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SOME NATURAL SUBGROUPS OF
THE NOTTINGHAM GROUP
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The Nottingham group can be described as the group of normalized automorphisms of the ring F,[[»J],
namely, those automorphisms acting trivially on tF(,[[t]]/r

2Fp[[f]]. In this paper we consider certain proper
subgroups of the Nottingham group. We prove that these subgroups are identical to their normalizers and
that some of them are isomorphic tc the Nottingham group.

1991 Mathematics subject classification: 20E18.

Introduction

There has been considerable interest in pro-p groups in recent years due, in part, to
the publication of the book by Dixon et al. in 1991 [2]. In particular, pro-p group
theory has been used in the proofs of the "coclass" conjectures for finite p-groups [7,
8]. As interest in pro-p groups has grown so has interest in the so-called Nottingham
group, first introduced to a wider audience through the papers of Johnson and York
[6, 9]. The Nottingham group is a finitely generated pro-p group of finite width which
is neither soluble nor p-adic analytic, so it does not fit into any "understood" class of
pro-p groups. Also, it has recently been proved that every countably-based pro-p group
can be embedded in the Nottingham group [1]. This paper aims to increase the
understanding of this interesting group.

The Nottingham group can be thought of as a group of formal power series under
substitution [5, 6, 10, 9], as a group of automorphisms of the ring Fp[[i]] or as a group
of automorphisms of the field Fp((t)). This paper considers certain proper subgroups
of the Nottingham group, some of which turn out to be isomorphic to the Nottingham
group. They also have the property of being identical to their normalizers, illustrating
a difference between finite and infinite pro-p group theory.

This work was carried out whilst the author held a studentship from EPSRC at
Queen Mary and Westfield College, London. The author would like to thank EPSRC
and her supervisors Dr. Susan McKay and Prof. Charles Leedham-Green. The referee
must also be thanked for many useful remarks and comments.
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Preliminaries

For a general reference to pro-p group theory see the book by Dixon et al. [2].
Let A denote the automorphism group of the field Fp((t)). Then A is equal to the

group of continuous automorphisms of Fp((t)). This follows from the fact that the
valuation of F(J((t)), defined by v(£°lk aJ) = >̂ where ak ^ 0, is the only normalized
valuation of F,,((t)) with respect to which Fp((t)) is complete. An element g of A is
therefore defined by its action on t and is of the following form

if a, e F, a, ^ 0.

We can now define the Nottingham group.

Definition 1. The Nottingham group, J, is defined as the subgroup of
A = Aut(F()((t))) consisting of automorphisms of the form

Remarks, (i) J is a finitely generated pro-p group [6, Prop. 1].
(ii) A can be considered as a profinite group. In this setting, J is the closure of the

derived subgroup of A when p ^ 2 or 3. The proof is straightforward and is therefore
omitted. Note that for p = 2 it is clear that J = A and when p — 3 it can be shown that
J > A' > J'.

(iii) Define en e J for n > 1 by ten := t(l + t").

Note. Defined above is the "classic" Nottingham group. However more generally
one can define J(R), where R is a commutative ring with identity, to be the set of all
formal power series

under formal substitution: given G e J(R), put FG = G(l + X ^ , <xkG
k). It then follows

that J(R) is a group [6, Prop. 1].
In general we can set the formal power series F to be the action of a map / on the

indeterminate t considered as an element of the ring R[[t]] of formal power series over
R. i.e. tf := F. Extending the action of / to the whole of R[[t]\ determines an
automorphism of R\[t]]. A simple calculation shows that tfg = FG and we thus have
J(R) embedded as a subgroup of Aut(R[[t]]).

Although, in this article, we have restricted the statements and proofs to the classic
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Nottingham group, the results hold more generally. In particular, the non-topological
statement of Proposition 1 is true for J(R) when R is a commutative ring with 1.
Theorem 1 holds if we restrict to the case when R is an integral domain (with a
simplified proof if char(/?) = 0). It is an interesting question whether the result is true
when R has zero divisors. A version of Theorem 2 holds when R is a field, although
the result is dependent on char(K). If char(R) = 0 we have that J(x)(R) S J(R) for all
x > 1.

The subgroups J(x)

Let x be a positive integer and define the subset Jw of J as follows

Proposition 1. Jw is a closed infinite subgroup of J for x > 1. Further, JM is not open
for x > 1.

Proof. Let g, h e Jw, suppose tg - t(l + £ ~ , a / x) and th = t(l + £ " , ftt"). Then

tgh = ( g ^ ^ g ( £ ^

for some ^ e F,. In particular gh e J(x).
The closure of Jw follows from the fact that any sequence of elements in J(x) that

converges in J clearly converges in J(x). So J w is compact and closed under multi-
plication and consequently closed under forming inverses.

