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Abstract. The class of m-full and four related classes of ideals in a local ring
(R,m) are extended by replacing m with other ideals and the resulting classes of ideals
are compared. It is shown that contracted ideals are m-full in a local ring with infinite
residue field.
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1. Introduction. Throughout let (R,m) be a local (Noetherian) ring. An m-
primary ideal I of R is said to be contracted if IR[m

x ] ∩ R = I for some regular
x ∈ m \ m2. An R-ideal I is said to be full if I :R m = I :R x for some x ∈ m \ m2.
Contracted ideals and full ideals played important roles in Zariski’s factorisation
theorem for complete ideals in a two-dimensional regular local domains (see for
example [20, Appendix 5] and [8]). An R-ideal I is said to be m-full if mI :R x = I for
some x ∈ m. This class of ideals was first considered by D. Rees (unpublished) and has
received substantial attention since the first papers [4, 18] on this topic appeared. An R-
ideal I is said to have the Rees property if μ(J) ≤ μ(I) for any ideal J containing I with
finite colength, λ(J/I) < ∞, where μ(I) denotes the minimal number of generators,
λ(I/mI), of I . It was shown in [4] and [18] that if R/m is infinite, then m-full ideals
have the Rees property. A proper ideal I of R is said to be basically full if no minimal
set of generators of I can be extended to a minimal set of generators of an R-ideal
that properly contains I [6, Definition 2.1]. It is shown in [6, Theorem 2.1] that a
basically full ideal of R is m-primary and in [6, Theorem 2.12] that an m-primary ideal
is basically full if and only if I = (Im :R m).

In a recent paper [7], these five classes of ideals were compared to each other and
to the class of integrally closed ideals. In this paper, after developing a few basic facts
about closure operations on the set of ideals of a ring, two particular closure operations
are used to show that contracted ideals are m-full in any local ring (R,m) with R/m

infinite. This greatly simplifies the diagram of implications between the above classes of
ideals, which was given in [7, p. 2628]. Further, it is shown that all of the implications in
this diagram continue to hold if the above five definitions are generalised by replacing
the maximal ideal m of R by another ideal L of R. Usually when one considers ideals,
which are contracted from R[m/x], it is assumed that x ∈ m is regular. Thus, when
considering ideals, which are contracted from R[L/x] for some ideal L, we will assume
that x ∈ L is regular.

This paper is organised as follows. In Section 1, we give the definitions of closure
operations, semi-prime and prime operations and a few relevant examples. In Section 2,
it is shown that for any regular ideal L of the local ring R, there is a semi-prime operation
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I �→ I�L such that I = I�L if and only if there exists a regular element x ∈ L such that
IR[L/x] ∩ R = I . Thus, I�L is the unique smallest ideal J of R such that I ⊆ J and
JR[L/x] ∩ R = J for some regular x ∈ L. Finally, in Section 3, after extending the
notion of m-full to L-full for other ideals L as in [15, p. 42], we define a semi-prime
operation I �→ I∗ with the property that I∗ is L-full for each ideal I , and then use it
and the L-contraction closure I�L to show that if R/m is infinite, then the L-contracted
ideals of (R,m) are L-full.

2. Closure operations. In this section, we give the definition and some examples of
closure operations. For some further examples and applications of closure operations,
see for example [3, 16, 17]. We use the following terminology from [10, 11, 13].

DEFINITION 2.1. Let I �→ Ic be an operation on the set of ideals I of a ring R, and
consider the following rules, where I and J are ideals of R and b is a regular element
in R: (a) I ⊆ Ic; (b) if I ⊆ J, then Ic ⊆ Jc; (c) (Ic)c = Ic; (d) IJc ⊆ (IJ)c and (e) (bI)c =
bIc. Then, I �→ Ic is a closure operation if (a)–(c) hold for all ideals I and J in R, it
is a semi-prime operation if (a)–(d) hold for all ideals I and J in R, and it is a prime
operation if (a)–(e) hold for all ideals I and J and regular non-units b of R.

