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ON DOUBLE-MEMBERSHIP GRAPHS OF MODELS
OF ANTI-FOUNDATION

BEA ADAM-DAY , JOHN HOWE , AND ROSARIO MENNUNI

Abstract. We answer some questions about graphs that are reducts of countable models
of Anti-Foundation, obtained by considering the binary relation of double-membership
x ∈ y ∈ x. We show that there are continuum-many such graphs, and study their connected
components. We describe their complete theories and prove that each has continuum-many
countable models, some of which are not reducts of models of Anti-Foundation.

This paper is concerned with the model-theoretic study of a class of graphs
arising as reducts of a certain non-well-founded set theory.

Ultimately, models of a set theory are digraphs, where a directed edge
between two points denotes membership. To such a model, one can associate
various graphs, such as the membership graph, obtained by symmetrising
the binary relation ∈, or the double-membership graph, which has an edge
between x and y when x ∈ y and y ∈ x hold simultaneously. We also
consider the structure equipped with the two previous graph relations, which
we call the single-double-membership graph. In [2] the first author and Peter
Cameron investigated this kind of object in the non-well-founded case. We
continue this line of study, and answer some questions regarding such graphs
that were left open in the aforementioned work.

It is well-known that every membership graph of a countable model ofZFC
is isomorphic to the Random Graph (see, e.g., [5]). The usual proof of this
fact goes through for set theories much weaker thanZFC, but uses the Axiom
of Foundation in a crucial way, hence the interest in (double-)membership
graphs of non-well-founded set theories.

In 1917 Mirimanoff [12, 13] discussed the distinction between non-well-
founded sets and their well-founded counterparts, and even presented a
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Figure 1. On the left, a picture of the unique sets a and b such that a = {b, ∅} and b = {a, {∅}}. On
the right, a picture of the unique set c such that c = {c, ∅, {∅}}. The arrows denote membership.

notion of isomorphism between possibly non-well-founded sets. Through-
out the years they have appeared—implicitly and explicitly—in myriad
places, and various formulations of axioms allowing such sets to exist have
been developed and utilised. A uniform treatment of many of these axioms
can be found in [1], along with historical notes.

Perhaps the most famous non-well-founded set theory is obtained from
ZFC by replacing the Axiom of Foundation with the Anti-Foundation Axiom
AFA, and is called ZFA (not to be confused with another ZFA, a set
theory with Atoms). This axiom provides the universe with a rich class
of non-well-founded sets, the structure of which reflects that of the well-
founded sets: in models of ZFA there are, for example, unique a and b such
that a = {b, ∅} and b = {a, {∅}}, and a unique c = {c, ∅, {∅}}, pictured
in Figure 1. By facilitating the modelling of circular behaviours, ZFA
has found applications in computer science and category theory for the
study of streams, communicating systems, and final coalgebras, and in
philosophy, for the study of paradoxes involving circularity and natural
language semantics. We refer the interested reader to [1, 3, 4].

On many accounts, models of ZFC and of ZFA are closely related, and
the two set theories behave very similarly, even under forcing extensions:
see for instance [7, 17]. Now, when we symmetrise the membership relation,
we have two choices: we can either forget which edges were symmetric in
the first place—that is, consider the membership graph—or remember this
information—that is, consider the single-double-membership graph. In the
first case, we find ourselves in yet another situation where the behaviour
of ZFA parallels closely that of ZFC. Namely, in [2] it was proven that
all membership graphs of countable models of ZFA are isomorphic to the
‘Random Loopy Graph’: the Fraïssé limit of finite graphs with self-edges.
This structure is easily seen to be ℵ0-categorical, ultrahomogeneous, and
supersimple of SU-rank 1. If instead we take the second option, the situation
changes drastically, and already double-membership graphs of models of
ZFA are, in a number of senses, much more complicated. For instance,
[2, Theorem 3] shows that they are not ℵ0-categorical, and here we show
further results in this direction.

The structure of the paper is as follows. After a brief introduction to
Anti-Foundation in Section 1, and after setting up the context in Section 2,
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130 BEA ADAM-DAY, JOHN HOWE, AND ROSARIO MENNUNI

we answer [2, Question 3] in Section 3 by characterising the connected
components of double-membership graphs of models of ZFA. In the same
section, we show that if we do not assume Anti-Foundation, but merely
drop Foundation, then double-membership graphs can be almost arbitrary.
Section 4 answers [2, Questions 1 and 2] by proving the following theorem.

Theorem (Corollary 4.5). There are, up to isomorphism, continuum-
many countable (single-)double-membership graphs of models of ZFA, and
continuum-many countable models of each of their theories.

In Section 5 we study the common theory of double-membership graphs,
which we show to be incomplete. Then, by using methods more commonly
encountered in finite model theory, we characterise the completions of said
theory in terms of consistent collections of consistency statements.

Theorem (Theorem 5.14). The double-membership graphs of two models
M and N of ZFA are elementarily equivalent precisely when M and N satisfy
the same consistency statements.