Clearly ekx e JM for all k > 1, so 7(x) is infinite. Finally, for x > 1 the subgroup 7(x)

is of infinite index in J and therefore is not open. D

In a finite p-group the normalizer of a proper subgroup is always strictly greater
than the subgroup. Consequently the following proposition, although simple, is of
interest.

Theorem 1. N/(JW) = J(x).

Proof. We prove this result by contradiction. Let h e N,(J(x)) and suppose h & Jw.
So if
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th = t\l £"4
let txk be the first non-zero coefficient such that k is not divisible by x. Then,
consideration of h~l shows that

th~l = t 1 4-Eft"

for some f}} e Fp, where the first non-zero coefficient /?; such that; is not divisible by
x is Pk and in fact Pk = —<xk. Consider the coefficient of tx+k+l in h~lexh;

x 1 +

Note that by the definition of /T

t =

so the expression of th~xexh above simplifies.
Due to the properties of fe, the only way we can form rx+*+1 is as t x f x f* or

r""1"1 x f*. After consideration of the above equations we see that the coefficient of t*+k+1

in th~lexh is

Thus since h e Nj(J(x)) we must have x = fe mod p. So in particular Nj(JM) = J^.
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For the result when x ^ 0 mod p, consider the coefficient of t**+k+1 in th^e^h. In a
similar way to above, if h'^e^h is to lie in JM it follows that 2x = k mod p. However
then x ^ k mod p and h~lexh g J{x), a contradiction, and no such ak exists.

Now suppose x = p" and k = kp', where (k, p) = 1 and s < n. Consider the
coefficient of txp+k+l in th~lexh. In the first summand the coefficient is kfik; however in
the second summand this term does not appear. Thus Pk = 0 and such an h does
not exist.

The last case to consider is when x = xp" and (x, p) — 1. By the argument of the
previous paragraph we can assume that h e J^}. So suppose k — kp" and that k is not a
multiple of x (so k is not a multiple of x). If x < k consider the coefficient of tx'r+k+l

in th~lexh. Again the coefficient in the first summand is given by kfik and the term does
not appear in the second summand, hence the result. If k < x consider the coefficient
of fr +x+1. This term appears in the second summand with coefficient xtxk but does not
appear in the first summand and thus ô  = 0. •

We also have the following theorem. To ease notation we denote i(Fp((r
x))) by J(f)

for x a positive integer.

Theorem 2.

Jw £* J if x # 0 (mod p),
¥ J ifx = 0 (mod p).

Proof. Let g e J(t\x); then

for some txk e Fp. So

and thus g\v ((^B e J(f). So we can define the following map 9

6 : J(r)M

9 "

We show that when x 0 0 mod p, 6 is an isomorphism. Then, as J{f) ^ J(t), since
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we have the result for this case. Since Q is clearly a homomorphism
we just have to show that given h e J(f) then there exists a unique element g e J(t)
such that (t*)h = (t*)g and in fact this unique solution g actually lies in J(t)M. The
existence of g is equivalent to solving an equation of the following type:

= (tg)x

where h and hence the /?, are given, and g and so the a; are to be found.
We now construct a solution to the above equation and hence show that g exists.

If (r*)fc = f*. simply set tg = t, and we are done. If (f)h / f, then /?r, the first non-zero
coefficient in £ ~ , A1', is well-defined. So, we want

+ •

As x # 0 mod p we must choose the first non-zero coefficient in £]=, */*' t o De a5,
where s = rx and xa, = )3r.

Now we proceed inductively. Suppose a; has been chosen for 1 <; '</— 1, and is
zero if j is not divisible by x. Then, as all non-zero powers of t in (f)h are powers of f,
we choose a, to be non-zero only if / is divisible by x. In this case a, is uniquely defined.
Thus we can construct a unique solution g, of the required form.

J(x), unlike J, does not contain any elements of finite order when x = 0 mod p [10,
Thm 5.5.4]. Hence J(x) & J in this case. •

The author thanks the referee for the following remarks.

Remarks, (i) Suppose (x, p) = 1. The isomorphism 6, from the previous proof, is a
natural isomorphism between JM and J. If g e JM is such that tg — t(l + Y1Z=\ atf*) then
(g)6 e J is defined by t(g)9 = t(l + £*!, <****)*• Thu s J w w is naturally defined and is
equal to J{xy).

(ii) If J w were properly contained in its normaliser then, since its centraliser is trivial,
it would have a non-trivial group of p outer automorphisms. By a theorem of Gaschiitz
[4, Satz 19.1] a finite p-group of order greater than p does have outer automorphisms
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of order p. This is known to fail for some pro-p groups [3, Chapter III, Section (e)].
The previous two theorems suggest it will also fail for J.
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