REMARK 2.2. The following are easily seen to hold for any semi-prime operation
I �→ Ic on the set of ideals I of R, where � is an index set: (1) (IcJc)c = (IJ)c; (2)
(
∑

i∈�(Ii)c)c = (
∑

i∈� Ii)c and (3) (∩i∈�(Ii)c)c = ∩i∈�(Ii)c.

There are many well-known examples of closure operations including integral
closure and tight closure. In the following, we list a few others, which we will refer to
later.

EXAMPLE 2.3. The �-closure is a semi-prime operation [11]. Let R be a
commutative ring with identity and � a multiplicatively closed set of non-zero finitely
generated ideals of R. If I is an ideal in R, then D(I) = {IK :R K | K ∈ �} is a directed
set and ∪{IK :R K | K ∈ �} = ∑

K∈�(IK :R K) is an ideal I� called the delta-closure
of I .

EXAMPLE 2.4. Let R be a ring, let {fλ : R → Rλ | λ ∈ �} be a family of ring
homomorphisms, and for each λ ∈ �, let I �→ Icλ

be a closure operation on Rλ. The
closure operation induced from the family of closure operations {cλ | λ ∈ �} is defined
by I �→ ∩{fλ−1((IRλ)cλ

) | λ ∈ �}.
EXAMPLE 2.5. Fix an R-module M and define IM = (IM :R M). Then, I �→ IM

is a semi-prime operation. In fact, the proof for the special case M = m [6, Proof of
Theorem 4.2] goes through without change in this case. It was shown by Yongwei Yao
[19, Theorem 2.5(ii) and Remark 2.6] that under certain conditions on a ring R, there
exists an R-module M such that the tight closure is given by I∗ = IM for any ideal I
(see also [17, p. 592]).

The Ratliff–Rush closure I �→ Ĩ = ∪∞
n=1(In+1 :R In) is not a closure operation as

defined above because condition (b) of Definition 2.1 can fail [5, Example 1.11].

3. Two closure operations associated to contracted ideals. If (R,m) is a local
(Noetherian) ring, then as defined above, an ideal I of R is said to be contracted
if I = IR[m

x ] ∩ R for some regular x ∈ m \ m2. In the following, we replace m by an

https://doi.org/10.1017/S0017089512000833 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000833


CONTRACTED, m-FULL AND RELATED CLASSES OF IDEALS 671

arbitrary regular ideal K and say that an ideal I of R is K-contracted if IR[ K
x ] ∩ R = I

for some regular x ∈ K . We use the following lemma. For this lemma, observe that
since the ideal ∪k≥1(IKk :R Kk) is a union of an ascending chain of ideals and R is
Noetherian, this ideal is (IKk :R Kk) for all large k. Similarly for ∪k≥1(IKk :R xk). If K
is an ideal of R, we let reg(K) denote the set of regular elements in K .

LEMMA 3.1. If (R,m) is a local ring and I, K are ideals of R with K regular, the
following hold.

(3.1.1) IR[K/x] ∩ R = ∪k≥1(IKk :R xk) if x ∈ K is regular.
(3.1.2) ∩n

i=1IR[K/xi] ∩ R = ∩z∈reg(K)IR[K/z] ∩ R = ∪k≥1(IKk :R Kk) if x1, . . . , xn is a
set of regular generators for K.
(3.1.3) If R/m is infinite, then there exists a regular element x ∈ K such that
∪k≥1(IKk :R Kk) = ∪k≥1(IKk :R xk) = IR[K/x] ∩ R.

Proof. For (3.1.1), let y ∈ IR[K/x] ∩ R. Then, for all large k, y = ∑k
t=0 it(ft/xt),

where it ∈ I and ft ∈ Kt. So xky = ∑k
t=0 itftxk−t ∈ IKk and y ∈ (IKk :R xk). Conversely,

if y ∈ (IKk :R xk), yxk = ∑k
t=0 it(ft), where it ∈ I and ft ∈ Kk. So y = ∑k

t=0 it(ft)/xk,
where it ∈ I and ft ∈ Kk. It follows that IR[K/x] ∩ R = (IKk :R xk) for all large k.

