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CONTINUOUS VALUATION AND LOGIC

MARIKO YASUGI

We consider the continuous valuation of logic, where the certainty
of a statement is measured with a number in the closed unit interval
I =[0,1].

The idea originates in continuous logics, which have been investigated
from various standpoints, in [1] ~ [4] and [8] ~ [10], for example. More
comprehensive information can be seen in [4] and others.

One of the problems which arises in studying continuous logics is
the interpretation of the implication; the value of A —> B is usually defined
to be 1 — ([A] — [B]), where [A] represents the value of A. With this
interpretation, however, the equality axiom can be dealt with only when
the premisses are certain. This situation makes it infeasible to develop
set theory along this line.

When working on various valuations, such as Boolean, Heyting and
continuous, it has been a traditional practice to consider a logical system
which is consistent (and preferably complete) with regards to a given
valuation, and to investigate the models of the valid formulas, namely
of the formulas which assume constantly the maximal element of the
values.

It is interesting, however, to speculate on some theories which abide
with the law of classical logic, while allowing deviant valuations. Also,
it is natural for us to wish to work on the statements (or events) which
are not necessarily valid in the sense state above; namely, we wish to
study the situation where the value of a formula is p for any p, reading
it as "the degree of certainty of the statement is p", or "the statement
is true with certainty p".

More specifically, we work in classical logics, first order and second
order, hence in particular A -* B is interpreted to be ~7 A\J B. The value
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of A, which is temporarily denoted by [A] and is assumed to be in the
interval I, may be interpreted as indicating the degree of certainty of A
to occur or to hold.

The intended meaning of the logical connectives relative to our valua-
tion is this: [A A B] is the degree of certainty with which one can predict
the occurrence of A and that of B; [A V B] is the degree of certainty
with which one can predict whether A occurs or B occurs; [yA] is the
reciprocal of A. Thus, [A A E\ = min ([A], [B])9 [A V B] = max ([A], [£]),
[yA] = l— [A], and V and 3 are regarded as generalizations of Λ and
V respectively (cf. § 1).

If we say "A is more certain than not" when [A] > 1/2, it turns out
that provable formulas (in classical logics) are exactly those which are
"more certain than not" (§§ 2-3).

As a somewhat restricted notion, we propose p-validity for p > 1/2,
and show the relative consistency of p-valid formulas with classical (second
order) logic (§4).

The degree of certainty has no set theoretical interpretation, nor is
it logic nor is it any physical quantity, but it is a way of thinking, or a
way of conception of a certain kind of "liklihood" measured in the unit
interval. Thus, for example, [AVyA]=p (which is not necessarily 1)
means that the certainty of whether A occurs or its reciprocal occurs is
p; this can be rephrased as that A is determinate to the extent of p.
[A A ~7 A] = p (which is not necessarily 0) means that the certainty that
A occurs and its reciprocal occurs is p; here p may be regareded as the
degree of indeterminateness of A.

For the first order cases, similar ideas have been developed by some
people working on fuzzy sets and logics and some results similar to ours
are seen in some of their works; see [5] — [7], [12] and [13].

As a sequel to this paper, we are planning an article in which in-
validity (p > 1/2) of set theory will be demonstrated.

§ 1. Valuation of first order language

Let / denote the closed unit interval of reals, let D denote a non-
empty set, which will serve as the domain of individuals, and let Fo denote
the family of functions whose domain is D and whose range is I. Those
will be fixed throughout, and represent the absolute world.

DEFINITION 1.1. Let L be any first order language of the predicate
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calculus, where the standard symbolism is assumed. Although it is ir-

relevant which formulation of the first order predicate calculus is assumed,

we employ the Gentzen-type system, in which free variables and bound

variables are distinguished (cf. Chapter I of [11]).

Let φx be a map from individual constants of L to D, let φ2 be a map

from function symbols to functions of the same arities whose arguments

and values assume the elements in D, and let φ3 be a map from predicate

symbols to functions in Fo of the same arities. In the subsequent defini-

tion, φl9 φ2 and φ3 will be held fixed. Let ψ be an assignment of an element

of D to each free variable.