We also show that all of these completions are wild in the sense of
neostability theory, since each of their models interprets (with parameters)
arbitrarily large finite fragments of ZFC. Our final result, below—obtained
with similar techniques—answers [2, Question 5] negatively. The analogous
statement for double-membership graphs holds as well.

Theorem (Corollary 5.17). For every single-double-membership graph of a
model of ZFA, there is a countable elementarily equivalent structure that is not
the single-double-membership graph of any model of ZFA.

§1. The Anti-Foundation Axiom. There are a number of equivalent
formulations of AFA. Expressed in terms of f -inductive functions, or of
homomorphism onto transitive structures, it first appeared in [9], under the
name of axiom X1. It gained its current name in [1], where it was defined
via decorations. The form that we shall be using is known in the literature
(e.g., [4, p. 71]) as the Solution Lemma. For the equivalence with other
formulations, see, e.g., [1, p. 16].

Definition 1.1. Let X be a set of ‘indeterminates’, and A a set of sets.
A flat system of equations is a set of equations of the form x = Sx , where
Sx is a subset of X ∪ A for each x ∈ X . A solution f to the flat system is a
function taking elements of X to sets, such that after replacing each x ∈ X
with f(x) inside the system, all of its equations become true.

The Anti-Foundation Axiom (AFA) is the statement that every flat system
of equations has a unique solution.

Example 1.2. Consider the flat system with X = {x, y}, A = {∅, {∅}},
and the following equations.
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ON DOUBLE-MEMBERSHIP GRAPHS OF MODELS OF ANTI-FOUNDATION 131

x = {y, ∅},
y = {x, {∅}}.

The image of its unique solution x �→ a, y �→ b is pictured in Figure 1.

Note that solutions of systems need not be injective, and in fact uniqueness
sometimes prevents injectivity. For instance, if x �→ a is the solution of the
flat system consisting of the single equation x = {x}, then x �→ a, y �→
a solves the system with equations x = {y} and y = {x}, whose unique
solution is therefore not injective.

Fact 1.3. ZFC without the Axiom of Foundation proves the equiconsis-
tency of ZFC and ZFA.

Proof. In one direction, from a model of ZFA one obtains one of
ZFC by restricting to the well-founded sets. In the other direction, see
[9, Theorem 4.2] for a class theory version, or [1, Chapter 3] for the ZFC
statement. �

Remark 1.4. There exists a weak form of AFA that only postulates the
existence of solutions to flat systems, but not necessarily their uniqueness,
known as axiom X in [9] orAFA1 in [1]. Below, and in [2], uniqueness is never
used; hence all the results go through for models of ZFC with Foundation
replaced by AFA1. For brevity, we still state everything for ZFA.

§2. Set-up. Since Anti-Foundation allows for sets that are members of
themselves, in what follows we will need to deal with graphs where there
might be an edge between a point and itself. These are called loopy graphs
in [2] but, for the sake of concision, we depart from common usage by
adopting the following convention.

Notation. By graph we mean a first-order structure with a single relation
that is binary and symmetric (it is not required to be irreflexive).

Since we are interested in studying (reducts of) models of ZFA, we need
to assume they exist in the first place, since otherwise the answers to the
questions we are studying are trivial. Therefore, in this paper we work in a
set theory that is slightly stronger than usual.

Assumption 2.1. The ambient metatheory is ZFC + Con(ZFC).

Definition 2.2. Let L = {∈}, where ∈ is a binary relation symbol, and
M an L-structure. Let S and D be the definable relations

S(x, y) := x ∈ y ∨ y ∈ x,
D(x, y) := x ∈ y ∧ y ∈ x.

The single-double-membership graph, or SD-graph,M0 of M is the reduct of
M to L0 := {S,D}. The double-membership graph, or D-graph,M1 of M is
the reduct of M to L1 := {D}.
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132 BEA ADAM-DAY, JOHN HOWE, AND ROSARIO MENNUNI

So, given an L-structure M, i.e., a digraph (possibly with loops) where the
edge relation is ∈, we have thatM0 � S(x, y) if and only if in M there is at
least one ∈-edge between x and y. SimilarlyM0 � D(x, y) means that in M
we have both ∈-edges between x and y. The idea is that, if M is a model
of some set theory, then M0 is a symmetrisation of M that keeps track of
double-membership as well as single-membership, andM1 only keeps track
of double-membership.

In [2], M0 is called the membership graph (keeping double-edges) of M
and M1 is called the double-edge graph of M. Note that, strictly speaking,
SD-graphs are not graphs, according to our terminology.

For the majority of the paper we are concerned with D-graphs, since
most of the results we obtain for them imply the analogous versions for
SD-graphs. This situation will reverse in Theorem 5.16.

Definition 2.3. LetM � ZFA. We say that A ⊆M is an M-set iff there is
a ∈M such that A = {b ∈M |M � b ∈ a}.

So an M-set A is a definable subset of M that is the extension of a set in the
sense of M, namely the a ∈M in the definition. We will occasionally abuse
notation and refer to an M-set A when we actually mean the corresponding
a ∈M .

