Editorial

Lessons From Outbreaks Associated With Bronchoscopy

David J. Weber, MD, MPH; William A. Rutala, PhD, MPH

Bronchoscopy is currently the most commonly employed invasive procedure in the practice of pulmonary medicine.¹ An estimated 497,000 bronchoscopy procedures were performed in the United States in 1996.² Current and new applications include bronchoscopic ultrasound, laser therapy, brachytherapy, electrocautery, cryotherapy, placement of airway stents, and balloon dilatation to relieve airway obstruction caused by airway lesions.³ Flexible endoscopes also are widely used in other medical disciplines. For example, more than 10,000,000 gastrointestinal endoscopies are performed each year.⁴

Endoscopes represent the medical devices most commonly linked to nosocomial outbreaks and pseudooutbreaks.⁵ Flexible endoscopes present a challenge for low-temperature sterilization or high-level disinfection. because they have long narrow lumens, cross-connections, mated surfaces, sharp angles, springs and valves, occluded dead ends, absorbent material, and rough or pitted surfaces.^{6,7} Failure to eradicate contamination that occurred during use may lead to person-to-person transmission of pathogens (eg, Mycobacterium tuberculosis); failure to prevent contamination during disinfection or storage may lead to outbreaks or pseudo-outbreaks from environmental (eg. nontuberculous mycobacteria, microbes or Rhodotorula rubra). In this issue, Sorin and colleagues⁸ describe the nosocomial transmission of an imipenemresistant strain of Pseudomonas aeruginosa, and Kressel and Kidd9 describe a pseudo-outbreak involving organisms relatively resistant to glutaraldehyde (ie, Mycobacterium chelonae and Methylobacterium mesophilicum) associated with the use of contaminated bronchoscopes.

Prevention of endoscope-related infections requires strict adherence to current guidelines for cleaning and disinfection. Guidelines for disinfection of flexible endoscopes, including bronchoscopes, have been published by the Association for Professionals in Infection Control and Epidemiology, Inc.^{10,11} To date, nosocomial outbreaks have not been reported in which all current recommendations were followed scrupulously. These guidelines are based on sound scientific principles generated from several sources of data: first, studies on the natural bioburden of endoscopes and efficacy of cleaning; second, studies on the in vitro efficacy of recommended high-level disinfectants and low-temperature sterilization methods; third, studies of disinfection of simulated endoscopes or experimentally inoculated endoscopes; fourth, studies of the effectiveness of current high-level disinfection and sterilization methods in actual practice; and finally, lessons learned from outbreaks and pseudo-outbreaks involving endoscopes.

Only limited data are available on the bioburden present on bronchoscopes following use. Alfa and Sitter reported the average load on bronchoscopes before cleaning was 6.4×10^4 colony-forming units (CFUs)/mL, with streptococci and normal upper respiratory flora being reported.¹² The bioburden on used gastrointestinal endoscopes is higher, ranging from 10^6 to 10^7 CFUs for upper gastrointestinal endoscopes and 10^8 to 10^{10} CFUs for colonoscopes.¹³ Cleaning has been demonstrated to reduce the bioburden on endoscopes in most studies by more than 4 logs.¹³ Cleaning also removes organic and inorganic debris that may compromise the disinfection and sterilization process. For example, Alfa and colleagues tested several low-temperature sterilization methods (ie, ethylene

From the Division of Infectious Diseases, University of North Carolina (UNC) School of Medicine, and the Department of Hospital Epidemiology, UNC Health Care System, Chapel Hill, North Carolina. Address reprint requests to David J. Weber, MD, MPH, CB #7030 Burnett-Womack, 547, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599-7030. The authors have received no research funds from sterilizer manufacturers, but one of the authors (WAR) received honoraria from a sterilizer manufacturer in the past 12 months.

00-ED-056. Weber DJ, Rutala WA. Lessons from outbreaks associated with bronchoscopy. Infect Control Hosp Epidemiol 2001;22:403-408.