The valuation of L-terms and L-formulas Z with regards to D, φuφ2, φz

and ψ, denoted by v(Z; D, φl9 φ2, φz, ψ), is defined below, where some or all

of D, φλ, φ2, 03, and ψ will be spared in the expressions except when they

need to be explicitly expressed.

v(c; ψ) = φx(c) if c is an individual constant.

v(a; ψ) = ψ(ά) if a is a free variable.

υ(f(tu ., O ; Ψ) = &(/)M*i; Ψ), -Mtm, Ψ»

if / is a function symbol and tλ, ,tm are terms.

υ(P(tl9 , O ; Ψ) = Φz(P)(v{U] ψ), , ι # m ; ψ))

if P is a predicate symbol and ί1? - -,tm are terms.

A B ψ) = min (ϋ(A; ψ), ι;(S; ψ)).

V B ; f ) = max (u(A; ψ), u(β; ψ)).

) - max (1 - v(A; ψ), u(B; ψ)).

; ψ) = inf {u(A(α); ψ[α/d]); deD}, where α is the first free

variable (in some predetermined order) not occurring in A(x) and ψ[a/d]

stands for the assignment obtained from ψ by assigning d to α.

u(3xA(x); ψ) = sup {ϋ(A(α); ψ[α/d]); deD} .

PROPOSITION 1.1. 1) For any terms s and t, v(s;ψ) = v(t;ψ) implies

v(A(s); f) = υ(A(t); ψ) for every A.

2) If a free variable a does not occur in A(s) and if v(s) = d, then

v(A(a);ψ[ald]) = v(A(s);ψ).

PROPOSITION 1.2. 1) v(A z> A) = ϋ(A V 7 A) (=ϋ(A) i/ v(A) > 1/2;

= 1 — ι;(A) otherwise). Thus, v(A V 7A) = v(A 3 A) > 1/2, 6ί/ί the value

is not necessarily 1. In fact, the value is 1 if and only if v(A) = 1 or 0,

that is, when A is determinate, so to speak.
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2) v(A A 7 A) = 1 - v(A) if v(A) > 1/2; = v(A) otherwise. Thus,

v(A A y A) < 1/2, αrad £/*e uαZz/e is 0 ẑ /ien A is determinate.

3) For any propositional function π which involves A alone,

v(A Λ7A)< v(π(A)) < u(A V 7 A) .

PROPOSITION 1.3. 1) v(A) < v(B) implies v(A D B) > 1/2, but not nec-

essarily the converse. The latter means that v(A Z) B) > 1/2 does noί define

any order relation between A and B.

2) v(A z> B) = 1 if and only if v(A) = 0 or ι (S) = 1; = 0 ί/ and orc/ y

i/ 6oί/ι v(A) = 1 aλid u(B) == 0 ΛoZd.

3) // v(A Z) B)> 1/2 a^d ι (A) > 1/2, then v{B) > 1/2.

PROPOSITION 1.4. 1) The logical connectives can be expressed in terms

of other ones; for example, v(A V B) = v{7{7A\/ 7B)) and v(lxA(x)) =

2) TΛe ua/we of a formula by v is equal to that of its prenex normal

form.

It is a routine work to establish this; try, for instance, v(A V 3xB(x))

V B(x))).

DEFINITION 1.2. Let L{=^} be the language L augmented by = . = will

be given the standard valuation, viz.,

1 if v(a) = v(b) in D ,

0 otherwise .

Note. The symbol = will be used in various different contexts, but

the distinctions should be made out easily.

Remark. What holds for L holds for L{=} as well.

DEFINITION 1.3. For a fixed valuation v, we define some concepts

with regards to v.

v(A) is interpreted as expressing the degree of certainty of A; thus

v(A) — p is understood to mean A is certain (certainly true, or A is

certain to occur) to degree p.

When v(A) > 1/2, we say A is more certain (than not).

δ(A) = v(A V 7 A); this will be called the degree of definitiveness of A.

v(A) — v(A A 7A); this will be called the degree of non-definitiveness

of A.
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When δ(A) > 1/2, we say that A is definitive; when δ(A) = 1/2, we

say A is non-definitive.