§3. Connected components. LetM � ZFA. It was proven in [2, Theorem 4]
that, for every finite connected graph G, the D-graphM1 has infinitely many
connected components isomorphic to G. It was asked in [2, Question 3] if
more can be said about the infinite connected components of M1. In this
section we characterise them in terms of the graphs inside M.

Let G be a graph in the sense of M � ZFA, i.e., a graph whose domain
and edge relation are M-sets, the latter as, say, a set of Kuratowski pairs. If
G is such a graph andM � ‘G is connected’, then G need not necessarily be
connected. This is due to the fact that M may have non-standard natural
numbers; hence relations may have non-standard transitive closures. We
therefore introduce the following notion.

Definition 3.1. Let a ∈M � ZFA. Let b ∈M be such that

M � ‘b is the transitive closure of {a} under D’.

The region of a in M is {c ∈M |M � c ∈ b}. If A ⊆M , we say that A is a
region of M iff it is the region of some a ∈M .

Remark 3.2. For each a ∈M , the region of a in M is an M-set.

For a ∈M , if A is the region of a and B is the transitive closure of {a}
under D computed in the metatheory, i.e., the connected component of a
in M1, then B ⊆ A. In particular, regions of M are unions of connected
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components of M1. If M contains non-standard natural numbers and the
diameter of B is infinite then the inclusion B ⊆ A may be strict, and B may
not even be an M-set. From now on, the words ‘connected component’ will
only be used in the sense of the metatheory.

Most of the appeals to AFA in the rest of the paper will be applications of
the following proposition. In fact, after proving it, we will only deal directly
with flat systems twice more.

Proposition 3.3. LetM1 be the D-graph ofM � ZFA, and let G be a graph
in M. Then there is H ⊆M1 such that:

1. (H,DM1 � H ) is isomorphic to G,
2. H is a union of regions of M, and
3. H is an M-set.

Proof. Work in M until further notice. Let G be a graph in M, say in
the language {R}. Let κ be its cardinality, and assume up to a suitable
isomorphism that domG = κ. In particular, note that every element of
domG is a well-founded set. Consider the flat system

{xi = {i, xj | j ∈ κ,G � R(i, j)} | i ∈ κ}.
Let s : xi �→ ai be a solution to the system. If i �= j, then i ∈ ai \ aj , and
therefore s is injective. Observe that:

(i) since R is symmetric, we have ai ∈ aj ∈ ai ⇐⇒ G � R(i, j), and
(ii) for all b ∈M and all i ∈ κ, we have b ∈ ai ∈ b if and only if there is
j < κ such that b = aj and G � R(i, j).

Now work in the ambient metatheory. Consider the M-set

H := {ai |M � i ∈ κ} = {b ∈M |M � b ∈ Im(s)} ⊆M1.

By (i) above, (H,DM1 � H ) is isomorphic to G and, by (ii) above, H is a
union of regions of M. �

We can now generalise [2, Theorem 4], answering [2, Question 3]. The
words ‘up to isomorphism’ are to be interpreted in the sense of the
metatheory, i.e., the isomorphism need not be in M.

Theorem 3.4. LetM � ZFA. Up to isomorphism, the connected components
ofM1 are exactly the connected components (in the sense of the metatheory)
of graphs in the sense of M. In particular, there are infinitely many copies of
each of them.

Proof. Let C be a connected component of a graph G in M. By
Proposition 3.3 there is an isomorphic copy H of G that is a union of
regions of M, hence, in particular, of connected components ofM1. Clearly,
one of the connected components of H is isomorphic to C.
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134 BEA ADAM-DAY, JOHN HOWE, AND ROSARIO MENNUNI

In the other direction, let a ∈M1 and consider its connected component.
Inside M, let G be the region of a. Using Remark 3.2 it is easy to see
that (G,D � G) is a graph in M, and one of its connected components is
isomorphic to the connected component of a inM1.

For the last part of the conclusion take, inside M, disjoint unions of copies
of a given graph. �

If one does not assume some form of AFA and for instance merely drops
Foundation, then double-membership graphs can be essentially arbitrary,
as the following proposition shows.

Proposition 3.5. LetM � ZFC and let G be a graph in M. There is a model
N of ZFC without Foundation such thatN1 is isomorphic to the union of G with
infinitely many isolated vertices, i.e., points without any edges or self-loops.

Note that the isolated vertices are necessary, as N will always contain
well-founded sets.

Proof. Let G be a graph in M, say in the language {R}. Assume without
loss of generality that G has no isolated vertices, and that domG equals its
cardinality κ. For each i ∈ κ choose ai ⊆ κ that has foundational rank κ
in M, e.g., let ai := κ \ {i}. Let bj := {ai | G � R(i, j)} and note that, since
no vertex of G is isolated, bj is non-empty, and thus has rank κ + 1. Define
� : M →M to be the permutation swapping each ai with the corresponding
bi and fixing the rest of M. Let N be the structure with the same domain
as M, but with membership relation defined as

N � x ∈ y ⇐⇒ M � x ∈ �(y).

