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A b s t r a c t . 

Fluid dynamical techniques to model the dynamical evolution of star 
clusters, and their successors, gaseous models using an equation of heat con-
ductivity to model relaxation effects, including anisotropy, are presented. 
The historical merits of such models are reviewed as well as the current 
s tatus of their credibility, based on quantitative comparisons with other 
methods, like orbit-averaged Fokker-Planck solutions and direct iV-body 
simulations. 

1. I n t r o d u c t i o n w i t h s o m e historical remarks 

Fluid or gasdynamical models of star clusters have successfully been used since 
many years. As Sugimoto (1985) expressed it ten years ago in the last IAU sympo-
sium on the dynamics of star clusters "we can understand physics of self-gravitating 
systems in terms of gaseous models in so far that their global nature and effects 
of self-gravity are concerned. ... They include gravothermal collapse/expansion ... 
and post-collapse evolution with gravothermal oscillation." In this review I want 
to discuss the progress, which has been made in the understanding of the relevance 
of fluid or gas dynamical models during the past ten years and convince the reader 
that there are prospects to create realistic models of stellar systems, including 
effects of particle-particle interactions, on the basis of such models. 

I want to use this occasion first to stress some of the historical merits of the 
models, which have served for many important discoveries in the past. Thereafter 
one of them, the anisotropic gaseous model is presented in some more detail, 
its comparison with direct iV-body simulations and direct solutions of the orbit-
averaged Fokker-Planck equation is discussed, and finally first results on the path 
towards real models of star clusters are presented. 
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The term fluid dynamical model was used by Larson in his seminal series of 
papers on star clusters (Larson 1969, 1970a, b). He derived dynamical equations 
from the fundamental kinetic Boltzmann equation, including a Fokker-Planck col-
lisional term based on the derivation of Rosenbluth, McDonald & Judd (1958). 
He assumed that some higher order moments of the velocity distribution function 
can be derived as in the case of a Maxwell-Boltzmann distribution. Using a se-
ries expansion of the distribution function in Legendre polynomials up to second 
order he could derive the local collisional anisotropy decay timescale (note, how-
ever, that his derivation was not fully self-consistent, since he used an isotropized 
background distribution function). In a direct comparison between Larson's mod-
els, direct iV-body simulations, and Monte-Carlo models of star clusters Aarseth, 
Hènon & Wielen (1974) showed, however, that Larson's models deviated from the 
other models in late core collapse. 

The physics of global instabilities of self-gravitating gas spheres in the lin-
ear approximation has been studied by Hachisu & Sugimoto (1978), who showed 
that the gravothermal catastrophe, detected by Antonov (1962) and Lynden-Bell 
& Wood (1968) could be understood as a global instability against the redistri-
bution of heat in a self-gravitating isothermal gas cloud. It was the effect of the 
negative specific heat in the core of self-gravitating systems, which caused the 
runaway. In a similar approach Hachisu (1979) studied the so-called "gravo-gyro" 
catastrophe, caused by a negative specific momentum of inertia in self-gravitating 
systems. However, until recently there has not been paid much attention to models 
of rotating star clusters (but see C. Einsel & R. Spurzem, and P.Y. Longaretti, 
this volume). Spurzem (1991) showed that thermodynamic arguments (maximiz-
ing an entropy functional) could also be used to understand the linear response of 
anisotropy to a redistribution of heat. 

Hachisu et al. (1978) first utilized the gas dynamical equations (which can be 
seen as isotropic version of the moment equations of Larson) with an equation of 
heat transfer and various scalings of the heat conductivity À oc paT^ to model a 
star cluster. This is a phenomenological closure of the moment equations, instead 
of a specialization of the distribution function as in Larson's case. Lynden-Bell & 
Eggleton (1980) found that Λ oc p T - 1 / 2 is the physical case in which the conductiv-
ity scales with the standard stellar dynamical two-body relaxation rate. With such 
a model fair agreement (e.g. of the self-similar solution for gravothermal collapse) 
could be reached with the at that time recent competitive models based on the 
numerical solution of the ID orbit-averaged Fokker-Planck equation (Cohn 1980). 
But it was much less clear, to what extent these models were really appropriate 
for real star clusters like globulars. 