When δ(A) > p, we say A is definitive to degree p, or A is p-definitive.

COROLLARY. δ(A) > 1/2 and y(A) < 1/2. 77ms, p-definίtίveness can be

significant only when p > 1/2.

§ 2. Valuation and logic

We consider either L or L{ = }.

LEMMA 2.1. Let Go denote the set of functions from D to {tr, fs}, where

tr stands for truth and fs stands for falsehood. Let φί9 φ29 φ3, ψ and v be

as before. Let χ denote a map from predicate symbols to functions in GQ

of the same arities, and let w denote the classical two valued interpretation

of logic based on φu φ29 χ and ψ. For any fixed D, φί9 φ29 the following hold.

1) For every χ, there exists a φ3 such that

w(A; χ, ψ) = tr(fs) if and only if v(A; φ3, ψ) = 1(0) ,

for every formula A and every assignment ψ.

2) For every φ3, there exists a χ such that

v(A; φ3, ψ) > 1/2 if w(A; χ, ψ) - tr ,

and

v(A; φ3, ψ) < 1/2 if w(A; χ, ψ) = f, .

Notice that in 2) only the necessary condition is required of w.

The lemma can be easily established by identifying tr with 1 and fs

with 0 in case of 1), and by collapsing > 1/2 to tr and < 1/2 to fs in case

of 2).

THEOREM 1. A formula A is logically valid if and only if v(A; D9φί9

Φ2, Φz, Ψ) > 1/2 for every D, φl9 φ2, φ3 and ψ.

The theorem is an immediate consequence of Lemma 2.1.

THEOREM 2. A formula A is provable (in the first order predicate

calculus with or without equality axioms) if and only if v(A; D, φl9 φ2, φ39 ψ)

> 1/2 for every D, φu φ29 φ3) ψ.

This follows from Theorem 1 above and the completeness theorem.
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§ 3. Valuation and second order logic

There have been various speculations on second order axioms and
set theory based on continuous logics, among them works by C. C. Chang
[1] ~ [3] and Takahashi [10] detailed references are seen in C. C. Chang
and Keisler [4]. In our case, however, logic is classical, hence the im-
plication plays no particular role, and our concern lies on the statements
which are more certain than not (cf. Definition 1.3). The comprehension
causes no problem here.

DEFINITION 3.1. Let U be any standard second order language, where
second order free variables will be denoted by a, β, and bound ones
by X, Y, - . To simplify the matter, we exclude constants unless other-
wise required.

DEFINITION 3.2. Let D denote a domain as in § 1.
1) Let G denote any subset of Go (cf. Lemma 2.1), and define H to

be the pair (D, G), which will serve as a structure for U. Let ψ be as
in § 1 and let σ denote an assignment of elements of G of appropriate
arities to second order free variables. ί(A;H,ψ,σ) will represent the
Henkin-type interpretation of A with regards to H, ψ and σy A an U for-
mula. For an abstract V = {xί9 , xn}A{xλ, , xn)

ί(V;H,ψ,σ) = g ,

where

g(du " ,dn) = ί(A(au ,an);H, ψlajd,] [ajdn], σ)

for every dl9 —,dn in D, where al9 , an are distinct free variables not
occurring in V. A structure H is called a Henkin structure if for every
pair of ψ and σ, ί{V\H, ψ, σ) belongs to G for every V. (The notions
defined above are second order cases of those seen in, for example, Defini-
tion 21.4 of [11].)

2) Let F denote any subset of Fo (cf. § 1), and define K to be (D, F),
which will serve as a continuous structure for ZΛ Let ψ be as before and
let r be a second order assignment in F. u(A; K, ψ, τ) will represent the
valuation of an L'-formula A with regards to K, ψ and τ, which is defined
in the same manner as the v in Definition 1.1 with some additional cases,
which are listed below. K will be omitted in most cases.

u(a(al9 - , an); ψ, τ) = τ
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u(VXA(X); ψ, τ) = m£{u(A(a); ψ, τ[α//]);/e î } .