For (3.1.2), we will show that (IKk :R Kk) ⊆ ∩z∈reg(K)IR[K/z] ∩ R ⊆
∩n

i=1IR[K/xi] ∩ R ⊆ (IKk :R Kk) for large k. Let y ∈ (IKk :R Kk) and z ∈ reg(K). Then,
yzk ∈ yKk ⊆ IKk, which implies that y ∈ I(Kk/zk) ⊆ IR[K/z]. Thus, (IKk :R Kk) ⊆
∩z∈reg(K)IR[K/z] ∩ R. Clearly, ∩z∈reg(K)IR[K/z] ∩ R ⊆ ∩n

i=1IR[K/xi] ∩ R.

Let y ∈ ∩n
i=1IR[K/xi] ∩ R. Then, for each j, there exists kj such that yxkj

j ∈ IKkj .
Then, for k = max{kj | j = 1, . . . , n}, we have yxk

j ∈ IKk for every j. It follows that y ∈
(IKnk :R Knk). Indeed each z ∈ Knk is an R linear combination of monomials xt1

1 · · · xtn
n ,

where t1 + · · · + tn = nk. For each of these monomials, some ti ≥ k. If say i = 1, then
yxt1

1 · · · xtn
n = (yxk

1)xt1−k
1 · · · xtn

n ∈ (IKk)(Knk−k) = IKnk. Therefore y ∈ (IKnk :R Knk) ⊆
∪k≥1(IKk :R Kk). This proves (3.1.2).

For (3.1.3), a special case of [12, Theorem 2.5.1] states that, if R/m is infinite,
there exists a regular x ∈ K such that IKk :R Kk = IR[K/x] ∩ R = IKk :R xk for all
large k. �

DEFINITION 3.2. Let (R,m) be a local ring, let K be a regular ideal of R and let I
be an ideal of R. The K-contraction closure I�K of I is defined by I�K = ∪k≥0(IKk :R
Kk) = I�, where � = {Ki | i ≥ 0}. We write I� for I�m

.

PROPOSITION 3.3. Let (R,m) be a local ring with R/m infinite and let K be a regular
ideal of R. Then, for each ideal I of R, the K-contraction closure I�K = ∪k≥0(IKk :R Kk)
of I is the smallest ideal J of R containing I, which is contracted from R[K/b] for some
b ∈ reg(K).

Proof. Since I �→ I�K is a semi-prime operation by Example 2.3, it suffices to show
that I is a K-contracted ideal if and only if I�K = I . If I�K = I , Lemma (3.1.3) gives I =
I�K = IR[K/b] ∩ R for some regular b ∈ K . Conversely, if I is K-contracted, assume that
I = IR[K/b] ∩ R, b ∈ reg(K). By Lemma (3.1.2), we have I�K = ∩z∈reg(K)IR[K/z] ∩ R ⊆
IR[K/b] ∩ R = I ⊆ I�K . �

It is shown in [2, Lemma 3.3] that if (R,m) is a local domain with R/m infinite
and I is an integrally closed m-primary ideal, then I is m-contracted. The following is
a generalisation and converse of [2, Lemma 3.3].
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COROLLARY 3.4. If (R,m) is a local domain with R/m infinite and I is a regular ideal
of R, then I is K-contracted for every regular ideal K of R if and only if I is integrally
closed.

Proof. Since the ideal K in Definition 3.2 is assumed to be regular, it is immediate
that I�K ⊆ I , the integral closure of I (for example, see [9, Theorem 2.1]). Thus, if I = I ,
then since I ⊆ I�K ⊆ I , it follows from Proposition 3.3 that I is K-contracted for each
regular ideal K of R.