Although the process of core collapse can be understood without inclusion of 
anisotropy, the prospect of modelling real star clusters, which exhibit anisotropy 
(e.g. Lupton et al. 1987), would require anisotropic models. Here anisotropy is 
understood as a difference between the radial and tangential velocity dispersions 
("temperatures") in a spherically symmetric system. Unfortunately the very effi-
cient scheme of Cohn (1980) to numerically solve the ID orbit-averaged Fokker-
Planck equation could not easily be generalized to the 2D case. So until very 
recently (Takahashi 1995, K. Takahashi, this volume) anisotropic Fokker-Planck 
models were not available (with the exception of an early attempt by Cohn (1979), 
who did not continue this work because of problems with numerical accuracy). 
Remarkably early, however, Stodolkiewicz (1982, 1986) developed a Monte-Carlo 
method based on Hènon's work, which was able to numerically simulate large Ν 
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star clusters including anisotropy. Such a model has been revisited recently by M. 
Giersz (this volume). 

The moment equations, as they were used e.g. by Larson (1970a) include 
anisotropy; however, it is less obvious how to generalize the closure equation of 
heat transport in an anisotropic case. So-called one-flux and two-flux closures have 
been examined, (Bettwieser & Spurzem 1986). In a more systematic study (Louis 
& Spurzem 1991) it could be shown, that at least the self-similar solutions in both 
cases were very similar, and even close to the solutions of a higher order moment 
model of Louis (1990). 

Soon the question what happens to globular clusters after core collapse was 
raised. After Hènon (1975) and Stodolkiewicz (1982) first extended their Monte-
Carlo models to the post-collapse phase Inagaki & Lynden-Bell (1983) showed that 
there is a self-similar post-collapse solution with a central pointlike energy source 
by using a gaseous sphere model. Bettwieser & Sugimoto (1984), and Heggie (1984) 
put into their gas sphere models a distributed heating term tailored to describe 
the energy generation in the core due to formation and hardening of three-body 
binaries. Here a post-collapse model with a non-singular core was reached, in 
the case of the first two papers large amplitude gravothermal oscillations were 
found. Until such oscillations were also detected in the solutions of the Fokker-
Planck equation (Cohn, Hut & Wise 1989) it was widely believed that they are 
an artifact of the gaseous model or, even worse, of particular codes to solve the 
model equations. Goodman (1987) proved that post-collapse oscillations can be 
understood as an instability of a self-similar solution. Both gaseous and Fokker-
Planck models exhibit a rich dynamical behaviour of their oscillating solutions, 
with period doublings and possibly chaotic behaviour, similar to the non-linear 
dynamics in the case of the Rössler- and Lorentz attractors (see e.g. Jackson 
1990), which originate from heat conduction problems as well (Breeden et al. 1994, 
Spurzem 1994). 

The question whether large amplitude gravothermal oscillations occur in real, 
discrete TV-body systems made the need clear for quantitative, detailed compar-
isons between direct simulations and models based on the Fokker-Planck equation 
(gaseous models as well as models based on orbit-averaging, henceforth denoted 
as statistical models). It has long been argued (cf. e.g. Inagaki 1986) that stochas-
tic fluctuations at core bounce (which always occurs at a very small core particle 
number, provided three-body binary formation dominates and there were no pri-
mordial binaries) destroy the characteristic temperature inversion, which creates 
the steady gravothermal expansion in the statistical models. To start with the 
most recent result, J. Makino (this volume) has shown that such a temperature 
inversion indeed occurs in a real iV-body system of 32k particles near core bounce 
and thus should trigger a gravothermal reexpansion. 

