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HARMONIC SPINORS ON HYPERBOLIC SPACE 

PIERRE-YVES GAILLARD 

ABSTRACT. The purpose for this short note is to describe the space of harmonic 
spinors on hyperbolic «-space Hn. This is a natural continuation of the study of har
monic functions on Hn in [Minemura] and [Helgason]—these results were generalized 
in the form of Helgason's conjecture, proved in [KKMOOT],—and of [Gaillard 1, 2], 
where harmonic forms on Hn were considered. The connection between invariant differ
ential equations on a Riemannian semisimple symmetric space G/K and homological 
aspects of the representation theory of G, as exemplified in (8) below, does not seem to 
have been previously mentioned. This note is divided into three main parts respectively 
dedicated to the statement of the results, some reminders, and the proofs. I thank the 
referee for having suggested various improvements. 

Results. To each euclidean finite dimensional space E [Chevalley] attached a com
plex finite dimensional space S — S(E), called the space of spinors for E, together with 
a natural map E <g> S —> S, called Clifford multiplication. Moreover S is a module for 
Spin(£)—the two-fold cover of SO(E)—known as the spin representation of Spin(£). 
(As usual SO(n) = SO(ffT), Spin(rc) = Spin(iT).) It is well known that S is Spin(£> 
irreducible if n is odd, and breaks up as S — S+ © S~ if n is even. In that case S+ and 
S~ are the so-called half-spin representations. Let M be a riemannian «-manifold. If the 
principal SO(rc)-bundle P of oriented othonormal frames on M admits a cover Q —» P 
which induces, for each i G M , the cover Spin(TxM) —> SO(TxM)—for instance if M is 
simply-connected,— then one can form the associated vector bundle Q XsPm(n) S, whose 
sections are called spinors. Let G & Spin(n, 1) be the two-fold cover of the group of 
orientation preserving isometries of Hn. In particular the stabilizer K of any given point 
of Hn is isomorphic to Spin(w), the two-fold cover of SO(AI), and Hn œ G/K. Then G 
acts on the space X of spinors (with I = Z+ © Z" when n is even). In addition there is a 
first order differential operator, the Dirac operator, D: X —» X. A spinor a on IF is called 
harmonic if D2a = 0. Suppose n is even. It is known that £>£+ C X - and DÎT C S+. 
Let e+: I -^ Z+ and e~\S —» X" be the projections, and put 2^ = Ce+ 0 Ce~. Let 2> 
be the algebra of invariant differential operators acting on X. 

(1) THEOREM, (a) If n is even, then (D is generated over (£fi by D subject to the sole 
relation D = e+De~ + e~De+. 

(b) Ifn is odd, then £> = C[D] f* C[x]. 

The significance of this algebra is discussed in [Guichardet].—Put ^ = {a G I | 
Dka = 0}, and, if n is even, set ?£ = Jfk n 2+ and Mf = 9^ H Z". Then H2 is the 
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space of harmonic spinors on Hn. The sequences 

(2) 0 —> H{ > Ji^ - ^ # f —>0 n even, 

(3) 0 —• # f —>Mf -^9{? —> 0 n even, 

(4) 0 —> ^ —>9{ 2 -^!H\ —> 0 « odd 

are obviously left exact.—Let P C G be a minimal parabolic subgroup, so G/P is the 
boundary dHn of //". The group M — Spin(« — 1) can be viewed at the same time as 
KHP and as the quotient of P by its radical. Let V be the space of half-density valued 
hyperfunction sections of the invariant vector bundle over dHn whose fiber above the 
identity coset is the spin representation of M lifted to P. Technically V is the maximal 
globalization of a unitary principal series. More precisely, recall: 

(6) THEOREM [SCHMID]. There is a category S of topological G-modules having the 
following properties: 

(a) S is equivalent to the category of Harish-Chandra modules; in particular S is 
abelian and all its objects have finite length; 

(b) ^Ve S; 

(c) ifX G S and Y C X is a closed invariant subspace, then Y, X/Y G S; 

(d) letX, Y G S and (p:X —> Y be a map; then tp is in S if and only if it is continuous, 

linear and equivariant; 

(e) HomG(W,r(G x#X)) & HomK(W, X) for all W G S and all finite dimensional 

smooth K-modules X (here T refers to the C°° sections). 

