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Abstract
Recent improvements in robotic arms have increased their interest in many areas such as the industry and biomedical
sectors. Path planning is an essential part of the robotic arm, since most automated factories seek to move things
from one place to another with obstacles providing the shortest route. This paper presents a novel optimal path
planning algorithm based on the 3D cubic Bézier curve with three shape parameters and its geometric properties
and hierarchical clustering. The proposed method utilizes a feature vector which is obtained from curvature, torsion,
and path length of candidate curves. A hierarchical clustering is applied to determine curve pairs. Then, a multi-
objective function is used to determine the best curve pair, which gives the best curve for the robotic arm. Besides
forming the optimal 3D cubic Bézier path, the optimal ruled and developable path surfaces are obtained. In addition
to presenting theoretical results, this work also demonstrates the proposed method on several Kinova Gen3 robotic
arm cases.

1. Introduction
In recent years, robotic arms have risen their importance because of their need in many areas such as
the military, industry, and medical areas. Trajectory planning is one of the key problems in robotics.
Robotic motion planning has been studied for a long time, and many important contributions have been
made [1]. Different applications of collision-free path planning are studied for both vehicles and mobile
robots [2, 3, 4, 5, 6, 7].

Achour [6] focused on path optimization by genetic algorithm to determine the optimal path for
mobile robots. A visibility graph and Bezier curves-based method are proposed by Simba et al. [7] to
form a collision-free smooth trajectory for wheeled mobile robots. Kim et al. [8] proposed a motion
planning algorithm for robot manipulators and applied it to 2-DOF and 3-DOF manipulators. Also, they
designed smoother and shorter paths. In ref. [9], they present a graph search algorithm based on the
A-star algorithm to calculate the shortest path for pick-and-place operations with obstacles in the work
environment. An optimal path is determined in terms of genetic algorithms to reduce the number of
steps taken from the initial point to the goal point in ref. [10]. Hayat and Kausar [11] presented a sim-
ulated annealing-based algorithm in an environment with circular shape obstacles. For mobile robots,
the Markov Decision Process-based probabilistic formal models for three different avoiding obstacles
strategies are given by Wang et al. [12] in an uncertain dynamic environment. Sun et al. [13] presented
the new artificial potential field method to obtain an optimal path that provides avoiding moving obsta-
cles and the local minimum problem. A novel avoiding obstacles-based algorithm is proposed for path
planning and path following for 2D and 3D navigation in ref. [14].
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We expressed the differential geometric analysis of the trajectories on terrain for the autonomous
wheel-legged robots in ref. [15]. Moreover, we gave the relationship between the consecutive wheel
center curves and the optimum posture of the MHT robot. An ant colony merged with the artificial poten-
tial field method-based path planning algorithm is proposed for lunar robots to determine the shortest
path besides obtaining the reduced convergence speed in the environment with dynamic obstacles in ref.
[16]. Xie et al. [17] presented an algorithm for the multi-joint manipulator to obtain the optimal path to
avoid obstacles in a workspace. Hyejeong [18] expressed an effective hierarchical path planning method
for mobile robots in 2D complex environments.

Curve-based methods are also used for path planning. The solution is based on finding a collision-
free path curve between the starting and goal points. Miura proposed a method that focuses on forming a
smooth collision-free path between the initial and end point in 2D or 3D space using the support vector
machines [19]. Some researchers have used parametric curves, for instance, Bezier [20, 21] and Clothoid
[22] curves, since they are flexible to generate smooth obstacle-avoided paths in complex workspaces.
This study also focuses on the curve-based method to obtain a smooth collision-free path curve between
the starting and goal points in an environment with obstacles.