By [15, Section 3]1, N is a model of ZFC without Foundation. To check that
N1 is as required, first observe that

N � ai ∈ aj ⇐⇒ M � ai ∈ �(aj) = bj ⇐⇒ G � R(i, j)

so {ai |M � i ∈ κ}, equipped with the restriction of DN1 , is isomorphic
to G. To show that there are no other D-edges in N1, assume that N1 �
D(x, y), and consider the following three cases (which are exhaustive since
D is symmetric).

(i) x and y are both fixed points of �. This contradicts Foundation in M.
(ii) y = ai for some i, so N � x ∈ ai ; hence M � x ∈ �(ai) = bi . Then
x = aj for some j by construction.

(iii) y = bi for some i. From N � x ∈ bi we get M � x ∈ ai ⊆ κ; thus
x has rank strictly less than κ. Therefore, x is not equal to any aj
or bj ; hence �(x) = x. Again by rank considerations, it follows that
M � bi /∈ x = �(x), so N � bi /∈ x, a contradiction. �

1Strictly speaking, [15] works in class theory. The exact statement we use is that of [11,
Chapter IV, Exercise 18].
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§4. Continuum-many countable models. We now turn our attention to
answering [2, Questions 1 and 2]. Namely, we compute, via a type-counting
argument, the number of non-isomorphic D-graphs of countable models of
ZFA and the number of countable models of their complete theories. The
analogous results for SD-graphs also hold.

Definition 4.1. Let n ∈ � \ {0}. Define the L1-formula

ϕn(x) := ¬D(x, x) ∧ ∃z0, ... , zn–1

(( ∧
0≤i<j<n

zi �= zj
)

∧
( ∧

0≤i<n
D(zi , x)

)
∧

(
∀z D(z, x) →

∨
0≤i<n

z = zi

))
.

For A a subset of � \ {0}, define the set of L1-formulas

�A(y) := {¬D(y, y)} ∪ {∃xn ϕn(xn) ∧D(y, xn) | n ∈ A}
∪ {¬(∃xn ϕn(xn) ∧D(y, xn)) | n ∈ � \ ({0} ∪A)}.

We say that a ∈M1 is an n-flower iffM1 � ϕn(a). We say that b ∈M1 is an
A-bouquet iff for all �(y) ∈ �A(y) we haveM1 � �(b).

So a is an n-flower if and only if, in the D-graph, it is a point of degree
n without a self-loop, while b is an A-bouquet iff it has no self-loop, it has
D-edges to at least one n-flower for every n ∈ A, and it has no D-edges to
any n-flower if n /∈ A.

Lemma 4.2. LetA0 be a finite subset of� \ {0} and letM � ZFA. ThenM1

contains an A0-bouquet.

Proof. It suffices to find a certain finite graph as a connected com-
ponent of M1, so this follows from Proposition 3.3 (or directly from
[2, Theorem 4]). �

If M is a structure, denote by Th(M ) its theory.

Proposition 4.3. LetM � ZFA. Then in Th(M1) the 2ℵ0 sets of formulas
�A, for A ⊆ � \ {0}, are each consistent, and pairwise contradictory. In
particular, the same is true in Th(M ).

Proof. If A,B are distinct subsets of � \ {0} and, without loss of
generality, there is an n ∈ A \ B , then �A contradicts �B because �A(y) �
∃xn (ϕn(xn) ∧D(y, xn)) and �B(y) � ¬∃xn (ϕn(xn) ∧D(y, xn)).

To show that each �A is consistent it is enough, by compactness, to show
that if A0 is a finite subset of A and A1 is a finite subset of � \ ({0} ∪A)
then there is some b ∈M with a D-edge to an n-flower for every n ∈ A0 and
no D-edges to n-flowers whenever n ∈ A1. AnyA0-bouquet will satisfy these
requirements and, by Lemma 4.2, an A0-bouquet exists insideM1.

https://doi.org/10.1017/bsl.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.37


136 BEA ADAM-DAY, JOHN HOWE, AND ROSARIO MENNUNI

a

{a, 0}{a, 1}

{a, 2}

{a, 3}

{a, 4}

Figure 2. The set a = {{a, i} | i < 5} is a 5-flower. The reason for the name ‘n-flower’ can be seen in
this figure.

For the last part, note that all the theories at hand are complete (in different
languages), and whether or not an intersection of definable sets is empty does
not change after adding more definable sets. �

To conclude, we need the following standard fact from model theory.

Fact 4.4. Every partial type over ∅ of a countable theory can be realised
in a countable model.

Corollary 4.5. Let M be a model of ZFA. There are 2ℵ0 countable models
of ZFA such that their D-graphs (resp. SD-graphs) are elementarily equivalent
toM1 (resp.M0) and pairwise non-isomorphic.

Proof. Consider the pairwise contradictory partial types �A. By Fact 4.4,
Th(M ) has 2ℵ0 distinct countable models, as each of them can only realise
countably many of the �A. The reducts to L1 (resp. L0) of models realising
different subsets of {�A | A ⊆ � \ {0}} are still non-isomorphic, since the
�A are partial types in the language L1. �

The previous Corollary answers affirmatively [2, Questions 1 and 2].