); ψ, τ) = sup {u(A(a); ψ, τ[a/f]);fe F} .

Here, a is a second order free variable which does not occur in A(X),

τ[alf] is the assignment obtained from τ by assigning / to a, and / ranges

over the functions in F of the same arity as X.

u({x, xn}A(xu , xn); ψ, τ) = / ,

where

-`,dn) = u(A(al9 , an); ψlajd,] . [ajdn], τ)

for every du - -, dn in Zλ

A continuous structure K — (ΰ, ί1) is called a continuous Henkin

structure if for every ψ, r, &( V; if, ψ, r) belongs to F for every V.

In the subsequent discussion, H and iΓ will denote Henkin structures.

LEMMA 3.1. 1) For every H = (D, G) there exists a K = (D, F) such

that for every σ there is a τ satisfying:

i(A; H, ψ, σ) = tr(fs) if and only if u(A; K, ψ, τ) = 1(0) ,

and

ί(V; H, ψ, σXd19 , dn) - ίr(/,) ί/ and only if

/or ei βry A, V and -ψ̀.

2) Let K be (D, JF). For each f in F, we define:

Γ(f) — {ge Go; g is of the same arity as f and, for each

du - , dn, g(du '"9dn) = tr implies

f(du '",dn)> 1/2, while g(d19 •••,(*„)=/,

implies f(du , dn) < 1/2} .

Put G - \J{Γ(f)\feF}. G is a subset of Go. Put H=(D,G);H is a

structure for U. We say σ is in Γ-relatίon to τ if σ(a) is in Γ(τ(a)) for

every a.

Now, for every τ, A, V and ψ, and for every σ in Γ-relation to τ, the

following hold.

u(A;K,ψ,τ)> 1/2 (<l/2) if

i(A;H,φ,σ) = tr(fs);
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u(V; K, ψ, τXdlf •••,dn)> 1/2 (<l/2) if

ί(V;H,ψ,σ)(d1,- ,dn) = tr(fs).

As a consequence, H is a Henkίn structure.

Notice that in 2) only the necessary condition is required of u.

Proof. Since 1) is trivial, we shall establish 2) by induction on the

complexity of A. We always assume a is in .Γ-relation to τ.

Suppose ί(VXA(X); H, ψ, σ) = tr, viz., i(A(a); H, ψ, σ[a/g]) = tr for every

g in G. For each / in F, consider τr ~ τ[ajf]. For each g in Γ(f) =

Γ(τ'(a)), ar = σ[a/g] is in /'-relation to τf. So, by the induction hypotheses,

u(A(a);K,ψ,τ')> 1/2 for every /, from which follows u(VXA(X); K,ψ,τ)
>l/2.

Suppose i(VXA(X); H, ψ, σ) = fs, viz., ί(A(a); H, ψ, σ[ajg]) = /, for some

g` in G. But g e Γ(f) for some / in F, so for such an /, σf = σ[a/g] is in

Γ'-relation to τf = τ[α//]. Thus, by the induction hypothesis, u(A(a); K, ψ,

τθ < 1/2, from which follows u(VXA(X); K, ψ, r) < 1/2.

3XA(X) can be dealt with in a reciprocal manner. Other cases cause

no difficulty.

(1) u{{xx xn}A(xl9 - ,xn);K,ψ, τ)(du , dn)

= u(A(au >-,an);K, ψiajd,] - • [ajdn], τ) .

(2) i({xx - xn}A(x19 , xn); H, ψ, σ ) ^ , , d j

- i(A(αj, " ,an);H, ψlajd,] - [αΛ/dn], σ) .

The right hand side of (1) is >l/2 (<l/2) if that of (2) - tr(fs\ hence the

same relation holds for the left hand side.

Consider i(V; H, ψ, σ) for an abstract V, where a is an arbitrary as-

signment in H. For each <x, if σ(ά) = g, then geΓ(f) for some feF, so

choose such an / and denote it by fa. If we define τ(a) — fa, then a is in

/^-relation to r, thus by (1) and (2) above,

u(V; K, ψ, r ) ^ , , dn) > 1/2 (<l/2) if ί(V; H, ψ, σ)(dl9 , dn) = tr(fs) .