The objects of S are called maximal globalizations. From now on Home and ExtG 

will respectively denote Horn in the category of all topological G-modules and Ext in 
category S. In view of (5.d) this should cause no confusion. The next result is essentially 
due to Thieleker. 

(7) THEOREM. Ifn is even, then: 

(a) M?and9({- are (topologically) irreducible, 

(b) v&rt+e rtx-, 
(c) Hom G (^ + , I + ) œ C œ Hom G (#f ,Z-) , 

(d) Hom G (^ + ,Z-) = 0 = HomG (#f ,E+). 
Ifn is odd, then 

(e) 9f\ is irreducible, 

(f) vmix®ttx, 
(g) H o m G ( ^ , X ) ^ C . 

The main result of this note is: 
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(8) THEOREM, (a) The sequences (2), (3) and (4) are exact, nonsplit, and generate 
respectively the groups Ext^(#f, ^ + ) , Ext^(^+ , # f ) , and E x t ^ ^ , ttx). 

(b) ExfG(9i,X) = 0 = ExfG(X, Hd forp >2,k>landXeS. 

REMINDERS. First let me recall more precisely the notion of spin representation (this 
is taken almost word for word from [Borel & Wallach, § II.6]). Let E be a finite dimen
sional real vector space equipped with a (positive definite) inner product ( | ). An E-
module is a (complex) vector space W along with a linear map c:E —• End W, called 
Clifford multiplication, which satisfies 

(9) c(v)2 = -(v | v) 

for all v. (Here and in the sequel Horn = Homc, End = Endc, 0 = 0c-) Let o(E) be 
the Lie algebra of all skew-adjoint operators on E. Identify o(£) with A2 E (the second 
exterior power of E) by (x A y)v = (x \ v)y — (y \ v)x for all x, y, v G E. Any ^-module W 
can be endowed with an o(£)-module structure by setting 

(10) (xAy)w=l/ 2c(x)c(y)w for x _L y 

Up to isomorphism there is only one simple £"-module S = S(E) [Chevalley, p. 55, 57]. 
The corresponding o(£)-module is called the spin representation, and exponentiates to 
Spin(£), the two-fold cover of SO(£). If dim E is odd, S is o(£)-simple. If dim E is even, 
S is a sum of two simple nonisomorphic representations S+ and S~ of o(£), called the 
half-spin representations. In this case, by [Atiyah, § IV.I] for instance, c(E)S+ C S~ and 
c(E)S+ C S~. Let E' C E be a hyperplane. If dimE is even, then S+ and 5~ are simple 
^-modules (and, thus, ^-isomorphic). If dimE is odd, then 5 is a simple ^'-module. 
This fact will be referred to as branching law. 

For any tangent vector v G TET denote the corresponding infinitesimal translation by 
T(V). Then r: THn —> g is a g-valued 1-form on Hn where g is the Lie algebra of G. Let F 
be an invariant vector bundle over IF and denote by OFF the space of F-valued /7-forms 
on IF. The action of G on OFF gives rise, by differentiation, to an action of g. There is a 
natural operator V: Q°F —» Q1/7, called connection, defined by (Vs)(v) = (T(V)S)(X) for 
v G 7y/n . It is often convenient to write Vvs for (Vs)(v). Note the Leibniz rule Vv(fs) = 
(vf)s(x) +f(x)Vvs for function/ on IF. Suppose F is the spinor bundle, which exists 
because FF is simply connected. In particular Fx — S(TxH

n). Therefore one can view 
Va as a section of Hom(TFF, F) and, identifying TFF to T*FF, thanks to the hyperbolic 
metric, one can regard the Clifford multiplication as a map c: Hom(THn, F) —> F. Define 
the Dirac operator D: X —> X by Da = c(Va). Clearly D is an order one invariant 
differential operator. 