But there are more questions than that of gravothermal oscillations. The va-
lidity of the Fokker-Planck approximation (uncorrelated small angle two-body en-
counters dominate the evolution) and the possibility to model energy transport 
by two-body encounters in a nearly collisionless (mean free path long compared 
to systems dimensions) stellar system by a phenomenological heat transport equa-
tion, which can be strictly derived only in the case of a collisional Boltzmann 
gas, are open theoretical questions. Surprisingly there have not been many quan-
titative comparative studies between direct iV-body and other models (despite of 
considerable development of software and hardware, except of the pioneering study 
of Aarseth, Hènon & Wielen (1974). Recently, however, Giersz & Heggie (1994a, 
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b) and Giersz L· Spurzem (1994, henceforth GS) have shown that for the equal 
point mass case there is fair agreement between all models for Ν < 2000, provided 
the stochastic iV-body fluctuations are overcome by ensemble averaging of several 
statistically independent iV-body simulations. 

2. T h e anisotropic gaseous m o d e l 

To be definite and clear for the reader unfamiliar with gaseous models I would 
like to give in the following a short, but complete description of the variables and 
equations used for a standard model. 

Let the dependent variables be the mass Mr contained in a sphere of radius 
r, the local mass density p, radial and tangential pressure pr, pt, bulk mass trans-
port velocity and transport velocities r r , vt of the radial and tangential energy, 
respectively. As auxiliary quantities the radial and tangential 1-D velocity disper-
sions σ\ = Pr/p, v\ — Pt/Pi the average velocity dispersion σ2 = (σ2 + 2σ^)/3, the 
anisotropy A = 2 — 2σ2/σ2 and the relaxation time 

(1) 

in the definition of Larson (1970a) are used, where Ν is the total particle 
number of the star cluster, m the individual stellar mass and 7 a numerical constant 
whose value will be discussed below. The equations are 

(2) 

(3) 

(4) 

(5) 

(6) 

The net transport velocities for radial and tangential energy (vr—u) and (vt—u) 
can be derived from the energy fluxes Fr and Ft (which are identified with the third 
order moments of the velocity distribution) by dividing out a convenient multiple 
of the relevant pressure (2pt for (vt — u), 3pr for (vr — u) ). The reader interested 
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in more details about this and the connection of the variables to moments of the 
stellar velocity distribution is referred to Louis & Spurzem (1991). 

The numerical constants AA, λ and 7 occurring in Eqs. (4) to (6) are re-
lated to the timescales of collisional anisotropy decay and heat transport, and 
to the Coulomb logarithm, respectively, λ is related to the standard C constant 
in isotropic gaseous models (see e.g. Heggie 1984) by λ = 2.7Λ/τγΟ. TA is the 
anisotropy decay timescale for an anisotropic local velocity distribution function; 
for a generalization of Larson's (1970a) distribution function (series of Legendre 
polynomials) including anisotropy it is TA = 10T/9 (Louis & Spurzem 1991). AA 
is discussed in Sect. 4. Additional terms due to the average heating by formation 
and hardening of three body binaries (see e.g. Cohn 1985) are 

[δρΛ _ 2 J ^ / G m ^ . (δρΛ _(δρΛ m 

V St ) h i n 3 - 3 G , m V V σ ) ' { 6t )bin3 ~ ^ St ) b i n 3 " [ V 

This is an isotropic energy input. It is shown in GS and Giersz and Heggie 
(1994a, b) that for particle numbers between Ν = 1000 and Ν = 10.000 the 
best agreement between direct TV-body calculations, direct solutions of the orbit-
averaged Fokker-Planck equation and this anisotropic gaseous models is achieved 
for one set of parameters, namely A = 0.4977 (i.e. C = 0.104), 7 = 0.11, A^ = 
0.1, and Cb = 90. The latter value used to be the standard value derived from 
theoretical arguments, based on a numerical factor of C = 0.9 in the formula for 
the formation rate of three-body binaries (Hut 1985). Recently, Goodman & Hut 
(1993) argue, that C = 0.75 is a better value, but still within some uncertainty. 
The results of comparisons with iV-body simulations show that Cb = 90 is a fairly 
reasonable value, but within the uncertainty Cb = 75 (which would ensue with the 
new formation rate) cannot be ruled out. Note that the value of 7 found empirically 
is somewhat smaller than e.g. Spitzer's (1987) standard value (7 = 0.4). 

