) the timing of mass loss (all at the end, or spread out
over RGB/AGB evolution) can affect the composition of the nebula; (b) the luminosity
and core mass of a star that has reached devastating mass loss rates determine the masses
of planetary nebulae nuclei (PNNi) from single stars (if any) and, generally, the initial-
final mass relation; (c) the maximum rate of mass loss achieved gives some limits on
which stars could possibly form PNe without companions; and (d) the final rates of mass
loss have a bearing on the transition time for the central star from the AGB to the region
of PNNi. This review will concentrate on what we know, from observations and models,
about (b) and (c).

The first dynamical models with mass loss were computed in the late 1970s, by Steve
Hill (Hill & Willson 1979; Willson & Hill 1979, collectively = HW). Wood (1979) also
examined the case where shocks and radiation pressure on dust were both present in
the atmosphere. Three cases were considered: Isothermal shocks, adiabatic shocks, and
(HW) a transition from isothermal at high gas density to adiabatic at low gas density. It
was evident from these models that periodic isothermal shocks produced aperiodic shock
patterns and minimal mass loss; while adiabatic shocks from the photosphere ejected
most of the atmosphere each cycle. The hybrid-cooling models produced mass loss rates
within an order of magnitude or so of the right amount. Isothermal models with dust
added also produced significant mass loss (Wood 1979).

Insights from the above led to another round of modeling for the pulsating AGB stars.
Bowen (1988) developed a code that included density-dependent (non-LTE) cooling, dust
formation, and the pulsation dynamics. Other groups concentrated on getting a better
handle on the dust physics, particularly for carbon stars where the laboratory data on
nucleation and growth were more complete (Fleischer et al. 1992; Gail & Sedlmayr 1999;
Höfner & Dorfi 1997; Höfner et al. 1995). Today, very sophisticated codes treating dust
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nucleation and chemistry in some detail and/or including detailed, non-grey, radiative
transfer are in use for comparison with a wealth of observational data, while current
computer capabilities allow simpler codes to be used for very extensive parameter studies
of the processes involved. (For detailed models, see Höfner et al. 2003; Mattsson et al.
2010; Mattsson & Höfner 2011.)

Until recently, most of the very detailed modeling was for carbon-star atmospheres,
and an interesting problem arose when these were adapted for use on oxygen-rich stars: It
appeared to be impossible to produce the mass loss rates that are observed (Woitke 2006).
The Bowen code had no such difficulty. While there is still some debate on this point, the
resolution of this problem appears to involve several important bits: (a) For the carbon
stars, the acceleration produced by scattering of photons is very small compared to that
produced by absorption, and in some versions of the carbon star codes the scattering
terms had been turned off. (b) In order for the silicate grains to have sufficient opacity,
they need to be either contaminated by iron or they need to be larger than those produced
in the detailed carbon star models. Contamination by iron does not work because to get
enough iron for the opacity leads to overheating and sublimation of the grains, but size
does work (Höfner 2009). (c) The Bowen models have used mainly the Rosseland mean
opacity to obtain the unperturbed density structure and the photospheric density in
the dynamical models scales with this parameter; this is a small opacity and gives a
high photospheric density and high mass loss rates. The more detailed radiative transfer
codes typically have lower photospheric densities and thus lower mass loss rates for similar
stellar parameters. We are exploring the effects of using smaller opacity in our new large
grid of Bowen-code models.

Another complication of terminal AGB mass loss is the modulation of L and R by
shell flashes – typically a cycle of 105 years with up to 1000 years of elevated L, 104

years of depressed L during helium shell burning, then a gradual rise to a plateau value
for quiescent hydrogen burning. The main effect of this is that stars spend 10% of their
time at significantly lower mass loss rates, i.e. out of the death zone, during the ascent.
A smaller effect is the short period of elevated mass loss rate during the high-L episode;
however, even with large d log Ṁ/d log L the amount lost during the short, high-L state
is not more than 10%, roughly offsetting the low L time. (We define Ṁ = −dMstar/dt.)
The expected range of mass loss rate over the shell flash cycle is just (d log Ṁ/d log L)
∆ log L since the star travels along the same R(L,M) at fixed composition. Observations
of detached shells (Olofsson et al. 1990) confirm this general picture.