PROOFS. Denote by SK and S M the spin representations of K and M. 

PROOF OF (1). Since the proof is very similar to (and easier than) that of 3.1 in 
[Gaillard 3], I will not insist too heavily on the details, and the odd case will be omitted 
altogether. So suppose n is even. There is an obvious map from the algebra implicitly 

https://doi.org/10.4153/CMB-1993-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-037-7


260 P.-Y. GAILLARD 

presented in (l.a) into 2), and, thus, into gr 2), the graded algebra associated to 2). It 
suffices to show that the second map is an isomorphism. Denoting the symmetric algebra 
of Cn by Sym, one has, gr 2) œ (Sym ® End SK)K• Using the linear isomorphism Sym & 
I®H, with / = {invariants} and H = {harmonics} & Ind^ C together with Frobenius 
reciprocity for M C K, one can write gr 2) œ / 0 (H (g) End Sjr)* & I0 End^ £#• It is 
well known that / is a polynomial algebra in the obvious generator. In view of the above 
branching law, one has dimEndM SK = 4. Let Hk be the space of degree k homogeneous 
elements in H. Clearly dim(H° ® End SK)K = 2. One knows (see for instance [Borel & 
Wallach, § II.6.5]) End SK & /\Cn (the exterior algebra of Cn). One easily deduces from 
this that (H1 ® End SK)K has dimension 2, and, thus, is generated by e+De~ and e~De+. 
This implies gr 2) — Ie+De~ 0 Ie~De+, which, in turn, yields the claim. • 

Let V be the space of half-density valued hyperfunction sections of the invariant vector 
bundle over dHn whose fiber above the identity coset is the spin representation of M lifted 
to P, as in (6). 

(11) PROPOSITION (THIELEKER). There are irreducible submodules V+, V" C V such 
that 

(a) V = V+ 0 V-, 
(b) V+ and V~ are isomorphic if and only ifn is odd, 
(c) HomG(y+,Z+) & C K HomG(V",£-) (n even). 
(d) H O H I G ( V M - ) = 0 = HomG(Vr-,Z+) (n even), 
(e) HomG(V+,£) & C (n odd). 

One has the following K-module isomorphisms: 
{f) Hf « Hx

+ 0 H{- & Mf for n even; Hi^0ix 0 Hx forn odd. 

PROOF. Parts (a)-(e) follow from [Thieleker 1, Theorem 6] coupled with (5.e). 
By (1), there is a scalar À such that D2 — A is a nonzero multiple of the Casimir op
erator. From this point on, in view of the branching law recalled above, the proof of (f) 
is similar to that of Lemma 12 in [Gaillard 2]. • 

It is well known since Poincaré that FT can be realized as the upper half-space Hn{x G 
Rn | xn > 0} with the metric 5L dxf jxn. Set o = (0 , . . . , 0,1 ) G Hn. Let (ej) be the standard 
basis of Rn viewed as a basis of T0H

n. Identify K to the stabilizer of o, and P to that of 
oo G Mn = Rn-1 U {oo}. Then P & R+ x Spin(rc - 1), W = {t G R \ t > 0}. Define the 
groups A, N C P by A = {x i—> ax \ a > 0} œ R+ and N = {x »-> /? + JC | b G R""1} œ 
1R"_1 of P. Identify /\2 ro//n to k as above. Denote by ZN the space of N-invariant spinors 
on Hn. Recall Fx = S(TxH

n). 

(12) LEMMA, (a) If a G XN andj < n — 1, f/ien V^tr = (ej A en)cr(o), where the right 
hand side denotes the action of ej Aen Gko/i cr(o) G F0 = SK> 

(b) If a is A-invariant, then V^a = 0. 