Remark 4.6. For the results in this section to hold, it is not necessary that
M satisfies the whole of ZFA. It is enough to be able to prove Lemma 4.2
for M, and it is easy to see that one can provide a direct proof whenever
in M it is possible to define infinitely many different well-founded sets, e.g.,
von Neumann natural numbers, and to ensure existence of solutions to flat
systems of equations. This can be done as long as M satisfies Extensionality,
Empty Set, Pairing, andAFA1

2. If we replace, in Definition 1.1, ‘x = Sx ’ with
‘x and Sx have the same elements’, then we can even drop Extensionality.

2Stated using a sensible coding of flat systems, which can be carried out using Pairing.
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§5. Common theory. The main aim of this section is to study the common
theory of the class of D-graphs of ZFA. We show in Corollary 5.11 that
it is incomplete, and in Corollary 5.15 characterise its completions in
terms of collections of consistency statements. Furthermore, we show that
each of these completions is untame in the sense of neostability theory
(Corollary 5.8) and has a countable model that is not a D-graph, and that
the same holds for SD-graphs (Corollary 5.17), therefore solving negatively
[2, Question 5].

Definition 5.1. Let K1 be the class of D-graphs of models of ZFA. Let
Th(K1) be its common L1-theory.

Definition 5.2. Let ϕ be an L1-sentence. We define an L1-sentence �(ϕ)
as follows. Let x be a variable not appearing in ϕ. Let 	(x) be obtained
from ϕ by relativising ∃y and ∀y to D(x, y). Let �(ϕ) be the formula
∃x (¬D(x, x) ∧ 	(x)).

In other words, �(ϕ) can be thought of as saying that there is a point
whose set of neighbours is a model of ϕ.

Remark 5.3. Supposeϕ is a ‘standard’ sentence, i.e., one that is a formula
in the sense of the metatheory, say in the finite language L′. LetM � ZFA,
and let N be an L′-structure in M. Then, whether N � ϕ or not is absolute
between M and the metatheory. Every formula we mention is of this kind,
and this fact will be used tacitly from now on.

Definition 5.4. Let Φ be the set of L1-sentences that imply ∀x, y
(D(x, y) → D(y, x)).

Lemma 5.5. For every L1-sentence ϕ ∈ Φ and everyM � ZFA we have

M � Con(ϕ) ⇐⇒ M1 � �(ϕ).

Moreover, if this is the case, then there is H ⊆M1 such that:

1. (H,DM1 � H ) satisfies ϕ,
2. H is a union of regions of M, and
3. H is an M-set.

Proof. Note that the class of graphs in M is closed under the operations
of removing a point or adding one and connecting it to everything. Now
apply Proposition 3.3. �

Define LNBG := {E}, where E is a binary relational symbol. We think of
L1 as ‘the language of graphs’ and of LNBG as ‘the language of digraphs’,
specifically, digraphs that are models of a certain class theory (see below),
hence the notation. It is well-known that every digraph is interpretable in a
graph, and that such an interpretation may be chosen to be uniform, in the
sense below. See, e.g., [10, Theorem 5.5.1].
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Fact 5.6. Every LNBG-structure N is interpretable in a graph N ′.
Moreover, for every LNBG-sentence 
 there is an L1-sentence 
 ′ such that:

1. 
 is consistent if and only if 
 ′ is, and
2. for every LNBG-structure N we have N � 
 ⇐⇒ N ′ � 
 ′.
Corollary 5.7. For every LNBG-sentence 
, let 
 ′ be as in Fact 5.6. For all
M � ZFA,

M � Con(
) ⇐⇒ M1 � �(
 ′).

Proof. Apply Lemma 5.5 to ϕ := 
 ′. �
Corollary 5.8. LetM � ZFA. Then every model of Th(M1) interprets with

parameters arbitrarily large finite fragments of ZFC. In particular Th(M1) has
SOP, TP2, and IPk for all k.

Proof. If 
 is the conjunction of a finite fragment of ZFC, it is well-
known that ZFA � Con(
). Since a model of 
 is a digraph, we can apply
Corollary 5.7. If a witnesses the outermost existential quantifier in �(
 ′),
then 
 is interpretable with parameter a. �

We now want to use Corollary 5.7 to show that the common theory
Th(K1) of the class of D-graphs of models of ZFA is incomplete. Naively,
this could be done by choosing 
 to be a finite axiomatisation of some theory
equiconsistent with ZFA, and then invoking the Second Incompleteness
Theorem. For instance, one could choose von Neumann–Bernays–Gödel
class theory NBG, axiomatised in the language LNBG,3 as this is known to
be equiconsistent with ZFC (see [8]), hence with ZFA. The problem with this
argument is that, in order for it to work, we need a further set-theoretical
assumption in our metatheory, namely Con(ZFC + Con(ZFC)). This can
be avoided by using another sentence whose consistency is independent of
ZFA, provably in ZFC + Con(ZFC) alone. We would like to thank Michael
Rathjen for pointing out to us the existence of such a sentence.

Let NBG– denote NBG without the axiom of Infinity. We will use special
cases of a classical theorem of Rosser and of a related result. For proofs of
these, together with their more general statements, we refer the reader to
[16, Chapter 7, Application 2.1 and Corollary 2.6].