/0 == M(V;UL, ψ, r) is a function in F by assumption; if we let g0 be

ί(V; H, ψ, σ), which is a function in G0,gQeΓ(f0), hence goeG. Thus, H

is a Henkin structure.

THEOREM 3. A closed L'-formula is Henkίn-υalid if and only if it is

"more certain than not9' in continuous valuation, namely, in any continuous

Henkίn structure the valuation assumes a value >l/2 for any assignment.

https://doi.org/10.1017/S0027763000019693 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019693


VALUATION AND LOGIC 183

Proof. First, notice that the validity (in any sense) of a closed for-

mula depends solely on a structure (and on an interpretation of constants),

thus is independent of assignments. Let K be any continuous Henkin

structure. By 2) of Lemma 3.1, we can define a Henkin structure H, which

satisfies that if a closed formula assumes value tr in H, then its value in

K is >l/2, which proves the "only if" part. The "if" part follows from

1) of Lemma 3.1.

THEOREM 4. A closed U-formula is provable in the second order pred-

icate calculus {with the full comprehension) if and only if it is "more certain

than not" in every continuous Henkin structure.

Proof. This is a consequence of Theorem 3 above and the Henkin-

completeness (cf. § 21 of [11], for example) of the second order logic.

PROPOSITION 3.1. If u(V; K, ψ, τ) = / and τf = τ[ajf], then

u(A(V); K, ψ, τ) = u(A(a) K, ψ, τ')

for every A.

DEFINITION 3.3. All the notions in Definition 1.3 can be modified so

that they become the notions with regards to u.

Let δ(A; ψ) denote the δ(A) where the first order assignment is ψ.

δiix, ••• x n } A ( x u - , x n ) ; ψ )

= inf {δ(A(al9 - , an); ψfe/dj [ajdn]); dl9 - .,dneD} .

COROLLARY. £(A) > 1/2 for A an arbitrary formula or abstract.

PROPOSITION 3.2. The definitions and results in this section can be

easily extended to the cases where U has various constants. A parallel to

Proposition 1.1 holds for U too.

§4. Definitive valuation

Here we shall study the valuations based on ''definitive" assignments,

namely on the set of functions whose values are bounded from below by

a number greater than 1/2. Since the treatments are quite similar in

both cases, first order and second order, we shall mainly consider the

second order case.

DEFINITION 4.1. Let / be in Fo. Define δ(f):
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δ(f) = i n f { m a x ( 1 - f ( d l f , d n ) , f ( d u , d n ) ) ; d u - , d n e D } .

If δ(f) > p, we say / is definitive to degree p (p-definitive). Notice that

1/2 < δ(f) < 1.

A subset F of -Fo is said to be a p-set if it consists of p-definitive

functions alone. Let K(p) be the family of structures K = (D, F), where

F stands for a p-set. We consider second order valuations in the con-

tinuous Henkin structures which belong to K(p). We say such a structure

is p-definitive.

[Assumption] Henceforth p > 1/2 will be assumed throughout.

PROPOSITION 4.1. To economize the notation, we write Ξ for K =

(D, F), φ19 φ2, φs when those are fixed, where K is a p-definitive structure,

and φl9 φ2, and φz are maps from respective constants to appropriate objects.

Now, for any Ξ,

(1) either u(A Ξ, ψ, τ) > p or u(A, Ξ, ψ, τ) < 1 — p,

and hence

(2) δ(A) = δ(A;Ξ,ψ,τ)>p

for every A a formula or an abstract and for every assignments ψ and τ

(cf Definitions 1.3 and 3.3).

Proof By induction on the complexity of A.

A is a{a). u(A; ψ, τ) = f(d) for some f in F and d in D. Since K is

p-definitive, max (1 — f(d), f{d)) > p, hence f(d) > p or f(d) < 1 — p.

A is VXB(X). u(A;τ) = inf {u(B(a);τ[alf]);feF}. By the induction
hypothesis, for each /, either u(B(a); τ[ajf]) > p or u(B(ά); τ[a/f]) < 1 — p.

