

Weeds

VOLUME 6 APRIL 1958 NUMBER 2

Journal of the Weed Society of America https://doi.org/10.1017/S0096719X00004661 Published online by Cambridge University Press

Weeds

Issued Quarterly by the Weed Society of America

K. P. BUCHHOLTZ, Editor, Dept. of Agronomy, Univ. of Wisconsin, Madison, Wisconsin.

W. C. JACOB, Business Manager, Dept. of Agronomy, Univ. of Illinois, Urbana, Illinois.

EDITORIAL COMMITTEE

O. C. LEE, Dept. of Botany and Plant Pathology, Purdue University, Lafayette, Indiana.

R. A. PETERS, Dept. of Plant Science, University of Connecticut, Storrs, Connecticut.

W. C. ROBOCKER, Crops Research Division, USDA, State College of Washington, Pullman, Washington.

E. G. RODGERS, Dept. of Agronomy, University of Florida, Gainesville, Florida.

WEEDS is a quarterly journal published by the Weed Society of America. Editorial offices are located at the University of Wisconsin, Madison, Wisconsin. Printing is by the W. F. Humphrey Press Inc., Geneva, New York. Subscription price is \$6.00 yearly for four issues: single copies \$1.50. Address all communications regarding subscriptions, advertising and reprints to W. C. Jacob, Department of Agronomy, University of Illinois, Urbana, Illinois. Inquiries concerning information on manuscripts and other material for publication should be addressed to the Editorial Offices. All checks, money orders and other remittances should be made payable to the Weed Society of America.

Entered as second-class matter at the post office at Urbana, Illinois with additional entry at Geneva, New York.

Table of Contents

	Page
Residual Pre-emergence Herbicides in Soybean Production in Iowa. David W. Staniforth and Charles R. Weber	115
The Effect of Soil Smoothing Devices on the Action of Pre-emergence Herbicides in Soybeans and Corn. R. E. Larson, D. L. Klingman, and O. H. Fletchall	126
The Effect of Day and Night Temperature on Growth, Foliar Wax Content, and Cuticle Development of Velvet Mesquite. Herbert M. Hull	133
An Evaluation of the Herbicidal Efficiency of Combinations of Dalapon, Monuron, and several other Chemicals. T. J. Sheets and O. A. Leonard.	143
Chemical Weed Control in Seedling Alfalfa. I. Control of Weedy Grasses. M. K. McCarty and Paul F. Sand	152
The Influence of Soil Factors on the Phytotoxicity and Plant Selectivity of Diuron. Robert P. Upchurch	161
The Role of Gibberellic Acid in Overcoming Bud Dormancy in Perennial Weeds. I. Leafy Spurge (Euphorbia esula L.) and ironweed (Veronia Baldwini	
Torr.). Neal E. Shafer and Warren G. Monson	172
Tomato Plants. S. C. Fang	179
The Response of Certain Crops to 2,4-Dichlorophenoxyacetic Acid in Irriga- tion Water. Part III. Concord Grapes. V. F. Bruns and W. J. Clore	187
Differences among Butyl, Ethyl, and Isopropyl Ester Formulations of 2,4-D, 2,4,5-T, and MCPA in the Control of Big Sagebrush. D. N. Hyder, W. R.	
Furtick, and F. A. Sneva	194
The Aerial Application of 2,4-D to Halogeton. W. C. Robocker, Richard Holland, R. H. Haas, and Kenneth Messenger	198
An Evaluation of Several Chemicals for Weed Control in Easter Lilies. W. A. Gentner, W. C. Shaw, and F. F. Smith	203
Brief Papers	
A Note on the Chromotropic Acid Reagent for 2,4-D Analysis. V. H. Freed and S. C. Traegde	211
News and Notes	213
Sustaining Members	214
Bibliography of Weed Investigations, July to October, 1957	215

Advertisers Index

U. S. Borax & Chemical Co	ii
Chipman Chemical Co	iii
Spraying Systems Co	iv
Union Carbide Chemicals Co	v
du Pont de Nemours & Co	vi

ATLACIDE: Safer chlorate weed killer...widely used for non-selective eradication of bindweed, Canada thistle, quack grass, Johnson grass and other tough perennials. Kills roots...discourages regrowth. Applied dry or dissolved in water for use as a spray.

ATLACIDE – 2,4-D: A combination of Atlacide and 2,4-D acid. Particularly recommended for Canada thistle control.

CHLOREA: A non-separating combination of sodium chlorate, borate and monuron in powder form. Kills weeds and grasses. Combines the proven effectiveness of chlorate on deep-rooted weeds with the soilsurface action of monuron on shallow-rooted grasses and annual seedling growth. Lasting residual effect inhibits new growth. Does not create a fire hazard when used as directed. Applied dry or as a watermixed spray. For industrial, railroad and certain agricultural uses.

CHLOREA GRANULAR Similar to Chlorea, but a granular material. No mixing or diluting..."pellets" are easy to apply by hand or with mechanical spreader.

