CONDITIONS FOR A ZERO SUM MODULO n

BY J. D. BOVEY, PAUL ERDÖS AND IVAN NIVEN

In this paper the following result is proved.

THEOREM. Let n > 0 and $k \ge 0$ be integers with $n - 2k \ge 1$. Given any n - k integers

(1) $a_1, a_2, a_3, \ldots, a_{n-k}$

there is a non-empty subset of indices $I \subseteq \{1, 2, ..., n-k\}$ such that the sum $\sum_{i \in I} a_i \equiv 0 \pmod{n}$ if at most n-2k of the integers (1) lie in the same residue class modulo n.

The result is best possible if $n \ge 3k-2$ in the sense that if "at most n-2k" is replaced by "at most n-2k+1" the result becomes false. This can be seen by taking $a_j=1$ for $1\le j\le n-2k+1$ and $a_j=2$ for $n-2k+2\le j\le n-k$, noting that the number of 2's here is $n-k-(n-2k+1)=k-1\le n-2k+1$.

LEMMA 1. Let n be a positive integer. For i=1, 2, ..., r let A_i be a set of v_i positive integers, incongruent modulo n, and none $\equiv 0 \pmod{n}$. If $\sum_{i=1}^r v_i \ge n$ then the set $\sum_{i=1}^r (\{0\} \cup A_i)$ contains some non-zero multiple of n.

Proof. Suppose the result is false. We may presume that A_r is not empty. We use a result of J. H. B. Kemperman and P. Scherk [1] as follows. Let A be the union of r incongruent residue classes $0, a_1, a_2, \ldots, a_{r-1} \pmod{n}$ and B the union of s incongruent classes $0, b_1, b_2, \ldots, b_{s-1} \pmod{n}$. Suppose that if $a \in A$ and $b \in B$ and $a+b\equiv 0 \pmod{n}$ then $a\equiv b\equiv 0 \pmod{n}$. Then A+B is the union of at least $\min(n, r+s-1)$ distinct residue classes modulo n. If we apply this result to the two sets $\{0\} \cup A_1$ and $\{0\} \cup A_2$ we conclude that the set

$$[\{0\} \cup A_1] + [\{0\} \cup A_2]$$

contains representatives from at least $\min(n, v_1+v_2+1)$ distinct classes modulo *n*. Continuing by induction we conclude that

$$\sum_{i=1}^{r-1} (\{0\} \cup A_i)$$

contains representatives from at least

$$\min\left(n, 1+\sum_{i=1}^{r-1} v_i\right) \ge n-v_r+1$$

Received by the editors September 17, 1973 and, in revised form, December 21, 1973.

distinct residue classes modulo n, and so it contains representatives from at least $n-v_r$ distinct non-zero residue classes modulo n. But $-A_r$ has representatives from v_r non-zero residue classes modulo n, and so there must be a representative from a non-zero residue class in common because there are only n-1 such classes. From this observation the lemma follows.

If S is a set of integers (not necessarily distinct) we let $\sum S$ denote the set of distinct non-zero residue classes (mod n) represented by sums of integers in S. We call a set of three integers which are incongruent modulo n a *triple*, and any incongruent pair of integers a *double*.

LEMMA 2. If S is a triple with no subset having a zero sum modulo n then $|\sum S| \ge 5$, and if S does not contain $n/2 \pmod{n}$ then $|\sum S| \ge 6$. (The notation $|\sum S|$ has the usual meaning, the number of elements in $\sum S$.)

Proof. Let $S = \{a, b, c\}$. If two of the congruences

(2)
$$a+b \equiv c, \quad a+c \equiv b, \quad b+c \equiv a \pmod{n}$$

are false, say $a+b \not\equiv c$, $a+c \not\equiv b$, then $\sum S$ contains the six distinct non-zero residue classes $a, b, c, a+b, a+c, a+b+c \pmod{n}$, because for example if $a+b+c \equiv a$ then we have the contradiction $b+c \equiv 0 \pmod{n}$.

Therefore we may assume that at least two of the congruences in (2) hold, say $a+b\equiv c$ and $a+c\equiv b$. In this case, by addition we see that $2a\equiv 0$, i.e. $a\equiv n/2 \pmod{n}$, and $\sum S$ contains the five distinct non-zero residue classes $a, b, c, b+c, a+b+c \pmod{n}$, because for example if $b+c\equiv a$ we obtain the contradiction $a+b+c\equiv 2a\equiv 0 \pmod{n}$.