Fact 5.9 (Rosser’s Theorem). There is a Π0
1 arithmetical statement� that

is independent of ZFA.

Fact 5.10. Let � be a Π0
1 arithmetical statement. There is another

arithmetical statement �̃ such that ZFA � � ↔ Con(NBG– + �̃).

Corollary 5.11. Th(K1) is not complete.

3The reader may have encountered an axiomatisation using two sorts; this can be avoided
by declaring sets to be those classes that are elements of some other class.
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Proof. Let � be given by Rosser’s Theorem, and let �̃ be given by
Fact 5.10 applied to �. Apply Corollary 5.7 to 
 := NBG– + �̃. �

It is therefore natural to study the completions of Th(K1), and it follows
easily from K1 being pseudoelementary that all of these are the theory of
some actual D-graphM1. We provide a proof for completeness.

Proposition 5.12. Let T be an L-theory, and let K be the class of its models.
LetL1 ⊆ L, and forM ∈ K denoteM1 :=M � L1. LetK1 := {M1 |M ∈ K}
and N � Th(K1). Then there isM ∈ K such thatM1 ≡ N .

Proof. We are asking whether there is any M � T ∪ Th(N ), so it is
enough to show that the latter theory is consistent. If not, there is an
L1-formula ϕ ∈ Th(N ) such that T � ¬ϕ. In particular, since ¬ϕ ∈ L1,
we have that Th(K1) � ¬ϕ, and this contradicts that N � Th(K1). �

In order to characterise the completions of Th(K1), we will use techniques
from finite model theory, namely Ehrenfeucht–Fraïssé games and k-
equivalence. For background on these concepts, see [6].

Lemma 5.13. Let G = G0 �G1 be a graph with no edges between G0

and G1, and let H = H0 �H1 be a graph with no edges between H0 and
H1. If (G0, a1, ... , am–1) ≡k (H0, b1, ... , bm–1) and (G1, am) ≡k (H1, bm), then
(G, a1, ... , am) ≡k (H, b1, ... , bm).

Proof. This is standard, see, e.g., [6, Proposition 2.3.10]. �
Theorem 5.14. Let M and N be models of ZFA. The following are

equivalent.

1. M1 ≡ N1.
2. M1 andN1 satisfy the same sentences of the form �(ϕ), as ϕ ranges in Φ.
3. M and N satisfy the same consistency statements.

Proof. For statements about graphs, the equivalence of 2 and 3 follows
from Lemma 5.5. For statements in other languages, it is enough to interpret
them in graphs using [10, Theorem 5.5.1].

For the equivalence of 1 and 2, we show that for every n ∈ � the
Ehrenfeucht–Fraïssé game between M1 and N1 of length n is won by the
Duplicator, by describing a winning strategy. The idea behind the strategy
is the following. Recall that, for every finite relational language and every k,
there is only a finite number of ≡k-classes, each characterised by a single
sentence (see, e.g., [6, Corollary 2.2.9]). After the Spoiler plays a point a,
the Duplicator replicates the ≡k-class of the region of a using Lemma 5.5.

Fix the length n of the game and denote by a1, ... , am ∈M1 and
b1, ... , bm ∈ N1 the points chosen at the end of turn m. The Duplicator
defines, by simultaneous induction on m, sets Gm0 ⊆M1 andHm0 ⊆ N1, and
makes sure that they satisfy the following conditions.
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(C1) a1, ... , am ∈ Gm0 and b1, ... , bm ∈ Hm0 .
(C2) Gm0 and Hm0 are unions of regions of M and N respectively.
(C3) Gm0 and Hm0 are respectively an M-set and an N-set.
(C4) When Gm0 and Hm0 are equipped with the L1-structures induced

by M and N respectively, we have (Gm0 , a1, ... , am) ≡n–m
(Hm0 , b1, ... , bm).

Before the game starts (‘after turn 0’) we setG0
0 = H 0

0 = ∅ and all conditions
trivially hold. Assume inductively that they hold after turn m – 1. We deal
with the case where the Spoiler plays am ∈M1; the case where the Spoiler
plays bm ∈ N1 is symmetrical.

Let Gm1 be the region of am in M. If Gm1 ⊆ Gm–1
0 then, since by inductive

hypothesis condition (C4) held after turn m – 1, the Duplicator can find
bm ∈ Hm–1

0 such that (Gm–1
0 , a0, ... , am) ≡n–m (Hm–1

0 , b0, ... , bm). It is then
clear that all conditions hold after setting Gm0 = Gm–1

0 and Hm0 = Hm–1
0 .

Otherwise, by (C2), we have Gm1 ∩Gm–1
0 = ∅. Let ϕ characterise the

≡n–m+1-class of Gm1 . Note that, if n – m + 1 ≥ 2, then ϕ ∈ Φ automatically.
Otherwise, replace ϕ with ϕ ∧ ∀x∀y (D(x, y) → D(y, x)). By Remark 3.2,
Gm1 is an M-set, henceM � Con(ϕ). By Lemma 5.5 and assumption, there is
a unionHm1 of regions of N which is an N-set and such thatGm1 ≡n–m+1 H

m
1 .