Determining the position, velocity, and acceleration of the robotic arm is crucial during the motion.
On the other hand, when a robotic arm needs to be moved along a predetermined path, many candi-
date trajectories might be possible that the robot can follow. Several researchers have recently focused
on Bézier curves for path planning due to easy calculations besides passing from the starting and goal
points and lying within their control polygons. Hu et al. [23] expressed a novel path planning method
based on the Bézier curve and a two-layer planning framework. In ref. [24], a Bézier curve optimiza-
tion method is presented for obstacle avoidance problems. A trajectory planning method with Bézier
curve and cubic spline is presented in ref. [25]. They also compared the performance of these trajectory
plannings, transition paths, the velocity of the end effector, and joint angle position. It is not possible to
generate multiple Bezier curves with different shapes for the same control polygon. The control points
are needed to be changed to alter the curve’s shape. Therefore, the classical Bézier curves are deficient in
terms of flexibility to control the shape of the curve. However, flexibility is often demanded to optimize
and fine-tune the paths. Hence, modifiable Bézier curves with shape parameters have been formed in
refs. [26, 27]. We studied the path planning, and velocity, acceleration, and jerk of autonomous ground
vehicles in the environment with obstacles using the quintic trigonometric Bézier curve with its two
shape parameters and C3 continuity in ref. [28]. Also, we compared velocity, lateral acceleration and
jerk, and longitudinal jerk of the predefined quintic and cubic Bézier, besides quintic trigonometric
Bézier and cubic paths.

1.1. Contribution
Robotic arms are special, and the most utilized parts of robots, and they are widely used in manufactur-
ing and production. This paper proposes a new method to find the optimal path for a robotic arm. We
adopt geometric and hierarchical clustering approaches for path planning. Our main contributions are
as follows:

• The 3D cubic Bézier curve with three shape parameters is used for path planning. A novel path
planning algorithm is called Optimal Path Planning with Hierarchical clustering (OPA-H) is
presented.

• The algorithm generates the optimal path based on the shape parameters of the Bézier path and
the feature vector composed of the curvature, torsion, and the Bézier path length.

• The hierarchical clustering method based on the feature vector is used to determine the optimal
path pair candidates, since the bottom-up clustering method is needed.

• The proposed method determines the most modifiable path curve among other path curves
according to the multi-objective function.
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• Using the optimal 3D cubic Bézier path with three shape parameters, the optimal ruled and
developable path surfaces are presented. Also, the relationship between the shape parameters
and developability degree is presented.

The rest of the paper is arranged as follows. In Section 2, the Bézier curve with three shape parameters
and its properties are given. The proposed method is expressed in Section 3, while Section 4 presents an
experimental work. Ruled and developable path surfaces are generated in Section 5. Finally, Section 6
concludes this work.

2. Cubic Bézier curve with three shape parameters
In this section, the definition and properties of cubic Bézier curve with three shape parameters are
expressed likewise in ref. [26].

2.1. Cubic Bézier basis functions with three shape parameters

Definition 1. The Bernstein basis functions of t, t ∈ [0, 1] with degree three and three shape parameters
are defined as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0(t) = (1 − t)3 (1 − λ1t)

b1(t) = 3(1 − t)2t

[
1 + λ1

3
(1 − t) − λ2

2
t

]

b2(t) = 3(1 − t)t2

[
1 + λ2

2
(1 − t) − λ3

3
t

]

b3(t) = t3 [1 + λ3(1 − t)]

(1)

where −2 < λ1 < 1, −1 < λ2 < 2, and −1 < λ3 < 3. Figure 1 shows the curves of the Bernstein basis
functions with degree three for different values of λ1, λ2, and λ3.

Theorem 1. The basis functions in the Eq. (1) have the following properties:

1. Nonnegativity: bi(t) ≥ 0, i = 0, 1, 2, 3.

2. Partition of unity:
3∑

i=0

bi(t) ≡ 1.

3. Symmetry: bi(t) = b3−i(1 − t), λi = −λ3−i+1.
4. For λi = 0, the basis functions in the Eq. (1) correspond to the original Bernstein basis functions.

Proof. For t ∈ [0, 1], and −2 < λ1 < 1, −1 < λ2 < 2 and −1 < λ3 < 3, it is obvious from the Eq. (1) that
the proofs of the Theorems 1.1, 1.3, and 1.4 can be seen in ref. [26]. For the Theorem 1.2:

3∑
i=0

bi(t) = 1 +
3∑

i=1

λi

(
1

3−i+1
(1 − t)Bi,3(t) − 1

i
tBi−1,3(t)

)≡ 1, in which Bi,3(t) and Bi−1,3(t) are the original

Bernstein basis functions.