TABLE 1

STEPS IN THE DISINFECTION	PROCESS AND	MECHANISMS FOR FA	ILURE

Disinfection Component	Reasons for Component	Mechanisms for Failure
Cleaning	Reduce bioburden	Inadequate policies
	Remove interfering substances: blood, salt	Inadequate staff training
Appropriate disinfectant	Inactivation of contaminating microbes	Ineffective disinfectant
	(demonstrated efficacy and effectiveness)	Inadequate concentration
		Inadequate duration
Contact between disinfectant and	Requirement for killing	AER: failure to use channel connector
contaminating microbes		AER: wrong channel connectors
		Occluded lumen
		Torn or damaged lumen
Sterilization of biopsy forceps	Eliminate contaminating microbes	Inadequate policies
		Inadequate staff training
Rinse	Remove potentially toxic chemicals	Mucous membrane damage
	(eg, glutaraldehyde, hydrogen peroxide)	(eg, colitis)
Prevention of recontamination	Prevent contamination with environmental	Tap water rinse without subsequent
	microbes	alcohol rinse
		Failure to air dry scope
		Contaminated AER
		Placement of scope in contaminated
		container

oxide, hydrogen peroxide gas plasma, and vaporized hydrogen peroxide) and reported that none could eradicate 10^6 CFUs of all bacterial strains inoculated on a carrier placed in a narrow lumen in the presence of 10% serum and 0.65% salt.¹⁴

Currently, the Food and Drug Administration has cleared several chemical sterilants listed as high-level disinfectants for reprocessing endoscopes.¹⁵ These include: ≥2.4% glutaraldehyde, 0.55% ortho-phthalaldehyde, a 0.95% glutaraldehyde with 1.64% phenol/phenate. 1.0% hydrogen peroxide with 0.08% peracetic acid, 7.35% hydrogen peroxide with 0.23% peracetic acid, and 7.5% hydrogen peroxide.15,16 Although all of these products have excellent antimicrobial activity, 7.5% hydrogen peroxide and 1.0% hydrogen peroxide with 0.08% peracetic acid have limited use, because they cause cosmetic and functional damage to the endoscope. The two products most commonly used for reprocessing endoscopes in the United States are glutaraldehyde and the automated chemical sterilization process that uses peracetic acid (STERIS SYSTEM 1, Mentor, OH).¹⁷ The advantages and disadvantages of the chemical sterilant, peracetic acid (STERIS SYSTEM 1), and high-level disinfection methods have been reviewed.⁷

The importance of allowing the sterilant to come into contact with an inoculated carrier has been demonstrated by two studies that investigated the peracetic acid immersion system (ie, STERIS SYSTEM 1). Alfa and coworkers demonstrated excellent activity of the peracetic acid immersion system against three test organisms using a narrow-lumen device.¹⁸ In these experiments, the lumen test object was connected to channel connectors, which ensured that the sterilant had direct contact with contaminated carriers. The effectiveness was achieved by the combination of organism wash-off and peracetic acid inactivation of the test organisms. Data reported by Rutala and colleagues demonstrated failure of the peracetic acid immersion system to eliminate Bacillus stearothermophilus spores completely from an inoculated carrier placed in a stainless steel lumen test unit.¹⁹ In these experiments, the lumen test unit was not connected to channel connectors. The failure of the peracetic immersion system was felt to be attributed to the inability of the peracetic acid to diffuse into the center of a 40-cm-long, 3-mm-diameter tube, possibly due to an air lock or air bubble formed in the lumen that would impair flow.^{20,21} We have since repeated our experiments using a channel connector specially designed for our 1-, 2-, and 3-mm lumen test units, with the result that the STERIS SYSTEM 1 was completely effective in eliminating an inoculum of 10^6 B stearothermophilus spores (WAR, unpublished data, October 2000). Both Sorin and colleagues8 and Kressel and Kidd9 demonstrate the clinical relevance of these findings.

Experimental contamination of flexible bronchoscopes with *Mycobacterium gordonae*²² and gastrointestinal endoscopes with duck hepatitis B virus²³ has demonstrated the importance of cleaning and validated current disinfection recommendations. The importance of cleaning also has been demonstrated in studies evaluating gastrointestinal endoscopes contaminated with *Helicobacter pylori*.²⁴ Simulated-use trials with the STERIS SYSTEM 1 have demonstrated excellent microbicidal activity, and three clinical trials have demonstrated both excellent microbial killing and no clinical failure leading to infection.⁷

Failure to follow current disinfection recommendations (Table 1) has led to multiple outbreaks^{8,2535} (Table 2)