An advantage of the Bowen code is that apart from the numerical value of each pa-
rameter there is nothing in the code that specifies that the star must have a certain
composition. Thus, by changing the R(L,M,Z), the atmospheric mean opacity, and the
dust condensation parameters Tcond and ∆Tcond we can equally well model a carbon star
as an M star. The only reason we have not yet done so is that we expect R(L,M,Z)
to have a large effect and we do not yet know d log R/d log(C/O). However, studies that
have been undertaken already by Marigo (2002) will provide this information and we will
then be able to follow the effect on mass loss rates of the changing composition of the
star. It is already evident that the radii of the carbon stars will be significantly larger at
a given L, and from that fact we can confidently predict that (1) if a star has entered the
death zone before becoming a carbon star then it will rapidly lose all its mass as C/O
rises; and (2) the death zone for carbon stars will fall at lower L than for M stars of the
same mass, meaning that the initial-final mass relation could be non-monotonic.

Mass loss formulae used for “synthetic AGB evolution” include those based on obser-
vational data (Reimers 1975; Vassiliadis & Wood 1993) and those based on model grids
(Wachter 2002; Willson 2007; Willson & Wang in prep). One can crudely characterize
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the mass loss history of stars leaving the AGB in terms of (i) mass loss below the first
RGB tip; (ii) mass loss at the He core flash; (iii) mass loss along the AGB before the last
200,000 years; and (iv) mass loss in the death-zone at the tip of the AGB. In each stage,
we want to know both ∆M , the net mass lost, and some dependence of the mass loss
rate on stellar parameters, such as a (local) power law fit Ṁ = −dM/dt = aLbM−cZd

along an evolutionary track R(L,M,Z, l/H).

2. AGB tip mass loss
It is evident from observations that the stars at the tip of the AGB are generally

losing mass at rates that will remove their envelopes in times comparable to the e-
folding time of the luminosity, −(1/M)dM/dt ∼ (1/L)dL/dt ∼ 5 × 10−7 yr−1 . We are
currently running large grids of models with parametrized physics for key processes,
and find it convenient to summarize the results of many models in terms of Ldeath ,
d log Ṁ/d log L along a constant-mass evolutionary track at Ldeath , d log Ṁ/d log M at
Ldeath , and d log Ṁ/d log Z at Ldeath . We call d log Ṁ/d log L along a constant-mass
evolutionary track the “slope” of the mass loss law, and d log Ṁ/d log M is the exponent
for the mass-dependence. We define the deathline Ldeath(M) as where (1/M)dM/dt ∼
(1/L)dL/dt ∼ 5 × 10−7 yr−1 and the death-zone as the range of L(M) over which the
mass loss rate Ṁ increases from 0.1(M/L)dL/dt to 10(M/L)dL/dt.

Typical parameters of our models, and death-lines and power law fits to some other
mass loss formulae from the literature, are presented in Table 1. Although it is clear at
this time that the Reimers formula cannot account for AGB tip mass loss, we include it
because it has been so widely used in evolutionary and population studies.

In Figure 1 we show the effects of varying the slope d log Ṁ/d log L (for constant M
evolving in L), and the mass exponent d log Ṁ/d log L (at constant L), on the terminal
evolution of the AGB, for four combinations inspired by the values of Table 1. The mass
available to form a PN is no more than the amount lost during the last 104 years. If
we assume that there is an upper limit to the mass loss rate of 3 × 10−5 M� yr−1 , then
we can estimate the maximum PN masses vs. M for each case. As argued by Moe (this
proceedings) there is a lower limit on the progenitor mass that can produce a PN with a
mass of a few tenths of a solar mass, and this lower limit is sensitive to the mass loss law;
the larger the slope and mass-exponent, the smaller the lower limit on possible progenitor
masses.