2.2. Properties of cubic Bézier curve functions with three shape parameters

Definition 2. The cubic Bézier curve with three shape parameters is defined by:

r(t) =
3∑

i=0

Pibi(t), t ∈ [0, 1] , λ1 ∈ (−2, 1) , λ2 ∈ (−1, 2) , λ3 ∈ (−1, 3) (2)

where Pi is control points in R2or R3.
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Figure 1. The Bernstein basis functions with degree three for λ1 = −1.5, λ2 = 1, λ3 = −0.8 (solid lines),
for λ1 = −1, λ2 = −0.5, λ3 = 1.5 (dashed lines) and for λ1 = 0.7, λ2 = 1.5, λ3 = 2.5 (dotted lines).

Proposition 1. The cubic Bézier curve with three shape parameters have the following properties:

1. Interpolation at the end point and tangent at the end edge;
2. Convex hull property;
3. Geometric and affine invariance;
4. Symmetry;
5. For λi = 0, the cubic Bézier curve in (2) corresponds to the original cubic Bézier curve.

Proof. The proofs of all the above properties can be easily obtained in ref. [26].

The shape parameters λ1, λ2, and λ3 provide the local control on the cubic Bézier curve according to
Proposition 3 in ref. [26] as shown in Fig. 2.

Proposition 2. A regular curve r(t) is given in R3. The curvature of this curve is defined by:

κ = ‖r′′ × r′‖
‖r′‖3 (3)

where the × and ′ denote the cross product and
d

dt
, respectively.

Proof. The proof of this proposition can be obtained from ref. [29].

Proposition 3. A regular curve r(t) is given with nowhere-vanishing in R3. The torsion of this curve is
given by:

τ = (r′ × r′′) .r′′′

‖r′ × r′′‖2 . (4)

Proof. The proof of this proposition can be found from ref. [29].
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Figure 2. Effect of the altered shape parameters on the shape of the cubic Bézier curve.

Figure 3. The curvature and the torsion curves of the cubic Bézier curve for different values of shape
parameters.

Definition 2. The arc length of a curve r(t) starting at the point r (t0) is given by the function L(t)
as [29]:

L(t) =
t∫

t0

∥∥r′ (u)
∥∥ du. (5)

The curvature and the torsion of the cubic Bézier curve with three shape parameters can be calculated
using the Eqs. (3) and (4). Since the Bézier curve has shape parameters, the curvature and the torsion
of this curve will be affected. Figure 3 shows the influence of the three shape parameters on curvature
and torsion of cubic Bézier curve.
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Figure 4. Different trajectories according to various obstacles and shape parameter values.

3. Optimal path planning based on cubic Bézier curve with three shape parameters and
hierarchical clustering

The robotic arm trajectory can be planned using the cubic Bézier curve when the robotic arm is trans-
formed from the starting point to the end point. The first and last control points of the Bézier curve
can be considered the starting and the goal points, respectively, while the other control points can be
considered obstacles. Cubic Bézier curve trajectories of the robotic arm will be affected due to shape
parameters. Hence, we can control and modify the trajectories of the robotic arm to obtain the optimal
path. If we have more than two obstacles, we can obtain more trajectories since we have various control
points. Besides obstacles, altering shape parameters will allow us to form even more trajectories, as seen
from Fig. 4.

3.1. Proposed method
Hierarchical clustering is a clustering method that finds successive clusters using a predetermined order-
ing from top to bottom. These successive clusters can be presented as a tree called a dendrogram. The
divisive and the agglomerative hierarchical clustering are the clustering types, where the former con-
structs the dendrogram top-down and the latter constructs the dendrogram bottom-up. Agglomerative
hierarchical clustering generates the dendrogram by taking each element as a separate cluster and then
merging them iteratively. On the other hand, the divisive hierarchical clustering generates the dendro-
gram by taking the data as a single cluster and then separating this cluster into successively smaller
clusters iteratively [30].