Conversely, assume that I is K-contracted for each regular ideal K of R and
let r ∈ I . Then, an equation of integral dependence of r over I of degree n gives
I(I, r)n−1 = (I, r)n (for example, see [14, Proposition 1.1.7]). It follows that r(I, r)n−1 ⊆
(I, r)n = I(I, r)n−1. So if we take take K = (I, r), we get r ∈ (IKn−1 :R Kn−1) ⊆ I�K = I ,
where the equality is by Proposition 3.3 and the fact that I is K contracted. �

4. L-contracted implies L-full. We use the following generalisation of m-full
mentioned in [15, p. 42].

DEFINITION 4.1. Let (R,m) be a local ring with R/m infinite, let I and L be regular
ideals and let x ∈ L. Then, I is said to be L-full with respect to x if (LI :R x) = I .

By [15, p. 43], if (R,m) is local with R/m infinite and L is a regular ideal of R,
then for any ideal I of (R,m), there exists a smallest L-full ideal I∗ containing I . In
the following, we define a related closure operation, which exists even if R/m is finite,
and then use it and the L-contraction closure to show that if R/m is infinite, then the
L-contracted ideals of (R,m) are L-full.

LEMMA 4.2. Let (R,m) be a local ring, let L be a regular ideal and let x ∈ L. The
map I �→ I∗ = ∪n(LnI :R xn) is a semi-prime operation and I∗ is L-full with respect to x
for each ideal I of R.

Proof. This is straight forward from the definition of I∗, or one could use Lemma
(3.1.1) and Example 2.4. �

The following result is new, even in the case L = m, although it is known in special
cases, for example if R is a two-dimensional regular local ring, as noted in [7, pp. 2628–
2829], or for homogeneous ideals I in a polynomial ring K [X1, . . . , Xn] over a field K
[1, Proposition 2.11]. In the case that R/m is infinite, it also substantially strengthens
[7, Theorem 1.2], which says that an m-contracted m-primary ideal is basically full
(without assuming R/m is infinite). A consequence is a significant simplification of the
diagram of implications between the above properties, which was given in [7, p. 2628]
(see the new diagram (1) at the end of this paper). It also strengthens [4, Theorem 2.4]
and [18, Theorem 5], which give the same conclusion under the stronger hypothesis
that I is integrally closed.

THEOREM 4.3. If (R,m) is local with R/m infinite and L is a regular ideal of R, then
L-contracted ideals are L-full. In particular, m-contracted ideals are m-full.

Proof. Assume the ideal I is contracted from R[L/x]. Then, by Proposition 3.3,
I = I�L = ∪k≥1(ILk :R Lk). But since R/m is infinite, we get by Lemma 3.1.3 that there
exists a regular b ∈ L such that I�L = IR[L/b] ∩ R = ILk :R bk for all large k. Thus,
I = ∪n(LnI :R bn) is L-full with respect to b by Lemma 4.2. �
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EXAMPLE 4.4. It follows from [1, Example 2.12] that the converse of Theorem 4.3
does not hold for L equal to the maximal ideal m in a three-dimensional regular local
ring. Indeed in [1, Example 2.12], it is pointed out that the ideal I = (X3, Y 3, X2Z)R +
(X, Y, Z)4R in the polynomial ring R = K [X, Y, Z] over a field K is m-full but not
contracted. Of course this ring R is not local, but since I = (Im :R f ) for some linear
form f ∈ m, then localising at m = (X, Y, Z), we get that IRm is mRm-full in the local
ring Rm. Further, it is easily checked that X2Y ∈ (Im2Rm :Rm

m2Rm) \ IRm. Thus, by
Proposition 3.3, IRm is not a contracted ideal in the regular local ring Rm.

Recall that an ideal I of a local ring (R,m) is said to have the Rees property if
λA(J/mJ) ≤ λA(I/mI) for any ideal J ⊇ I with λA(J/I) finite. In the spirit of Vascon-
celos’ definition of L-full, if L is an ideal of a local ring (R,m) with λR(R/L) < ∞,
we say that an ideal I of R has the L-Rees property if λA(J/LJ) ≤ λA(I/LI) for any
ideal J ⊇ I with λA(J/I) finite. The following proposition generalises the result that
m-full ideals I have the Rees property [18, Theorem 3], [4, Lemma 2.2(2)] to the fact
that L-full ideals have the L-Rees property.