EDITORIAL

TABLE 2

NOSOCOMIAL OUTBREAKS VIA BRONCHOSCOPES DUE TO EXOGENOUS CONTAMINATION OR PERSON-TO-PERSON TRANSMISSION

Reference	Year	Pathogen*	Mechanism of Contamination
Webb et al ²⁵	1975	Serratia marcescens	Inadequate disinfectant (70% alcohol)
Hussain ²⁶	1978	Pseudomonas	Contaminated biopsy suction attachment (soaked in antiseptic)
Markovitz ²⁷	1979	Pseudomonas pseudomallei	Not specified
Leers ²⁸	1980	Mycobacterium tuberculosis	Inadequate cleaning and disinfectant (povidone-iodine)
Nelson et al ²⁹	1983	M tuberculosis	Inadequate disinfectant (povidone-iodine/70% ethanol)
Pappas ³⁰	1983	Mycobacterium chelonei	Two bronchoscopes with punctured suction channels
Wheeler et al ³¹	1989	M tuberculosis	Contaminated suction valve
Agerton et al ³²	1997	MDR M tuberculosis	Inadequate cleaning, failure to use leak-test equipment, no potency testin of glutaraldehyde, failure to immerse scope fully, terminal tap water without subsequent alcohol rinse
Blanc et al ³³	1997	Pseudomonas aeruginosa	AER: contaminated unit
Michele et al ³⁴	1997	M tuberculosis	Failure to use enzymatic cleaner, immerse scope fully, or sterilize biops forceps
Kramer et al ³⁵	2001	P aeruginosa	AER: contaminated disinfectant (0.04% glutaraldehyde) due to inadequate concentration (concentration mistakenly set too low)
Sorin et al ⁸	2001	P aeruginosa	AER: inappropriate channel connectors

and pseudo-outbreaks9,3664 (Table 3) involving bronchoscopes. The pathogen most commonly associated with outbreaks has been M tuberculosis, a finding that is not surprising in that only bacteria endospores are relatively more resistant than mycobacteria to disinfectants. Outbreaks associated with automatic endoscope reprocessors (AERs) commonly involve P aeruginosa, as was the case with the report by Sorin and colleagues.⁸ Pseudo-outbreaks most commonly involve nontuberculous mycobacteria or other water-derived environmental microbes such as Legionella, R rubra, and P aeruginosa. Pseudo-outbreaks also have resulted from use during bronchoscopy of contaminated medications or devices.65 For example, pseudo-outbreaks have resulted from the use of an anesthetic contaminated with M gordonae⁶⁶ or fungi,67 and atomizers contaminated with nontuberculous mycobacteria⁶⁸ or M tuberculosis.⁶⁹

Lessons learned from outbreaks reported in the literature include the following. First, cleaning must precede disinfection or sterilization. Second, ineffective disinfectants such as iodophors, 30% to 70% alcohol, or inadequate concentrations of disinfectant may result in outbreaks. Third, contact of all internal and external surfaces with the disinfectant is crucial. Outbreaks have resulted from failure to immerse the scope fully, disassemble valves, or repair rips or tears in internal channels. The outbreak reported by Sorin and coworkers8 and pseudo-outbreaks reported in the literature^{61,62,64} suggest that the proper use of channel connectors to ensure flow through an endoscope's inner channels is essential. If an AER is used, one must ensure that all channel connectors are attached according to the AER's manufacturer. Fourth, following disinfection, a sterile water rinse followed by forced-air drying or a tap water rinse followed by forced-air drving and a 70% alcohol rinse must be used to prevent recontamination. The disinfected endoscope must be stored so as to prevent recontamination. Failure to rinse the scope fully also may result in mucositis following use of the scope on another patient, if either glutaraldehyde⁷⁰ or hydrogen peroxide is used as the disinfectant. AERs offer several advantages to manual reprocessing, including automation and standardization of several important reprocessing steps,⁷¹⁻⁷³ which reduce the likelihood that an essential reprocessing step will be skipped, and reduction of personnel exposure to high-level disinfectants. However, failure of AERs has been linked to bronchoscopy-related outbreaks (Table 2) and pseudooutbreaks (Table 3), in part because the water filtration system may not reliably be able to provide sterile rinse water.⁷⁴ It is critical that personnel rigorously adhere to the current recommendations for the use of AERs.¹¹ We agree with Sorin and colleagues that random bacterial surveillance cultures of endoscopes to assure appropriate disinfection should be done as part of a comprehensive program in quality assurance.