The optimal path planning method can be carried out using a cubic Bézier curve with three shape
parameters and hierarchical clustering. Different curve pairs with the same control points are generated
with different shape parameters, since the main goal is to control the path.

Suppose that the robotic arm’s starting and goal points and obstacles placed in the workspace are
known. Note that this study focuses on general cases, that is, extreme cases are not included, such as
all obstacles placed through a line between starting and goal points. Next, several cubic Bézier curves
are formed according to the obstacles in the workspace and altered by changing the shape parameters
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Algorithm 1. Multi-Objective Function Algorithm.

randomly within their range given as in the Eq. (2). The feature vector F, including the curvature, torsion,
and path length of each curve, is obtained for each curve, using Eqs. (3), (4), and (5):

F = [κ , τ , L] (6)

Moreover, we need to check whether any obstacle collides to the optimal curve pair candidate and remove
them if they collide with obstacles. To cluster the optimal path candidates, the hierarchical clustering
method is used. The multi-objective function value OPsum = OP1 + OP2 for each curve pair is determined
using the following equation for i = 1, 2:

OPi = α1OJi + α2Oκi + α3Odi + α4OLi

= α1

(∫ uf

us

‖j (u)‖2 du

)
+ α2

(∫ uf

us

‖κ (u)‖2 du

)

+ α3

(
mean

(
4∑

i=1

di

))
+ α4

(∫ b

a

∥∥r′ (u)
∥∥ du

)
, (i = 1, 2) (7)

in which the coefficient values are denoted by αi, (i = 1, 2, 3, 4) and provide
∑4

i=1 αi = 1. Also, OJi, Oκi,
Odi, and OLi, (i = 1, 2) are the objective functions according to the jerk, curvature, Euclidean distance to
the original line path passes through the obstacles, and path length for the optimal path candidate pairs,
respectively. The optimum curve is the one with the minimum OP value between two path candidate
pairs as in Eq. (8):

OPmin = min {OP1, OP2} (8)

where OP1 and OP2 belongs to OPsum that has the minimum value. The steps of the proposed method
are given in Algorithms 1, 2, and 3. Algorithm 1 computes the multi-objective function for the optimal
path candidates.

If the optimal path can not be determined after the selected iteration number, the proposed Optimal
Path Algorithm with Hierarchical Cluster (OPA-H) should be executed again with different shape
parameters. The proposed OPA-H is shown in Algorithm 2:
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Algorithm 2. Algorithm OPA-H.

To check whether any obstacle collides to the optimal curve pair candidate, the Algorithm 3 is utilized.

Algorithm 3. Algorithm CheckObstacle.

The original line path, which is the convex hull of the cubic Bézier path, passes through the waypoints,
which are obstacles, and therefore this path collides with the obstacles. Hence, the cubic Bézier curve
with three shape parameters is used to obtain the optimal path because this curve does not collide with
other obstacles, since this curve does not pass through the control points except the starting and end
points.

We need to obtain the optimal path candidate pairs among different path candidates. Therefore, this
study utilizes hierarchical clustering, since it is the most appropriate method for using the bottom-up
approach. The optimal path is selected during experiments regarding the multi-objective function among
the path candidates. The optimal path provides efficiency and flexibility because it provides more options
by altering shape parameters and controlling the optimal path besides minimizing the multi-objective
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Figure 5. Kinova Gen3 robotic arm.

function. Users can adjust path length, jerk, acceleration, which is related to the curvature of the path,
and smoothness, which is related to the curvature and torsion, based on the shape parameters. The reason
is that altering the shape parameters without changing the obstacles offers different options to the user
to control the path, such as if the user desires to control the jerk increasing the α1 coefficient value, the
user may determine the optimal path by altering the shape parameters as it is done in Tables II, 4, and 6.

4. Experimental results
In this section, three worked example applications are presented according to the OPA-H algorithm. For
this purpose, the collision-free path candidates are obtained for the Kinova Gen3 robotic arm in Fig. 5.

We assume that the workspace and the positions of the obstacles for the Kinova Gen3 robotic arm
are known in advance.