As for multi-component models the simplest approach is to take dynamical 
equations like those above (including the closure equation) for each component 
separately, then coupling them by gravity (via Euler's equation) only and self-
consistent collisional terms for the decay of anisotropy and the exchange of en-
ergy. The results for the collisional terms have been reported in the Appendix of 
Spurzem & Takahashi (1995, henceforth ST). Therein we also argue, that such 
a model is in much better agreement with direct Fokker-Planck solutions than 
previously argued (Bettwieser & Inagaki 1985). The main reason is a much more 
complicated additional coupling between the components within the conductivity 
equation adopted by Bettwieser & Inagaki (1985) as compared with the new model 
(Spurzem 1992). 

3. C o m p a r i s o n s 

Figs. 1 to 3 are taken from GS and visualize the quality of agreement between 
TV-body an standard gaseous model for an equal mass system in pre- and post-
collapse (low TV, averaged TV-body simulation). It also illustrates the influence of a 
possible variation of Cb- Note that the agreement is non-trivial, because the main 
free parameter in the gaseous model (A has been fixed already by comparison with 
the orbit-averaged Fokker-Planck model. 

Fig. 4 shows a similar comparison, but now for an individual TV = 10000-body 
simulation, compared with the standard anisotropic gaseous model (Cb — 90). The 
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Nbody Time 

Figure 1. Evolution of the 1% Lagrangian radius in an averaged Ν = 1000 N-body 
model in comparison to the standard anisotropic gaseous model for varying strengths 
of the binary energy generation (curves labelled by Cb-value, see main text) . The curve 
labelled cc is the one for Cb = 0, i.e. pure core collapse. 

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 
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0 100 200 300 400 500 600 
Nbody Time 

Figure 2. Evolution of the 1% Lagrangian radius in averaged iV-body models for 
Ν = 250, 500, 1000 (here taken Cb = 55, Cb = 70, Cb = 90, respectively). For the 
reasons why to take smaller Cb for small Ν see discussion in GS. 

good agreement in pre-collapse again underlines that the Fokker-Planck approx-
imation is valid in this evolutionary phase, however, we now note a significant 
discrepancy in collapse times and oscillations of the iV-body central density which 
do not show up in the gaseous model. The discrepancy in collapse time is seen as a 
result of poor statistics. One can estimate an expected spread in collapse times for 
an Ν = 10000 system of about 130 time units, so the actual collapse time is just 1.4 
σ apart from the average (Spurzem & Aarseth 1996). How about the oscillations 
of the iV-body model? Are they gravothermal? The author has spent considerable 
effort in looking at these data for inversions of the temperature gradients, or its 
signature in the cumulative distribution function to find any trace of this neces-
sary feature of gravothermal oscillations, as it was already clearly outlined in the 
original paper by Bettwieser & Sugimoto (1984). Since they could not be found 
the oscillations are interpreted as binary-driven, generated by stochastic binary 
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Figure 3. Evolution of the 1 to 10% Lagrangian radius in an averaged Ν = 1000 iV-body 
model in comparison to the standard anisotropic gaseous model (Cb = 90). 

Nbody Time 

Figure \. Evolution of the 1 to 10% Lagrangian radius in a single Ν = 10000 iV-body 
model in comparison to the standard anisotropic gaseous model (Cb = 90). 

encounter events, which do not persist for long times after the binary activity has 
ceased (see also the critical assessment of what real gravothermal oscillations are 
by S.L.W. McMillan, this volume). Such interpretation is supported by observa-
tions in the iV-body simulation that at the beginning of an expansion phase there 
is a strong binary scattering event and that the expansion ceases after an active 
binary has been lost by escape or becomes inactive (e.g. by ejection into the halo) 
(Spurzem & Aarseth 1996). 