In conclusion, there is a need for further development and redesign of AERs⁷⁵ and endoscopes,⁶ so that they do not represent a potential source for infection. Newly developed disposable-component endoscope systems may be able to improve the ease of cleaning and disinfection and so reduce the risk of infection. Recommendations for the cleaning and disinfection of endoscopic equipment should be followed strictly. Unfortunately, audits have shown endoscopic personnel often fail to adhere to guidelines on disinfection.⁷⁶⁻⁷⁸ To ensure that persons responsible for reprocessing are properly trained, there should be initial and annual competency testing for such personnel.^{79,80}

REFERENCES

- 1. Ahmad M, Dweik RA. Future of flexible bronchoscopy. *Clin Chest Med* 1999;20:1-17.
- 2. Center for Disease Control and Prevention. Vital and health statistics: ambulatory and inpatient procedures in the United States, 1996. DHHS

TABLE 3

NOSOCOMIAL PSEUDO-OUTBREAKS VIA BRONCHOSCOPES DUE TO EXOGENOUS CONTAMINATION OR PERSON-TO-PERSON TRANSMISSION

Reference	Year	Pathogen*	Mechanism of Contamination
Weinstein et al ³⁶	1977	Proteus species	Inadequate disinfection (30% alcohol)
Dawson et al ³⁷	1982	Mycobacterium intracellulare	Inadequate disinfection of plastic tubing for collecting specimens
Sammartino et al ³⁸	1982	Pseudomonas aeruginosa	Inadequate disinfectant (povidone-iodine)
Goldstein and Abrutyn ³⁹	1985	Bacillus species	Contaminated automatic suction valve
Siegman-Igra et al ⁴⁰	1985	Serratia marcescens	Inadequate disinfection (alcohol)
Richardson et al ⁴¹	1986	Bacillus species	Contaminated suction valves, terminal tap water rinse
Hoffmann et al ⁴²	1989	Rhodotorula rubra	Contaminated channel cleaning brushes and leak-test tub water
Wheeler et al ³¹	1989	Mycobacterium avium	Contaminated suction valve
Nye et al ⁴³	1990	Mycobacterium chelonae	Contaminated tap water rinse
Fraser et al ⁴⁵	1992	M chelonae	AER: contaminated AER. No terminal ethanol rinse and scopes not forced-air dried
Gubler et al ⁴⁶	1992	M chelonae	AER: contaminated AER
Nicolle et al ⁴⁷	1992	Blastomyces dermatitidis	Inadequate disinfection of bronchoscope
Whitlock et al48	1992	R rubra	Failure to air dry scope, contamination of suction and biopsy valves
Bryce et al ⁴⁹	1993	Mycobacterium tuberculosis	AER: contaminated suction valves and faulty wash/disinfect switch
Vandernbroucke-Grauls et al ⁵⁰	1993	S marcescens	Inadequate immersion time (2 min), terminal tap water rinse, stored without drying
Bennett et al ⁵¹	1994	Mycobacterium xenopi	Inadequate disinfectant (0.13% glutaraldehyde-phenate) and exposure time, rinsed with contaminated tap water, inadequate drying
Campagnaro et al ⁵²	1994	M chelonae	AER: contaminated suction valve, terminal tap water rinse
Kolmos et al ⁵³	1994	P aeruginosa	Failure to clean suction and biopsy channels, inexperienced bronchoscopy staff
Maloney et al ⁵⁴	1994	M abscessus	AER: contaminated AER
Petersen et al ⁵⁵	1994	M abscessus	AER: contaminated AER
Hagan et al ⁵⁶	1995	R rubra	Contaminated suction channel, inadequate drying
Takigawa et al ⁵⁷	1995	M chelonae	AER
Wang et al ⁵⁸	1995	M chelonae	AER: contaminated suction channel
Mitchell et al ⁵⁹	1997	Legionella pneumophila	Use of contaminated tap water for rinse, failure of 70% ethanol flush
Wallace et al ⁶⁰	1998	M abscessus	AER and manual disinfection procedure
Wallace et al ⁶⁰	1998	M abscessus	AER
Wallace et al ⁶⁰	1998	Mycobacterium fortuitum	AER
CDC ⁶¹	1999	M tuberculosis	AER: failure to replace biopsy port cap before loading in AER
CDC ⁶¹	1999	Mycobacterium avium- intracellulare	AER: use of channel connectors provided by bronchoscope manufacturer rather than connector kit produced by AER manufacturer
Strelczyk ⁶²	1999	Acid-fast bacilli	AER: inadequate channel connectors provided by bronchoscope manufacturer
Wilson et al ⁶³	2000	Aureobasidium species	Reuse of single-use stopcocks disinfected by an AER
Larson et al ⁶⁴	2001	M tuberculosis	AER: errors in cleaning, incompatible AER
Kressel and Kidd ⁹	2001	M chelonae, Methylobacterium mesophilicum	AER: biofilm buildup in AER, no alcohol flush, organisms relatively resistant to glutaraldehyde

Abbreviations: AER, automatic endoscope reprocessor; CDC, Centers for Disease Control and Prevention.