4.1. Example 1
Let the starting and the goal points be P0 = (27.25, 9, 14) and P19 = (37.25, 29, 29), respectively. Also,
the obstacles in the workspace are given in the matrix form by the following Eq. (9) as:

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 = (31, 19, 18) ; P2 = (17, 24, 14)

P3 = (17, 24, 21) ; P4 = (27, 20, 18)

P5 = (27, 12, 23) ; P6 = (18, 22, 17)

P7 = (22, 15, 12) ; P8 = (22, 14, 22)

P9 = (23, 19, 18) ; P10 = (23, 16, 16)

P9 = (15, 18, 25) ; P10 = (9, 13, 12)

P11 = (21, 21, 28) ; P12 = (11, 19, 7)

P13 = (20, 24, 11) ; P14 = (14, 14, 26)

P15 = (13, 19, 9) ; P16 = (24, 28, 15)

P17 = (10, 13, 4) ; P18 = (13, 29, 24)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)
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Figure 6. Trapezoidal position, velocity, and acceleration profiles of seven joints of the Kinova Gen3
robotic arm for the paths r4 (straight) and r14 (dashed).

In this example, we generated 10 cubic Bézier path candidates where each path takes the points P0 and
P19 as the starting and the goal points, and each row of the matrix in the Eq. (9), which corresponds
to obstacles, like other control points of the path of the robotic arm. Next, we carried out the proposed
method (OPA-H) given in the Algorithm 2 by changing the shape parameters randomly within their
range. The results can be seen from the following Table I. Here, the curves in each row represent the
curves that have the same control points with different shape parameters.

As seen from Table I, the curve pair {r4, r14} in row 9 has the minimum multi-objective value, which
is 1.2976. Note that this value is the sum of OP1 and OP2. From this pair r14 is selected as the optimal
curve, since it has lower OP value than r4.

On the other hand, the optimal path between r4 and r14 can be obtained for the Kinova Gen3 robotic
arm using its joints velocities and accelerations from the Fig. 6.

As seen from Fig. 6 and Table I, the path r14, which is obtained according to the multi-objective
using the proposed algorithm, is the optimum one for the robotic arm. The optimal path r14 can be
controlled via three shape parameters as given in Table I and can be seen from different perspectives in
Fig. 7.
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Table I. Test results.

The curve The curve Path length Path length OP for OP for
number number of curve of curve curve curve
in R in R∗ λ1 λ2 λ3 λ∗

1 λ∗
2 λ∗

3 in R in R∗ in R in R∗ OPsum

r4 r14 0.3768 −0.0963 1.1163 −1.3085 1.5329 −0.2209 30.9448 30.5391 0.6666 0.6595 1.3261
r5 r15 0.8945 1.9769 −0.7209 0.7566 1.7882 −1.1029 30.5635 30.7051 0.6907 0.7129 1.4096
r5 r15 −0.5396 0.3076 −0.9129 1.0810 −0.5255 0.0431 30.1589 30.5175 0.6618 0.6730 1.3348
r4 r14 0.4529 1.3845 0.5773 −0.8642 1.4347 0.1313 31.2602 30.5746 0.6731 0.6594 1.3325
r4 r14 −1.3768 −0.0963 −0.1163 −1.3085 1.5329 −1.2209 30.3439 31.3851 0.6571 0.6847 1.3418
r5 r15 0.5242 −1.4879 −0.0893 −0.1929 −0.0667 −0.6935 30.3403 30.1888 0.6664 0.6629 1.3293
r1 r11 −0.7094 −0.4456 1.6195 0.9392 0.3166 −1.5555 29.0633 36.1084 0.6332 0.8217 1.4549
r4 r14 −1.2258 0.2262 0.3796 −1.2134 0.8085 0.8449 30.1093 29.8616 0.6516 0.6460 1.2976
r4 r14 −1.3348 −0.6477 −0.8133 −1.0437 0.2725 0.0314 30.9869 30.4558 0.6718 0.6589 1.3307
The best values are shown in bold face.
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Figure 7. The optimal path r14 for different values of the shape parameters in Table I.

Figure 8. The path lengths of the optimal path r14 for different values of the shape parameters and the
CBC (black).