If > p holds for every /, then u(A τ) > p follows. If < 1 — p for some /,

then u(A; τ) < 1 — p follows.

Other cases can be dealt with in a similar manner.

(2) follows immediately from (1).

COROLLARY. In any p-definitive structure, u(A \/ 7 A) = u(A Z) A) > p .

DEFINITION 4.2. A valuation in a p-definitive structure is called a

p-definitive valuation. We shall henceforth consider p-definitive valuations

for a p > 1/2.

DEFINITION 4.3. Let Ξ be as above. A second order formula A is

said to be p-valid with regards to Ξ if u(A Ξ, ψ, τ) > p for every ψ and

τ in K.
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THEOREM 5. Fix a Ξ. Let s/ be a set of formulas of L' (1/ with or

without constants), each of which is p-υalid with regards to Ξ. {Let us

call such an ̂  a p-υalid set with regards to Ξ.) Let 0>(srf`) be the second

order predicate calculus augmented by the formulas of srf as axioms. Then,

any formula which is provable in &(stf) is p-valίd with regards to Ξ.

Proof. Although it is irrelevant which formulation of logic we take,

we shall work with the Gentzen-type second order system, where the for-

mulas of stf are added as initial sequents and —> is interpreted as Z) (cf.

§ 15 of [11]).

We prove the theorem by induction on the complexity of a formal

proof in ^ ( J / ) .

For the axioms in J/, the p-validity is assumed.

u(A -> A)> p by Corollary of Proposition 4.1.

Let I be the last inference in a proof and assume the theorem for

the upper sequent(s) of I.

I is a first order V left.

j A(s), Γ-+Δ

VxA(x), Γ -> Δ

To simplify the matter, we assume Γ and Δ are respectively singular

formulas.

(1) u(VxA(x), Γ -> Δ) = max (1 - u(VxA(x); ψ), 1 - u(Γ; ψ), u(Δ; ψ)),

where 1 - u(VxA(x); ψ) = sup {1 - u(A(a); ψ[α/d])); d e D}.

If (1) < p, then 1- u(Γ;ψ)< p, u(Δ; ψ)< p and 1 - u(A(a); ψ[a/d]) < p

for every d in D. In particular, this is so for d = u(s;ψ). Then u(A(a);

ψ[ald]) = u(A(s);ψ) (cf. 2) of Proposition 1.1), hence 1 — u(A(s);ψ) < p.

But then u(A(s), Γ —• Δ ψ) < p, contradicting the induction hypothesis.

/ is a second order left.

j A{V),Γ-+Δ

VXA(X), Γ-+J

(2) u(VXA(X),Γ^A;ψ,τ)

= max (1 - u(VXA(X); ψ, r), 1 - u{Γ; ψ, T), U{Δ; ψ, r)) .

If (2) < p, then 1 - u(Γ; ψ, r) < p, u(A; ̂ ,τ)<p and 1 - u(A(a); ψ, τ[α//])

< p for every /` in F. Let / be iί(F;ψ, r) and let τ' be τ[α//]. Then

κ(A( V); ψ, r) = u(A(a); ψ, r') (cf. Proposition 3.1). So 1 - ω(A(F); ψ, T) < p,

implying that the value of the upper sequent of I is below p, yielding a

contradiction.
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7 is a second order V right.

j

Γ-+Δ, VXA(X)
(3) u(Γ->Δ,VXA(X);τ)

= max (1 - u(Γ; τ), u(Δ;τ), u(VXA(X); τ)) .

If (3) < p, then 1 - u(Γ; τ)< p , u(Δ; τ)< p and u(A(a); τ[a/f]) < p for

some / in F. Put τf = τ[a/f], u(Γ; τ') = u(Γ; τ) and u(Δ; τf) = w(J; r). So,

w(Γ —> Δ, A(a); τf) < p, contradicting the induction hypothesis.

J is a cut.

Suppose the value of the lower sequent is below p. Then 1 — u(Γ),
1 — u(Π), u(Δ), u(Λ) < p. In order that the upper sequents assume values
>p under the same assignment, u(D) > p and 1 — u(D) > p, but then p
< 1/2, contradicting the major assumption that p > 1/2.