CHLORAX "40": A composition of sodium chlorate and borate...for

weed and grass control. Has lasting residual effect. Does not create a fire hazard. Applied dry or as a spray.

CHLORAX LIQUID: Similar to Chlorax "40"...in liquid form.

ATLAS "A": A 40% sodium arsenite solution (4 lbs. arsenic trioxide per gal.). Destroys submersed vegetation and algae in ponds and lakes. Controls crabgrass, chickweed and clover in turf. Used as general weed killer and to kill trees and stumps. Also used to kill potato vines prior to harvesting.

SODIUM ARSENITE: A powder containing 75% arsenic trioxide. Used for the same purposes as Atlas "A". Applied dry or as a spray.

2,4-D & 2,4,5-T WEED KILL-ERS: A complete line...available as 2,4-D Amine and 2,4-D Ester liquids; 2,4-D Ester dusts; Low Volatile 2,4,5-T and Brush Killer.

METHOXONE: Contains 2 pounds of MCP sodium salt per gallon. Used for weed control in small grains, flax, rice and grass. Controls same weeds as 2,4-D; considered safer for selective spraying.

Chloro IPC • IPC Liquid & Dust

Write for Weed Control Booklets

CHIPMAN CHEMICAL COMPANY, INC. Chicago, Ill. BOUND BROOK, N. J. Portland, Ore. Palo Alto, Calif. Pasadena, Tex. Bessemer, Ala. Manufacturers of Weed Killers Since 1912

Supplied in a full range of interchangeable orifice tip and strainer sizes to meet every capacity requirement. Tee-Jet Spray Nozzles for Weed Control by spraying make it possible to take maximum advantage of the chemical and sprayer unit. TeeJet nozzles are precision built and provide a flat spray with uniform distribution. Atomization is properly controlled to give coverage with an absolute minimum of driftage. Patented tip design, with set-back orifice opening protects precision orifice from accidental damage. TeeJet spray nozzles are built for use on spray booms and portable sprayers.

OFF-CENTER SPRAY NOZZLES

Spraying Systems Spray Nozzles with TeeJet tips are supplied in a variety of special body types to meet any unusual spraying requirement. For example, one type of off-center spray nozzle with swivel body provides a flat spray up to 35 feet wide for spraying areas with a single nozzle, that are not accessible with a boom.

SUPPLEMENTARY EQUIPMENT

Complete accessories relating to nozzle use are supplied. These include strainers, special nozzle fittings, and hand valve equipment.

> TeeJet Spray Nozzles are supplied for Weed Control... as well as all other types of agricultural spraying. For complete information and reference data write for Catalog 30.

SPRAYING SYSTEMS CO. Engineers and Manufacturers

3296 RANDOLPH STREET

TELJET

BELLWOOD, ILLINOIS

SPRAY NOZZLE female pipe connection

TEEJET SPRAY

NOZZLE male pipe

connection

INTER-CHANGE-ABLE ORIFICE TIPS flat and cone spray types

NOW COMMERCIALLY AVAILABLE for Tobacco Seed Beds

A commercial label has been accepted by the USDA on CRAG Mylone for use as a preplanting soil fumigant to control soil fungi, nematodes, and weeds in tobacco plant beds.

Mylone soil fumigant, an easy-to-handle powder, can be applied with a small fertilizer spreader. Application is made in the fall, well before tobacco seeds are planted. It requires no plastic cover after application, no soil mixing.

CRAG Mylone is also commercially available for use in ornamental propagating beds, and for weed and dry rot control in gladiolus. Experimental work is continuing for use on vegetable and forest-tree seed beds, and on turf.

For test quantities of CRAG Mylone, or for more information, write to the address below.

"Crag", "Mylone", and "Union Carbide" are trade-marks of Union Carbide Corporation. Mylone fumigant is easy to apply, requires no cover.

It helps produce healthy, weed-free plants.

CRAG Agricultural Chemicals **Union Carbide Chemicals Company** Division of Union Carbide Corporation 180 South Broadway, White Plains, New York

UNION CARBIDE

For Agriculture and Industry . . .

Du Pont UREA HERBICIDES

offer new economies and efficiency in killing weeds, grass and brush

"KARMEX" for weed control in asparagus, sugar cane, pineapple, potatoes, grapes, alfalfa, citrus and other crops. Also for irrigation and drainage ditch weed control. Available in two formulations: "Karmex" W monuron and "Karmex" DW diuron.

KARMEX® DL for pre-emergence weed control in cotton.

TELVAR® for industrial weed and grass control. Also in certain areas, it is recommended for brush control. "Telvar" W monuron and "Telvar" DW diuron. The urea herbicides, products of Du Pont research, kill vegetation through the roots. Their efficiency is demonstrated by the relatively low dosages required to do the job. They can be easily applied, are non-flammable, non-volatile, non-corrosive and extremely low in toxicity.

Better Things for Better Living ... Through Chemistry

E. I. DU PONT DE NEMOURS & CO. (INC.) GRASSELLI CHEMICALS DEPT.

WILMENGTON 98, DELAWARE