3. Effects of modeling parameters on the results
Our grid of models is designed to let us investigate the effect on mass loss rates and

outflow speeds of a variety of hard-to-model processes: Convection and nonlinear pulsa-
tion in the interior; radiative transfer, non-LTE and dust formation in the atmosphere.
Each of these is described in our code with one or more equations containing a param-
eter that can be compared with results from more detailed calculations of each process.
Detailed calculations tell us a range of reasonable values to consider for each parameter,
and we can then see how much leverage (d log Ṁ/d log X times the range of X) each
parameter provides on the results.

Convection enters via mixing length theory and its parameter is l/H; Iben’s AGB star
relation has d log R/d log(l/H) = −0.52. Nonlinear pulsation determines the amplitude
of motion of the lowest zone in the model, sometimes referred to as the piston. We have
used two specifications for the piston amplitude, one valid for the majority of lower mass-
loss-rate models and one more appropriate for the highest mass loss rates and/or lowest
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Figure 1. The location of the death line (bold) and contours of constant mass loss rate (from left
to right, 3×10−8 , 3×10−7 , 3×10−6 , 3×10−5 M�/yr) for four combinations of b = d log Ṁ/d log L

along an evolutionary track and c = d log Ṁ/d log M at fixed L. Each figure is labeled with its
(b, c). A simple core mass-luminosity relation (Paczyǹski 1970) is also shown (lowest curve) and
the location on this curve of the final mass for initial masses 1 and 2. If we assume that the
mass loss rate remains above 3 × 10−5 M�/yr below 3 × 10−5 (green) line then where this line
is more than 0.3 solar masses above the core mass line we satisfy the criterion discussed by Moe
(these proceedings) for PN progenitors. For large slopes, the results are relatively insensitive to
the precise values as the mass loss contours are already very closely spaced. The slope of the
initial-final mass relation at a given Ldeath depends on the ratio of c/b.

atmospheric densities. The first condition is based on Cox & Guili’s (1968) suggestion
that the maximum work done on/by the piston should not exceed Lstar . The second
condition scales the piston amplitude to the speed of sound, assuming it should not
become supersonic. These two conditions give rise to different slopes d log Ṁ/d log L
along an evolutionary track: Mean values ∼16 for the power condition vs. ∼8 for the
sound speed condition. In future grids we intend to try a smooth transition from the
power limit condition to the sound speed limit as the amplitude of the piston approaches
the sound speed. We note that most other modelers have used either constant piston
velocity amplitude or a grid of values; the sound speed condition is actually quite close
to a constant value of about 8 km/s.

For large d log Ṁ/d log L most parameters do not have the leverage to change Ldeath
by very much, because d log Ldeath/d log X = (d log Ṁ/ log X)/(d log Ṁ/d log L). The
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Table 1. Different mass-loss descriptions.

Mass loss formula d log Ṁ
d log L
for const. M

−d log Ṁ
d log M

for M > 1.2a

Reimers 1975 1.68 1.31
Schröder & Cuntz 2005 2.672 1.71
Blöcker 1995 4.38 1.31
Wachter et al. 2002 3.1 3.0
Vassiliadis & Wood 1993 13.6 10
WWB – powerb 16 19
WWB – soundb 8 12

Notes:
a By the Iben (1984) formula we use to relate R to L, M , Z and l/H , d log R/d log M = 0 for
M < 1.175 and 0.31 for M > 1.175. This influences d log Ṁ/d log M for any formula involving
R, Teff , or pulsation period.
bWWB (= Willson & Wang, in prep) – power assumes that the piston power scales with the
stellar luminosity. WWB – sound assumes that the piston amplitude is equal to the speed of
sound at the piston. We expect the power condition to be most appropriate for models with
small mean opacity or lower mass loss rate, and the amplitude condition to be appropriate for
higher mean opacity, higher Ṁ models

parameters with the most leverage are mixing length (varying R at fixed L, M , Z),
metallicity (also because it alters R as well as dust and molecular opacity), and mean
opacity κ (because the photospheric density ρphot = (2/3)/κH where H = scale height
at the photosphere). In Figures 2 and 3 we show the density and the local mean mass
loss rate vs. radius for three κ values at fixed metallicity. Varying the onset of non-LTE,
or varying the condensation temperature for dust grains, within a reasonable range of
values have remarkably small effect on the mass loss rates, although they do make a
considerable difference in the atmospheric temperature and velocity structure.