By inductive hypothesis, Hm–1
0 is also an N-set by (C3). Therefore, up to

writing a suitable flat system in N, we may replace Hm1 with an isomorphic
copy that is still a union of regions and an N-set, but withHm1 ∩Hm–1

0 = ∅.
Let bm ∈ Hm1 be the choice given by a winning strategy for the

Duplicator in the game of length n – m + 1 between Gm1 and Hm1 after
the Spoiler plays am ∈ Gm1 as its first move. Set Gm0 = Gm–1

0 ∪Gm1 and
Hm0 = Hm–1

0 ∪Hm1 . Note thatGm–1
0 , Gm1 , H

m–1
0 , Hm1 are all unions of regions

and M-sets or N-sets; hence (C2) and (C3) hold (and (C1) is clear).
Moreover both unions are disjoint, so the hypotheses of Lemma 5.13 are
satisfied and (Gm0 , a1, ... , am) ≡n–m (Hm0 , b1, ... , bm), i.e., (C4) holds.

To show that this strategy is winning, note that the outcome of the game
only depends on the induced structures on a1, ... , an and b1, ... , bn at the end
of the final turn. These do not depend on what is outside Gn0 and Hn0 since
they are unions of regions, hence unions of connected components. As (C4)
holds at the end of turn n, the structures induced on a1, ... , an and b1, ... , bn
are isomorphic. �

Corollary 5.15. Let N � Th(K1). Then Th(N ) is axiomatised by

Th(K1) ∪ {�(ϕ) | ϕ ∈ Φ, N � �(ϕ)} ∪ {¬�(ϕ) | ϕ ∈ Φ, N � ¬�(ϕ)}.

Proof. Let N ′ satisfy the axiomatisation above. Since N and N ′ are
models of Th(K1) we may, by Proposition 5.12, replace them with D-graphs
M1 ≡ N andM ′

1 ≡ N ′ of models of ZFA. By Theorem 5.14M1 ≡M ′
1. �
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By the previous corollary, combined with Lemma 5.5, theories of
double-membership graphs correspond bijectively to consistent (with ZFA,
equivalently with ZFC) collections of consistency statements.

The reader familiar with finite model theory may have noticed similarities
between the proof of Theorem 5.14 and certain proofs of the theorems
of Hanf and Gaifman (see [6, Theorems 2.4.1 and 2.5.1]). In fact one
could deduce a statement similar to Theorem 5.14 directly from Gaifman’s
Theorem. This would characterise the completions of Th(K1) in terms of
local formulas, of which the �(ϕ) form a subclass, yielding a less specific
result than Corollary 5.15. Moreover, we believe that the correspondence
with collections of consistency statements provides a conceptually clearer
picture.

Similar ideas can be used to study [2, Question 5], which asks whether
a countable structure elementarily equivalent to the SD-graphM0 of some
M � ZFA must itself be the SD-graph of some model of ZFA. We provide
a negative solution in Corollary 5.17. Again, Gaifman’s Theorem could
be used directly to deduce its second part.

Theorem 5.16. Let M � ZFA. There is a countable N ≡M0 such that
N � L1 has no connected component of infinite diameter.

Before the proof, we show how this solves [2, Question 5].

Corollary 5.17. For everyM � ZFA there are a countable N ≡M0 that
is not the SD-graph of any model of ZFA and a countableN ′ ≡M1 that is not
the D-graph of any model of ZFA.

Proof. Let N be given by Theorem 5.16 andN ′ := N � L1. Now observe
that, as follows easily from Proposition 3.3, any reduct to L1 of a model of
ZFA has a connected component of infinite diameter. �

Note that this proves slightly more: a negative solution to the question
would only have required to find a single pair (M0, N ) satisfying the
conclusion of the corollary.

Proof of Theorem 5.16. Up to passing to a countable elementary
substructure, we may assume that M itself is countable. Let N be obtained
from M0 by removing all points whose connected component in M1 has
infinite diameter. We show thatM0 ≡ N by exhibiting, for every n, a sequence
(Ij)j≤n of non-empty sets of partial isomorphisms between M0 and N
with the back-and-forth property (see [6, Definition 2.3.1 and Corollary
2.3.4]). The idea is to adapt the proof of [14, Lemma 2.2.7] (essentially
Hanf’s Theorem) by considering the Gaifman balls with respect to L1,
while requiring the partial isomorphisms to preserve the richer languageL0.

On an L0-structure A, consider the distance d : A→ � ∪ {∞} given by
the graph distance in the reduct A � L1 (where d (a, b) = ∞ iff a, b lie in
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distinct connected components). If a1, ... , ak ∈ A and r ∈ �, denote by
dom(B(r, a1, ... , ak)) the union of the balls of radius r (with respect to d)
centred on a1, ... , ak . Equip dom(B(r, a1, ... , ak)) with the L0-structure
induced by A, then expand to an L0 ∪ {c1, ... , ck}-structure B(r, a1, ... , ak)
by interpreting each constant symbol ci with the corresponding ai . We stress
that, even though B(r, a1, ... , ak) carries an L0 ∪ {c1, ... , ck}-structure, and
we consider isomorphisms with respect to this structure, the balls giving its
domain are defined with respect to the distance induced by L1 alone.