* Species as listed by investigator; may not reflect current taxonomy.

publication no. 99-1710. Hyattsville, MD: US Department of Health and Human Services, National Center for Health Statistics; 1998. 3. Prakash UB. Advances in bronchoscopic procedures. *Chest*

- 1999;116:1403-1408.
- 4. American Society for Gastrointestinal Endoscopy. Reprocessing of Flexible Gastrointestinal endoscopes. Manchester, MA: American Society for Gastrointestinal Endoscopy; 1995.
- 5. Spach DH, Silverstein FE, Stamm WE. Transmission of infection by gastrointestinal endoscopy and bronchoscopy. Ann Intern Med 1993;118:117-128.
- 6. Bond WW. Endoscopy reprocessing: problems and solutions. In: Rutala

WA, ed. Disinfection, Sterilization and Antisepsis in Health Care. Champlain, NY: Polyscience Publications; 1998:151-163.

- 7. Rutala WA, Weber DJ. Disinfection of endoscopes: review of new chemical sterilants used for high-level disinfection. Infect Control Hosp Epidemiol 1999;20:69-76.
- 8. Sorin M, Segal-Maurer S, Mariano N, Urban C, Combest A, Rahal JJ. Nosocomial transmission of imipenem-resistant Pseudomonas aeruginosa following bronchoscopy associated with an improper connection to the STERIS SYSTEM 1 processor. Infect Control Hosp Epidemiol 2001;22:409-413.
- 9. Kressel AB, Kidd F. A pseudo-outbreak of Mycobacterium chelonae

and Methylobacterium meosphilicum caused by contamination of an automated endoscope washer. Infect Control Hosp Epidemiol 2001;22:414-418.