LEMMA 3. If S is a double having no zero sum then $|\sum S|=3$.

The proof is obvious.

Now we turn to the theorem itself, giving a proof by contradiction. Let a_1 , a_2, \ldots, a_{n-k} be a sequence of n-k positive integers with no zero sums modulo n, and such that at most n-2k terms belong to the same residue class modulo n. We will show that there is a partition of the index set $\{1, 2, \ldots, n-k\}$ into disjoint sets $P_1 \cup \cdots \cup P_r$ in such a way that if $i, j \in P_t$ and $i \neq j$ then $a_i \not\equiv a_j \pmod{n}$, and so that

$$\sum_{t=1}^r |\sum S_t| \ge n$$

where $S_t = \{a_i \mid i \in P_t\}$ for $1 \le t \le r$. Then Lemma 1 gives us the required contradiction.

First suppose that the sequence (1) contains no integer $\equiv n/2 \pmod{n}$. Select from the sequence (1) in any manner whatsoever, triples of elements if possible until all that is left in the sequence (1) is a single repeated element *a* modulo *n*, or two repeated elements *a* and *b* modulo *n*, with $a \neq b$. Suppose by this process we get *j* triples, with $j \geq 0$, and the remaining elements *a* (with say λ occurrences)

28

[April

and b (with say μ occurrences), and we may presume $\lambda \ge \mu \ge 0$. Since there are n-k elements in the sequence (1) we see that

$$n-k = 3j + \lambda + \mu$$
, $j = \frac{1}{3}(n-k-\lambda-\mu)$.

In addition to the *j* triples we form μ doubles of the form $\{a, b\}$ and $\lambda - \mu$ singles of the form $\{a\}$. Call the triples S_i with $1 \le i \le j$, the doubles S_i with $j+1\le i\le j+\mu$, and the singles S_i with $j+\mu+1+\le i\le j+\lambda$. By Lemmas 2 and 3 we conclude that

$$\sum_{i=1}^{j+\lambda} |\sum S_i| = 6j + 3\mu + (\lambda - \mu) = n + (n - 2k) - \lambda \ge n,$$

the last inequality holding because $n-2k \ge \lambda$, there being at most n-2k identical elements modulo *n* in the sequence (1).

Finally, suppose that n/2 is in the sequence (1). It can occur only once since $n/2+n/2\equiv 0 \pmod{n}$. By the same process as in the first part we choose j triples S_1, \ldots, S_j without using the element n/2, so that what remains in the sequence (1) are the element n/2 once, the element a occurring λ times, and the element b occurring μ times, again with $\lambda \ge \mu \ge 0$. We deal with three special cases: $\lambda > \mu$; $\lambda = \mu > 0$; $\lambda = \mu = 0$. In all cases we have $n - k = 3j + \lambda + \mu + 1$.

In case $\lambda > \mu$ we choose μ doubles of the form $\{a, b\}$ and an additional double $\{a, n/2\}$, and also $\lambda - \mu - 1$ singles of the form $\{a\}$. Thus we get

$$\sum_{i} |\sum S_i| \ge 6j + 3(\mu+1) + (\lambda - \mu - 1) = n + (n - 2k) - \lambda \ge n$$

as before.

In case $\lambda = \mu > 0$ we have, in addition to the *j* triples without the element n/2 also the triple $\{n/2, a, b\}$ and the $\lambda - 1$ doubles of the form $\{a, b\}$. This gives us

$$\sum_{i} |\sum S_i| \ge 6j + 5 + 3(\lambda - 1) = n + (n - 2k) - \lambda \ge n.$$

In case $\lambda = \mu = 0$ we have one single $\{n/2\}$ and we get

$$\sum_{i} |\sum S_{i}| \ge 6j + 1 = n + (n - 2k) - 1 \ge n.$$

Reference

1. H. Halberstam and K. F. Roth, Sequences I, Oxford, 1966, p. 50, Theorem 15'.

UNIVERSITY OF YORK UNIVERSITY OF COLORADO and

UNIVERSITY OF OREGON