Set rj := (3j – 1)/2 and fix n. Define In := {∅}, where ∅ is thought of as
the empty partial map M0 → N . For j < n, let Ij be the following set of
partial mapsM0 → N :

Ij := {a1, ... , ak �→ b1, ... , bk | k ≤ n – j, B(rj , a1, ... , ak) ∼= B(rj , b1, ... , bk)}.

We have to show that for every map a1, ... , ak �→ b1, ... , bk in Ij+1 and
every a ∈M0 [resp. every b ∈ N ] there is b ∈ N [resp. a ∈M0] such that
a1, ... , ak, a �→ b1, ... , bk, b is in Ij .

Denote by � an isomorphism B(rj+1, a1, ... , ak) → B(rj+1, b1, ... , bk) and
let a ∈M0. If a is chosen in B(2 · rj + 1, a1, ... , ak), then by the triangle
inequality and the fact that 2 · rj + 1 + rj = rj+1 we have B(rj, a) ⊆
B(rj+1, a1, ... , ak), and we can just set b := �(a).

Otherwise, again by the triangle inequality, B(rj, a) and B(rj, a1, ... , ak)
are disjoint and there is no D-edge between them. Note, moreover, that they
are M-sets. This allows us to write a suitable flat system, which will yield the
desired b.

Working inside M, for every d ∈ B(rj, a) choose a well-founded set hd
such that for all d, d0, d1 ∈ B(rj, a) we have:

(H1) hd0
/∈ hd1

,
(H2) if d0 �= d1 then hd0

�= hd1
,

(H3) hd /∈ B(rj, b1, ... , bk),
(H4) hd /∈

⋃
B(rj, b1, ... , bk), and

(H5) hd /∈
⋃ ⋃

B(rj, b1, ... , bk).

Let {xd | d ∈ B(rj, a)} be a set of indeterminates. Define

Pd := {xe | e ∈ B(rj, a),M � e ∈ d},
Qd := {�(f) | f ∈ B(rj, a1, ... , ak),M � S(d,f)},

and consider the flat system

{xd = {hd} ∪ Pd ∪Qd | d ∈ B(rj, a)}. (∗)

Intuitively, the termsPd ensure that the image of a solution is an isomorphic
copy of B(rj, a), while the termsQd create the appropriate S-edges between
the image and B(rj, b1, ... , bk) (note that we do not need any D-edges
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because there are none between B(rj, a) and B(rj, a1, ... , ak)). The {hd}
are needed for bookkeeping reasons, in order to avoid pathologies. We now
spell out the details; keep in mind that each Pd consists of indeterminates,
and each Qd is a subset of B(rj, b1, ... , bk).

Let s be a solution of (*), guaranteed to exist by AFA. By (H1) and
the fact that each member of Im(s) contains some hd , we have {hd | d ∈
B(rj, a)} ∩ Im(s) = ∅. Using this together with (H2) and (H3) we have
hd ∈ s(xe) ⇐⇒ d = e; hence s is injective.

Let s ′ := d �→ s(xd ) and b := s ′(a). By (H4) we have that Im(s) does
not intersect B(rj, b1, ... , bk), and we already showed that it does not meet
{hd | d ∈ B(rj, a)}. By looking at (*) and at the definition of the terms Pd ,
we have that Im(s) = B(rj, b) and that s ′ is an isomorphism B(rj, a) →
B(rj, b).

Note that the only D-edges involving points of Im(s) can come from
the terms Pd : the hd are well-founded, and there are no g ∈ Im(s) and
� ∈ B(rj, b1, ... , bk) such that g ∈ �, since g contains some hd but this cannot
be the case for any element of � because of (H5). Hence Im(s) is a connected
component of M1 and it has diameter not exceeding 2 · rj , so is included
in N.

Set �′ := s ′ ∪ (� � B(rj, a1, ... , ak)). This map is injective because it is the
union of two injective maps whose images B(rj, b) and B(rj, b1, ... , bk)
are, as shown above, disjoint. Moreover, there are no D-edges between
B(rj, b) and B(rj, b1, ... , bk), since the former is a connected component
of M1. By inspecting the terms Qd , we conclude that �′ is an isomorphism
B(rj, a1, ... , ak, a) → B(rj, b1, ... , bk, b), and this settles the ‘forth’ case.

The proof of the ‘back’ case, where we are given b ∈ N and need to find
a ∈M0, is analogous (and shorter, as we do not need to ensure that the new
points are in N): we can consider statements such as e ∈ d when e, d ∈ N
since the domain of the L0-structure N is a subset of M. �

Problems. We leave the reader with some open problems.

1. Axiomatise the theory of D-graphs of models of ZFA.
2. Axiomatise the theory of SD-graphs of models of ZFA.
3. Characterise the completions of the theory of SD-graphs of models

of ZFA.
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