Other cases can be treated similarly.

Note, The argument above does not necessarily go through for p =
1/2. (Examine the case where J is a cut.)

Examples of p-valid sets sέ.

s/1. J/ consists of the equality axioms:

s = t, A(s) > A(t)

for arbitrary 5, t and A, where the language is assumed to have = .

( * ) u(s = t, A(s) -> A(t)) = max (1 - u(s = t\ 1 - u(A(s)\ u(A(t))) .

Case 1. u(s = t) = 1, viz., u(s) = u(t) in D (cf. Definition 1.2). Then,
by 1) of Proposition 1.1, u(A(s)) = u(A(t)), so (*) = max (1 — u(A(s)),
u(A(s))) > p.

Case 2. u(s = t) = 0. (*) = 1 > p.

Consider the language of second order arithmetic with the con-
stants 0, + 1 and = . Let K be (N, F), where N is the set of natural
numbers and F is an arbitrary p-set. Let φu φ2 and φs be the natural
interpretation of this language in N. Let J/ consist of the axioms of
induction:
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A(0) , Vx(A(x) =) A(x + 1)) > VxA(x)

for arbitrary A. Let S stand for any sequent in J / .

u(S; ψ) = max (1 - M(A(0); ψ) ,

1 - M(V*(A(S) 3 A(* + 1)); ψ) ,

u(yfxA(x))) ,

where the latter two terms are:

sup {min (u(A(a); ψ[a/ή\)9 1 — u(A(a + 1); ψ-[α/λi])); ne N}

and

inf {u(A(a); ψ[α/n]); ne N}

respectively.

If w(S; ψ) < p, then

(1) 1 - w(A(0);ψ)<p,

(2) min (u(A(a); ψ[a/n]), 1 - u(A(a + 1); ψ[α/ra])) < p

for every ft, and

(3) u(A(a);ψ[alm])<p

for some m in N.

We shall establish, by (1) and (2), that, for each n,

(**) w(A(α);ψ[α/n]) > p.

This contradicts (3). So w(S; ψ) > p. To simplify the notation, we write

u(A(n)) for u(A(a); ψ[alή\). Now the proof of (**) by induction on n.

n = 0. 1 - w(A(0)) < p by (1), viz., κ(A(0)) > 1 - p. But M(A(0)) > p

or ẑ (A(0)) < 1 — p (Proposition 4.1), hence u(A(0)) > p.

n + 1. Assume (**) for n; u(A(ή)) > p. Then, by (2), 1 — u((A(n + 1))

< p, or u(A(n + 1)) > 1 - p. But u(A(n + 1)) > p or W(A(Λ + 1)) < 1 - p.

So w(A(rc + 1)) > p.

and s/2 hold when p = 1/2 just the same. We have placed

the condition p > 1/2 in order to comply with the theorem. (See the note

after Theorem 5.)

DEFINITION 4.4. A formula A is said to be definitively valid if for

every p > 1/2 A is p-valid with regards to every p-definitive valuation.

THEOREM 6. A closed formula is definitively valid if and only if it is

provable (in the second order predicate calculus), hence definitive validity

is equivalent to Henkin-validity as well as continuous validity.
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Proof. A provable formula is definitively valid; this is a special case

of Theorem 5 where stf is empty. When p = 1, p-validity is Henkin-validity.

Those facts, Henkin-completeness and Theorems 3 and 4 in § 3 establish

the theorem.

PROPOSITION 4.2. For every u, A and B, u(A Z) B) > p is equivalent

to (tu(A) > p implies u(B) > p".

This is a corollary of Proposition 4.1.

PROPOSITION 4.3. Let (Ai9 ψλ) be a pair of a formula and an assign-

ment indexed by λ e A. Then sup {u(Aλ; ψλ); λe A}> p if and only if u(Aλ;

Ψλ) > P for some λ e A. Thus, in particular, u(3xA(x)) > p if and only if

u(A(a); ψ[a/d]) > p for some d in D.

Proof. Use Proposition 4.1 and the fact that 1 — p < p.
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