- Rutala WA. APIC guideline for selection and use of disinfectants. Am J Infect Control 1996;24:313-342.
- Alvarado CJ, Reichelderfer M, APIC Guidelines Committee. APIC guideline for infection prevention and control in flexible endoscopy. Am J Infect Control 2000;28:138-155.
- Alfa MJ, Sitter DL. In-hospital evaluation of ortho-phthalaldehyde as a high level disinfectant for flexible endoscopes. J Hosp Infect 1994;26:15-26.
- Roberts CG. Studies on the bioburden of medical devices and the importance of cleaning. In: Rutala WA, ed. Disinfection, Sterilization and Antisepsis: Principles and Practices in Healthcare Facilities. Champlain, NY: Polyscience Publications; 2001:63-69.
- Alfa MJ, DeGagne P, Olson N, Puchalski T. Comparison of ion plasma, vaporized hydrogen peroxide, and 100% ethylene oxide sterilizers to the 12/88 ethylene oxide gas sterilizer. *Infect Control Hosp Epidemiol* 1996;17:92-100.
- 15. US Food and Drug Administration. Sterilants and high level disinfectants cleared by FDA in a 510(k) as of June 29, 2001, with general claims for processing reusable medical and dental devices. http://www.fda.gov/cdrh/ode/germlab.html. updated July 2, 2001.
- Rutala WA, Weber DJ. Infection control: the role of disinfection and sterilization. J Hosp Infect 1999;43 (suppl):S43-S55.
- Cheung RJ, Ortiz D, Dimarino AJ Jr. GI endoscopic reprocessing practices in the United States. *Gastrointest Endosc* 1999;50:362-368.
- Alfa MJ, Olson N, DeGagne P, Hizon R. New low temperature sterilization technologies: microbiocidal activity and clinical efficacy. In: Rutala WA, ed. Disinfection, Sterilization, and Antisepsis in Health Care. Washington DC: Association for Professionals in Infection Control and Epidemiology; 1998.
- Rutala WA, Gergen MF, Weber DJ. Comparative evaluation of the sporicidal activity of new low-temperature sterilization technologies: ethylene oxide, 2 plasma sterilization systems, and liquid peracetic acid. Am J Infect Control 1998;26:393-398.
- Alfa MJ. Importance of lumen flow in liquid chemical sterilization (letter). Am J Infect Control 1999;27:373-374.
- Rutala WA, Gergen MF, Weber DJ. Importance of lumen flow in liquid chemical sterilization (reply). Am J Infect Control 1999;27:374-375.
- 22. Jackson J, Leggett JE, Wilson D, Gilbert DN. Mycobacterium gordonae in fiberoptic bronchoscopes. Am J Infect Control 1996;24:19-23.
- Deva AK, Vickery K, Zou J, West RH, Harris JP, Cossart YE. Establishment of an in-use testing method for evaluating disinfection of surgical instruments using the duck hepatitis B model. J Hosp Infect 1996;33:119-130.
- Wu MS, Wang JT, Yang JC, Wang HH, Sheu JC, Chen DS, et al. Effective reduction of *Helicobacter pylori* infection after upper gastrointestinal endoscopy of mechanical washing of the endoscope. *Hepatogastroenterology* 1996;43:1660-1664.
- Webb SF, Vall-Spinosa A. Outbreak of Serratia marcescens associated with the flexible bronchoscope. Chest 1975;68:703-708.
- Hussain SA. Fiberoptic bronchoscope-related outbreak of infection with Pseudomonas. Chest 1978;74:483.
- 27. Markovitz A. Inoculation by bronchoscopy. West J Med 1979;131:550.
- Leers W-D. Disinfecting endoscopes: how not to transmit Mycobacterium tuberculosis by bronchoscopy. Can Med Assoc J 1980;123:275-280.
- Nelson KE, Larson PA, Schraufnagel DE, Jackson J. Transmission of tuberculosis by flexible fiberbronchoscopes. Am Rev Respir Dis 1983;127:97-100.
- Pappas SA, Schaaf DM, DiCostanzo MB, King FW, Sharp JT. Contamination of flexible fiberoptic bronchoscopes. *Chest* 1983;127:391-392.
- Wheeler PW, Lancaster D, Kaiser AB. Bronchopulmonary crosscolonization and infection related to mycobacterial contamination of suction valves of bronchoscopes. *J Infect Dis* 1989;159:954-958.
- 32. Agerton T, Valway S, Gore B, Pozsik C, Plikaytis B, Woodley C, et al. Transmission of a highly drug-resistant strain (strain W1) of *Mycobacterium tuberculosis*. Community outbreak and nosocomial transmission via a contaminated bronchoscope. JAMA 1997;278:1073-1077.
- Blanc DS, Parret T, Janin B, Raselli P, Francioli P. Nosocomial infections and pseudoinfections from contaminated bronchoscopes: two-year follow up using molecular markers. *Infect Control Hosp Epidemiol* 1997;18:134-136.
- 34. Michele TM, Cronin WA, Graham NM, Dwyer DM, Pope DS, Harrington S, et al. Transmission of *Mycobacterium tuberculosis* by a fiberoptic bronchoscope. Identification by DNA fingerprinting. *JAMA* 1997;278:1093-1095.
- 35. Kramer MH, Krizek L, Gebel J, Kirsch A, Wegan E, Marklein G, et al. Bronchoscopic transmission of *Pseudomonas aeruginosa* due to a conta-

minated disinfectant solution from an automated dispenser unit. In: Final Program of the 11th Annual Scientific Meeting of the Society of Healthcare Epidemiology of America; Toronto, Ontario, Canada; April 1-3, 2001. Abstract 118.