If all shape parameters are accepted as zero, the curve transforms to the classical Bézier curve CBC.
The proposed method provides flexibility to fine-tune the optimal path regarding user requirements,
which are given by the multi-objective function in the Eq. (7), for the robotic arm in the workspace. This
study compares the optimal curve for different shape parameters and the CBC in path length. Therefore,
Fig. 8 presents the superiority of the optimal curve to the CBC due to its flexibility which means we can
fine-tune the optimal curve according to the priorities of the user, such as velocity, acceleration, jerk, or
path length. Because shape parameters are real numbers, they can have an infinite number of values in
their range.

Also, the path lengths of the optimal path and CBC are given in Table II.
As seen from Table II, we have different options to alter the path besides providing being more

productive in terms of the multi-objective function in (7) than the CBC.
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Table II. The comparision of optimal curve with different shape parameters and CBC.

Path length OP
Curves λ1 λ2 λ3 of the curve for curve
r14 (magenta) 0.9999 1 2 31.0115 0.6690
r14 (red) −1.8642 −0.9999 2.9999 28.7115 0.6221
r14 (blue) −1.3085 1.5329 1.2209 29.6772 0.6407
r14 (cyan) −1 0.8085 1 29.9279 0.6472
r14 (green) 0.9999 1.999 2.9999 30.7030 0.6621
CBC (black) 0 0 0 31.2615 0.6743

4.2. Example 2
In this example, let the initial and the end points P0 = (5, 0.5, 2) and P19 = (16, 10, 10) be given,
respectively. Also, the obstacles placed in the workspace are given in the below Eq. (10):

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 = (12, 5, 5) ; P2 = (3, 8, 8)

P3 = (10, 8, 8) ; P4 = (6, 12, 12)

P5 = (−2, 4, 8) ; P6 = (−4, 5, 12)

P7 = (2, 4, 6) ; P8 = (4, 5, 7)

P9 = (13, 4, 6) ; P10 = (14, 5, 7)

P9 = (15, 6, 8) ; P10 = (17, 15, 7)

P11 = (16, 3, 3) ; P12 = (18, 10, 5)

P13 = (2, 3, 3) ; P14 = (5, 10, 5)

P15 = (26, 26, 6) ; P16 = (28, 28, 8)

P17 = (−6, −6, 6) ; P18 = (−8, −8, 8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

We again generated ten cubic Bézier path candidates where each path takes the points P0 and P19 as the
starting and the goal points, and each row in (10) as other control points for the robotic arm. Next, the
proposed method OPA-H in the Algorithm 2 was carried out to determine optimal path curve pair in
terms of feature vector by changing the shape parameters randomly within their range. The results are
given in Table III.

The curve pair {r5, r15} will be the optimal curve as seen from Table III. Moreover, even the optimal
path can be determined based on the multi-objective function between r5 and r15, it can be supported
using the robotic arm’s joints velocities and accelerations in Fig. 9.

The path r5 is the optimum path for the given robotic arm. The optimal path r5 can be controlled via
three shape parameters as given in Table III and can be seen from different perspectives in Fig. 10.

Figure 11 presents the superiority of the optimal curve to the CBC based on flexibility.
Additionally, the path lengths of the optimal path and CBC are given in Table IV.
As seen from the Table IV, the shape parameters give opportunity to control the optimal path besides

providing being more productive in terms of the multi-objective function in (7) than the CBC.

4.3. Example 3
Assume that the starting and the goal points are given as P0 = (10, 0, 0) and P19 = (40, 40, 0),
respectively. Also, the positions of obstacles in the environment are placed by the following equation:

https://doi.org/10.1017/S0263574722000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000182


Robotica
3279

Table III. Test Results.