It is interesting to note that Takahashi (1995, and this volume) finds in his new 
2D Fokker-Planck models a collapse time for an Ν = 10000 model, which agrees 
much better with the here presented iV-body data. He claims that the collapse 
time is considerably longer in the anisotropic case, which coincides with a result 
published by Louis (1990), based on a fifth-order moment model. But presently it is 
difficult to judge about this conjecture from the viewpoint of iV-body simulations, 
because the variations of collapse times in Ν = 10000 ΑΓ-body simulations is 
of the same order as the postulated difference between isotropic and anisotropic 
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Figure 5. Anisotropy averaged between the indicated Lagrangian radii for direct 
Ν = 10000 body simulation (fluctuating curves, only for two outermost zones) and 
for comparison 2D Fokker-Planck model by Takahashi (1995) and standard anisotropic 
gaseous model. Times were rescaled such that core bounce occurs at the same point of 
the abscissa for all models in order to allow a better comparison. 

models. So we have to wait for better statistics and more iV-body models with 
larger N. Since the scatter in collapse times in relation to the collapse time itself 
becomes smaller with increasing Ν a few larger Ν simulations will give much more 
significant results on the average collapse time. 

4. T h e an i so tropy 

It turns out that a canonical value of A A in the gaseous model equations, as it would 
turn out for some standard anisotropic distribution function, yields much larger 
anisotropy than in the iV-body models. Reasonable agreement inside the the half-
mass radius can be achieved for AA = 0 . 1 for all cases of JV, single and two-mass 
models (see GS and ST). Such a result is theoretically not well understood, could 
be related, however, to the fact, that the local approximation used in the gaseous 
model becomes obsolete in the halo regions, where anisotropy prevails. Stars on 
radial orbits suffer encounters during there passage through the core, where there 
is a much higher density, thus the collisional decay of anisotropy ought to be 
shorter than by a local estimate in the halo, which is consistent with the above 
findings. Since the orbit average of the direct Fokker-Planck solution includes for 
a given orbit contributions to the diffusion coefficients from different radii such a 
discrepancy should not occur in 2 D orbit-averaged Fokker-Planck models. Indeed 
first results by Takahashi ( 1995 , this volume) point this out. In Fig. 5 we show 
the anisotropy for the outer mass shells (N = 10000) in comparison between his 
new 2 D Fokker-Planck results, standard anisotropic gaseous model and the direct 
ΑΓ-body simulations. The 2 D Fokker-Planck model agrees in the outermost shells 
much better with the iV-body system. For the intermediate shells (Lagrangian 
radii containing 3 0 to 5 0 % of total mass) fluctuations of the measured TV-body 
anisotropy were too large to allow for a reasonable plot. 
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Figure 6. Lagrangian radii containing 1 to 20 % of the total mass for an anisotropic 
gaseous model with stochastic binaries compared to the direct Ν = 10000 iV-body sim-
ulation. To compare the characteristic features of the post-collapse evolution the data 
have been scaled in time such that both models have core bounce at the same point of 
the abscissa, as in Fig. 5. 

5. O u t l o o k and Conc lus ion 

It has been shown that the anisotropic gaseous model of star clusters matches 
for a wide range of Ν and single and two-mass star clusters, and for a standard 
parameter choice, very well with expectations from direct solutions of the orbit-
averaged Fokker-Planck equation and averaged direct iV-body simulations. The 
underlying assumptions (Fokker-Planck approximation, small angle two-body en-
counters dominate evolution in core collapse, and their energy transport properties 
can be modelled by a heat transfer equation analogous to gas dynamics, but with 
a specially tailored conductivity to account for the stellar dynamical relaxation 
timescale) and a statistical treatment of the average heating rate by formation 
and hardening of three-body binaries are supported by this result. 

Differences between gaseous models and other solutions still remain in the case 
of the anisotropy in the outer halo regions and and in the stochastic behaviour of 
individual iV-body models compared with the statistical gaseous model. The first 
problem might be overcome in higher order moment models, because it is related 
to the anisotropy decay in the collisional terms, which rely on certain assumptions 
on the functional form of the velocity distribution. The second problem is tackled 
by a stochastic treatment of binaries as in a Monte-Carlo model (cooperation with 
M. Giersz in progress, see a very similar approach for isotropic Fokker-Planck 
models by Takahashi & Inagaki 1991). Fig. 6 shows a gaseous model with stochastic 
binaries as compared with the TV-body simulation; the characteristic behaviour of 
the real iV-body system is matched very well. Including stochastic binaries and 
other effects like stellar evolutionary mass loss into the model in the near future 
will generate a very efficient realistic model of a star cluster. 
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