- Weinstein HJ, Bone RC, Ruth WE. Contamination of a fiberoptic bronchoscope with a Proteus species. Am Rev Respir Dis 1977;116:541-543.
- Dawson DJ, Armstrong JG, Blacklock ZM. Mycobacterial crosscontamination of bronchoscopy specimens. Am Rev Respir Dis 1982;126:1095-1097.
- Sammartino MT, Israel RH, Magnussen CR. Pseudomonas aeruginosa contamination of fibreoptic bronchoscopes. J Hosp Infect 1982;3:65-71.
- Goldstein B, Abrutyn E. Pseudo-outbreak of *Bacillus* species: related to fibreoptic bronchoscopy. J Hosp Infect 1985;6:194-200.
- Siegman-Igra Y, Inbar G, Campus A. A 'outbreak' of pulmonary pseudoinfection by Serratia marcescens. J Hosp Infect 1985;6:218-220.
- Richardson AJ, Rothburn MM, Roberts C. Pseudo-outbreak of Bacillus species: related to fiberoptic bronchoscopy. J Hosp Infect 1986;7:208-210.
- Hoffmann KK, Weber DJ, Rutala WA. Pseudoepidemic of Rhodotorula rubra in patients undergoing fiberoptic bronchoscopy. Infect Control Hosp Epidemiol 1989;10:511-514.
- Nye K, Chadha DK, Hodgkin P, Bradley C, Hancox J, Wise R. Mycobacterium chelonei isolation from broncho-alveolar lavage fluid and its practical implications. J Hosp Infect 1990;16:257-260.
- 44. Centers for Disease Control and Prevention. Nosocomial infection and pseudoinfection from contaminated endoscopes and bronchoscopes— Wisconsin and Missouri. MMWR 1991;40:675-678.
- 45. Fraser VJ, Jones M, Murray PR, Medoff G, Zhang Y, Wallace RJ. Contamination of flexible fiberoptic bronchoscopes with Mycobacterium chelonae linked to an automated bronchoscope disinfection machine. Am Rev Respir Dis 1992;145:853-855.
- Gubler JGH, Salfinger M, von Graevenitz A. Pseudoepidemic of nontuberculous mycobacteria due to a contaminated bronchoscope cleaning machine. *Chest* 1992;101:1245-1249.
- Nicolle LE, McLeod J, Romance L, Parker S, Paraskevas M. Pseudooutbreak of blastomycosis associated with contaminated bronchoscopes. *Infect Control Hosp Epidemiol* 1992;13:324.
- Whitlock WL, Dietrich RA, Steimke EH, Tenholder MF. *Rhodotorula rubra* contamination in fiberoptic bronchoscopy. *Chest* 1992;102:1516-1519.
- Bryce EA, Walker M, Bevan C, Smith JA. Contamination of bronchoscopes with Mycobacterium tuberculosis. Canadian Journal of Infection Control 1993;8:35-36.
- Vandenbroucke-Grauls CMJE, Baars ACM, Visser MR, Hulstaert PF, Verhoef J. An outbreak of Serratia marcescens traced to a contaminated bronchoscope. J Hosp Infect 1993;23:263-270.
- Bennett SN, Peterson DE, Johnson DR, Hall WN, Robinson-Dunn B, Dietrich S. Bronchoscopy-associated Mycobacterium xenopi pseudoinfections. Am J Respir Crit Care Med 1994;150:245-250.
- Campagnaro RI, Teichtahl H, Dwyer B. A pseudoepidemic of Mycobacterium chelonae: contamination of a bronchoscope and autocleaner. Aust N Z J Med 1994;24:693-695.
- Kolmos HJ, Lerche A, Kristoffersen K, Rosdahl VT. Pseudo-outbreak of Pseudomonas aeruginosa in HIV-infected patients undergoing fiberoptic bronchoscopy. Scand J Infect Dis 1994;26:653-657.
- 54. Maloney S, Welbel S, Daves B, Adams K, Becker S, Bland L, et al. Mycobacterium abscessus pseudoinfection traced to an automated endoscope washer: utility of epidemiologic and laboratory investigation. J Infect Dis 1994;169:1166-1169.
- Peterson K, Bus N, Walter V, Chenoweth C. Pseudoepidemic of Mycobacterium abscessus associated with bronchoscopy. Infect Control Hosp Epidemiol 1994;15(suppl):P30. Abstract S32.
- Hagan ME, Klotz SA, Bartholomew W, Potter L, Nelson M. A pseudoepidemic of *Rhodotorula rubra*: a marker for microbial contamination of the bronchoscope. *Infect Control Hosp Epidemiol* 1995;16:727-728.
- 57. Takigawa K, Fujita J, Negayama K, Terada S, Yamaji S, Kawanashi K, et al. Eradication of contaminating *Mycobacterium chelonae* from bronchofibrescopes and an automated bronchoscope disinfection machine. *Respir Med* 1995;89:423-427.
- Wang HC, Liaw YS, Yand PC, Kuo SH, Luh KT. A pseudoepidemic of Mycobacterium chelonae infection caused by contamination of a fibreoptic bronchoscope suction channel. Eur Respir J 1995;8:1259-1262.
- Mitchell DH, Hicks LJ, Chiew R, Montanaro JC, Chen SC. Pseudoepidemic of *Legionella pneumophila* serogroup 6 associated with contaminated bronchoscopes. J Hosp Infect 1997;37:19-23.
- Wallace RJ Jr, Brown BA, Griffith DE. Nosocomial outbreaks/pseudooutbreaks caused by nontuberculous mycobacteria. *Annu Rev Microbiol* 1998;52:453-490.
- Centers for Disease Control and Prevention. Bronchoscopy-related infections and pseudoinfections—New York, 1996 and 1998. MMWR 1999;48:557-560.
- 62. Strelczyk K. Pseudo-outbreak of acid-fast bacilli. Am J Infect Control