For the purpose of PN studies, we need to know both the mass loss rate during the loss
of the last few tenths of a solar mass of envelope and the amount of envelope mass left
when the AGB wind terminates. The latter quantity, together with Mcore , determines
the time delay between leaving the AGB and reaching the temperature of PNNi; the
former, the amount of material still close enough for the central star to ionize it and/or
for the fast wind to catch up to it. These are very hard quantities to obtain from current
mass loss models, however. The analysis above gives upper and lower limits but no firm
answers yet. Current models do not give a very accurate picture of very high mass loss
rates; the Bowen code, for example, does not do well for mass loss rates much above
10−5 M�/yr. It is also quite possible, as suggested by Vassiliadis & Wood (1993), that
there is a maximum steady mass loss rate that is achieved – perhaps different for M and C
stars – that is between 10−5 and 10−4 M�/yr. After all, an optically thin outflow driven
by radiation has Ṁ � L/cv∞ which at 5000 L� with v∞ = 10 km/s is Ṁ = 10−5 M�/yr.
If there is a maximum mass loss rate, then the mass available to form a PN will depend
on this final mass loss rate and on the envelope mass left when the AGB mass loss stops.
This, in turn, depends on how the star responds to loss of mass as the envelope mass
becomes very low. In evolutionary models, the radius vs. envelope mass curve has 3 parts:
R increasing with decreasing M ; R decreasing slowly with decreasing M ; R decreasing
rapidly with decreasing M (Frankowski 2003, see Figure 4). For the example in the figure
we have assumed Ṁ = 3×10−8(R/300)10(M/M�)10 at log(L/L�) = 3.7. The luminosity
is kept constant over the episode of mass loss to get a sense of how R and M will influence
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Figure 2. Density vs. radial position is plotted for 4 phases of three models that are identical
except for the assume mean opacity. The photospheric density scales with 1/κ and so does the
wind density for most cases we have examined. A mean opacity of 0.0004 cm2/g is close to the
expected photospheric Rosseland mean opacity for an M-star near the tip of the AGB, while
0.04 cm2 is closer to the Planck mean opacity.

Figure 3. Mass loss rate 4πr2ρv vs. radius for the same models as are shown in Figure 2. The
main effect of varying κ on the mass loss rate comes from the change in the photospheric density
see in Figure 2.
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Figure 4. An example of how the radius and the resulting mass loss rate may vary with
decreasing stellar mass for a star with a core mass of 0.55 solar masses, log(L/L�) = 3.7, and
an assumed mass loss law = 5× 10−8 (R/300)10 (M/M�)−15 M�/yr – chosen to produce a peak
rate of a few ×10−5 M�/yr. This illustrates how the decreasing radius ultimately offsets the
decreasing mass and effectively ends the steady AGB mass loss while the envelope mass is still
too large to allow rapid evolution to the blue of the central star.

the mass loss rate at the end. In this example, and probably also in reality, steady AGB
mass loss will end when the envelope mass is � 0.02 M�, leaving the star unable to make
a rapid transition to the blue. However, a transient response to rapid changes in R could
lead to ejection of more mass at the end.

4. Conclusions
With a large grid of models we investigate the influence of various physical processes

on the mass loss rates of AGB tip stars. We find that knowing the radius R(L,M,Z)
is critical to predicting Ldeath(M,Z), and that the dependence of R on Z has a large
effect on the mass loss rate. We confirm that most mass loss formulae and most model
results give reasonable death lines and thus about the same PNN masses, if this process
leads to PNe. The minimum progenitor mass that can produce a PN of a given mass
depends mostly on the exponent d log Ṁ/d log M and the slope d log Ṁ/d log L along an
evolutionary track. The mass actually available to form a PN is harder to predict; we
can most easily obtain an upper limit from current models.
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Mattsson, L., Wahlin, R., & Höfner, S. 2010, A&A, 509, A14
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