PROPOSITION 4.5. Let (R,m) be local, let L and I be ideals of R with λR(R/L) < ∞.
If I is L-full and J ⊇ I with λA(J/I) finite, then λA(J/LJ) ≤ λA(I/LI).

Proof. Let x ∈ L be such that (LI :R x) = I . Then, the sequence

0 → I/LI → J/LI
x→ J/LI → J/(LI + xJ) → 0

is exact. That J/(LI + xJ) is the cokernel of the map mx, which is multiplication
by x is clear. Also I/LI ⊆ ker(mx) ⊆ (LI :R x)/LI = I/LI . Since LI + xJ ⊆ LJ, then
λA(J/LJ) ≤ λA(J/(LI + xJ)) = λA(I/LI), where the last equality is by the above exact
sequence. So λA(J/LJ) ≤ λA(I/LI). �

The following corollary of Theorem 4.3 seems to be worth explicit mention.

COROLLARY 4.6. Let (R,m) be local, let L and I be ideals of R with λR(R/L) < ∞.
If I is L-contracted, then I has the L-Rees property. In particular, m-contracted ideals
have the Rees property.

As mentioned in the Introduction, a proper ideal I of R is said to be basically full
if no minimal set of generators of I can be extended to a minimal set of generators of
an R-ideal that properly contains I , and a basically full ideal of a local ring (R,m) is m-
primary [6, Theorem 2.1]. Thus, it is immediate from the definitions that an m-primary
ideal I is basically full if it has the Rees property. Further, by [6, Theorem 2.12], an
m-primary ideal is basically full if and only if I = (Im :R m). Again in the spirit of
Vasconcelos’s definition of L-full, we define an ideal I of (R,m) to be L-basically full
if I = (LI :R L), which we have denoted IL in Example 2.5. The following proposition
generalises the result that m-primary ideals having the Rees property are basically full,
to the result that ideals having the L-Rees property are L-basically full.

PROPOSITION 4.7. If the ideal L of (R,m) is m-primary and λR(J/LJ) ≤ λR(I/LI)
for each ideal J ⊇ I, with λR(J/I) finite, then IL :R L = I.

Proof. We have λR(IL/I) < ∞ since L is m-primary and IL/I is an R/L-module.
Then, by the L-Rees property, we have λA(IL/LIL) ≤ λA(I/LI), but ILL = IL. Indeed
ILL = (IL :R L)L ⊆ IL, but I ⊆ IL implies IL ⊆ ILL. So ILL = IL and λA(IL/LI) ≤
λA(I/LI). But since I ⊆ IL, this implies I = IL. �
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It remains to extend the notion of full ideal, which is defined in the Introduction.
If I and L are ideals of (R,m), we say that I is full for L if I :R L = I :R x for some
x ∈ L. Then, L-full ideals I are full for L since if IL :R x = I , then I :R x ⊆ LI :R Lx =
(LI :R x) :R L = I :R L ⊆ I :R x.

We have the following diagram of implications, which simplifies the diagram given
in [7, p. 2628]. Further, we may replace m by any regular ideal L with λA(A/L) < ∞.

Integrally closed
(i)⇒L-contracted

(ii)⇒ L-full
(iii)⇒ L-Rees property

(iv)⇒ L-basically full
⇓ (v)

full for L
(1)

The implication (i) holds by Corollary 3.4 and this implication is not reversible, even
for L = m in a two-dimensional regular local ring (R,m), by an example in [20, p. 388]
as was noted in [7, p. 2629]. The implication (ii) holds by Theorem 4.3 and by Example
4.4, it is not reversible, even for L = m in a three-dimensional regular local ring. The
implication (iii) holds by Proposition 4.5 and it is apparently not known if it is reversible
in local rings with infinite residue field. The implication (iv) holds by Proposition 4.7
and, by [6, Example 9.1], it is not reversible even for L = m in a two-dimensional regular
local ring (R,m). The implication (v) holds by the above paragraph and by [7, Example
1.3], full for L does not imply L-basically full, even for L = m in a three-dimensional
regular local ring (R,m). Thus, full for m does not imply any of the properties in the
line above it in the case L = m.
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