1999;27:18. Abstract.

- 63. Wilson SJ, Everts RJ, Kirkland KB, Sexton DJ. A pseudo-outbreak of Aurobasidium species lower respiratory tract infections caused by reuse of single-use stopcocks during bronchoscopy. Infect Control Hosp Epidemiol 2000;21:470-472.
- 64. Larson J, Lambert L, Stricof R, Ridzon R, Navin T. Mycobacterium tuberculosis contamination and potential exposure from a bronchoscope, Pennsylvania—2000. In: Final Program of the 11th Annual Scientific Meeting of the Society for Healthcare Epidemiology of America; Toronto, Ontario, Canada; April 1-3, 2001.
- Mehta A, Minai OA. Infection control in the bronchoscopy suite. A review. Clin Chest Med 1999;20:19-32.
- Steere AC, Corrales J, von Graevenitz A. A cluster of Mycobacterium gordonae isolates from bronchoscopy specimens. Am Rev Respir Dis 1979;120:214-216.
- Schleupner CJ, Hamilton JR. A pseudoepidemic of pulmonary fungal infections related to fiberoptic bronchoscopy. *Infect Control* 1980;1:38-42.
- Cox R, deBorja K, Bach MC. A pseudo-outbreak of Mycobacterium chelonae infections related to bronchoscopy. Infect Control Hosp Epidemiol 1997;18:136-137.
- Southwick KL, Hoffmann K, Ferree K, Matthews J, Salfinger M. Cluster of tuberculosis cases in North Carolina: possible association with atomizer use. Am J Infect Control 2001;29:1-6.
- Weber DJ, Rutala WA. Occupational risks associated with the use of selected disinfectants and sterilants. In: Rutala WA, ed. Disinfection, Sterilization and Antisepsis in Health Care. Champlain, NY: Polyscience Publications; 1998:211-226.
- 71. Bradley CR, Babb JR. Endoscope decontamination: automated vs. man-

ual. J Hosp Infect 1995;30(suppl):537-542.

- Muscarella LF Advantages and limitations of automatic flexible endoscope reprocessors. Am J Infect Control 1996;24:304-309.
- Muscarella LF. Automatic flexible endoscope reprocessors. Gastrointest Endosc Clin N Am 2000;10:245-257.
- Cooke RP, Rhymant-Morris A, Umasankar RS, Goddard SV. Bacteriafree water for automatic washer-disinfectors: an impossible dream? J Hosp Infect 1998;39:63-65.
- Lynch DA, Porter C, Murphy L, Axon AT. Evaluation of four commercial automatic endoscope washing machines. *Endoscopy* 1992;24:766-770.
- Jackson FW, Ball MD. Correction of deficiencies in flexible fiberoptic sigmoidoscope cleaning and disinfection technique in family practice and internal medicine offices. *Arch Intern Med* 1997;6:578-582.
 Orsi GB, Filocamo A, Di Stefano L, Tittobello A. Italian national survey
- Orsi GB, Filocamo A, Di Stefano L, Tittobello A. Italian national survey of digestive endoscopy disinfection practices. *Endoscopy* 1997;29:732-738.
- Honeybourne D, Neumann CS. An audit of bronchoscopy practice in the United Kingdom: a survey of adherence to national guidelines. *Thorax* 1997;52:709-713.
- 79. Food and Drug Administration, Centers for Disease Control and Prevention. FDA and CDC public health advisory: infections from endoscopes inadequately reprocessed by an automated endoscope reprocessing system. September 10, 1999. http://fda.gov/cdrh/safety/ endoreprocess.html.
- Society of Gastrointestinal Nurses and Associates. Standards for infection control and reprocessing of flexible gastrointestinal endoscopes. *Gastroenterology Nursing* 2000;23:172-179.