PROOF. TO prove (b), note Vena — (r(en)(j)(d) = 0, the first equality following from 
the definition of V, and the second one from the facts that r(en) G A and that a is assumed 
to be A-invariant. To prove (a), use the isomorphism NA ^ Hn, g \—> go to identify F 
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with Hn xF0. Then a — f(xn)s for some/ G C°°(IR+) and s G F0. Because of the Leibniz 
rule, / has no influence on the formula. Since ej A en acts semisimply on F0 one can 
assume (ej A en)s = —iXs with 2À G Z. The one-parameter subgroup generated by r(ej) 
preserves the hyperbolic 2-plane through ej and en. Thus I can suppose n = 2 J = 1, and 
identify R2 to C. Then o — i G C and e\ — d/dx G TtH

2.1 can also assume a = (dz)x. 
An easy computation yields successively r(e\) = 1/2(1 — z2)d/dz + 1/2(1 — z2)d/dz, 
and Ve,cr = —i\a(i), as desired. • 

(13) LEMMA. Lfader f/*e above isomorphism ZN & C°°(R+) 0 SK one has: D = 
(xnd/dxn - ^ ) ® d>„) on E". 

PROOF. By definition the Dirac operator satisfies (Da)(o) — £i</<« c(^)V^.cr. One 
has: 

Y, c(ej)\7eia= J2 c(ej)(ej A en)a(e) by(10.a) 
1 </*<«-! 1 </'<n-1 

= 1/2 £ c(^-)c(^)c(^M^) by (10) 
1 </</!-1 

= - 1 /2 £ ^ > ( ^ ) by (9) 
1 </</!-1 

1 - / 1 

= ——c(en)a(en). 

Suppose now that a is //-invariant, i.e. a — f(xn)s for some/ G C°°(1R+), s G F0. By the 
Leibniz rule and (lO.b), one obtains (Da)(o) = (f'(\) — ^)c(e„).s. Now the statement 
follows by A-invariance of D. m 

Recall that a Dirac section of an invariant vector bundle over dHn is just a distribution 
section of order zero supported on a single point, and that the linear span of the Dirac 
sections is dense in the space of all hyperfunction sections. Let now E be the vector 
bundle over dHn whose space of (scalar valued) hyperfunction sections is V, let v G V 
be a Dirac section of E supported on the point at infinity, and let p be in Home (V, £). 

(14) LEMMA, (a) (<p(v))(x) = x{:~l)/2(if(v))(en)f 

(b) <pV C ttx. 

PROOF. Part (a) is proved as Lemma 2 in [Gaillard 1], and (b) follows from (a) 
combined with (13). • 

(15) LEMMA. Ifn is even, then V+ PU Off and V~ fc* # f . Ifn is odd, then V+ œ 9f\ « 
V~. Moreover the sequences (2), (3) and (4) are exact and nonsplit. 

PROOF. Suppose n is even. Let <p G HomG(V, X+), (p ^ 0. Using the above notation, 
let s be in F£, and put a = JC„ / log(x„)s. Then, in view of (13), a satisfies D2a = 0 ^ 
Da G pV~. This implies that V+ and V~ occur both as composition factors oin H£'. 
(Thanks to Schmid's Theorem (6) it makes sense to talk about composition factors.) By 
(9.f), this means that these are the only composition factors of 9i£. Then it is clear that 
Jf+ fc* V+, and that (2) is exact and nonsplit. The other cases are similar. • 
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In view of (11) and (15) I am left with proving the second part of (7.a). Let me verify 
for instance that (2) generates Ext^(V_,V+). Using [Thieleker 2, § 10] and [Colling-
wood], one easily checks that V+ and V~ are (up to isomorphism) the only irreducible 
modules with their (common) infinitesimal character. Combining (La) with [Guichardet, 
3.2.13], yields the claim. Again, the other cases are analogous. Statement (7.b) can be 
easily checked by combining the above arguments with Casselman's Theorem in [Borel 
& Wallach, 1.5.5] and the usual long exact sequences for Ext. • 
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