The curve The curve Path length Path length OP for OP for
number number of curve of curve curve curve
in R in R∗ λ1 λ2 λ3 λ∗

1 λ∗
2 λ∗

3 in R in R∗ in R in R∗ OPsum

r5 r15 −0.3504 −0.5651 1.4121 −0.1338 0.0529 0.0530 17.0149 17.1158 0.3784 0.3810 0.7594
r5 r15 −0.7946 −0.7721 −1.0403 −1.6300 −0.4483 −1.0402 17.1624 17.1201 0.3822 0.3811 0.7633
r5 r15 −0.7482 −0.8510 1.6109 0.8344 0.4726 −0.0430 16.9748 17.1966 0.3775 0.3834 0.7609
r7 r17 −0.9868 1.7002 −0.5230 −1.6664 1.3408 −0.4410 19.7097 19.3981 3.2863 2.6025 5.8888
r1 r11 −1.2749 0.2117 −1.6142 −1.6041 1.8262 1.8245 19.6182 18.2033 0.4745 0.4258 0.9003
r2 r12 −0.2744 −0.8207 −1.0609 −0.9405 1.4636 −1.9384 20.5284 22.8480 0.4622 0.5193 0.9815
r5 r15 −1.8709 −0.4930 0.5965 0.1952 0.9432 −0.1963 16.9742 17.1545 0.3775 0.3822 0.7597
The best values are shown in bold face.
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Figure 9. Trapezoidal position, velocity, and acceleration profiles of seven joints of the Kinova Gen3
robotic arm for the paths r5 (straight) and r15 (dashed).

Figure 10. The optimal path r5 for different values of the shape parameters in Table III.
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Table IV. The comparison of optimal curve with different shape parameters and CBC.

Path length OP
Curves λ1 λ2 λ3 of the curve for curve
r5 (magenta) −0.3504 −0.5651 1.4121 17.0149 0.3784
r5 (red) −0.9999 1 2.5 16.9019 0.3763
r5 (blue) −0.7482 −0.8510 1.6109 16.9748 0.3775
r5 (cyan) −1.8709 −0.4930 0.5965 16.9742 0.3775
r5 (green) −1.0437 0.2725 0.0314 17.0593 0.3796
CBC (black) 0 0 0 17.1289 0.3813

Figure 11. The path lengths of the optimal path r5 for different values of the shape parameters and the
CBC (black).

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 = (40, 0, 15) ; P2 = (0, 40, 8)

P3 = (10, 8, 8) ; P4 = (10, 30, 12)

P5 = (−2, 4, 8) ; P6 = (−4, 5, 12)

P7 = (2, 4, 6) ; P8 = (4, 5, 7)

P9 = (13, 4, 6) ; P10 = (14, 5, 7)

P9 = (15, 6, 8) ; P10 = (17, 15, 7)

P11 = (16, 3, 3) ; P12 = (18, 10, 5)

P13 = (2, 3, 3) ; P14 = (5, 10, 5)

P15 = (26, 26, 6) ; P16 = (28, 28, 8)

P17 = (−6, −6, 6) ; P18 = (−8, −8, 8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Some obstacles have the same positions as in Example 2. Our goal with this example is to present the
case in which the starting and goal points, besides some obstacles, are farther away from each other than
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Figure 12. Trapezoidal position, velocity, and acceleration profiles of seven joints of the Kinova Gen3
robotic arm for the paths r5 (straight) and r15 (dashed).

the other two examples. Similarly, 10 cubic Bézier path candidates are formed where each path takes
the points P0 and P19 as the starting and the goal points, and each row in (11) indicates other control
points for the robotic arm. Next, the proposed method OPA-H in the Algorithm 2 is applied to determine
optimal path curve pair in terms of feature vector by changing the shape parameters randomly within
their range. The results are given in Table V.

The curve pair {r5, r15} will be the optimal curve as seen from Table V regarding to OPsum.
Additionally, the optimal path between r5 and r15 can be enforced by using the robotic arm’s joints

velocities and accelerations in Fig. 12, although it can be reliazed using the multi-objective function.
The path r15 is the optimum path for the given robotic arm. The optimal path r15 can be con-

trolled via three shape parameters as given in Table V and can be seen from different perspectives in
Fig. 13.

Figure 14 presents the superiority of the optimal curve to the CBC based on flexibility.
Moreover, the path lengths of the optimal path and CBC are given in Table VI.
As seen from Table VI, the shape parameters give opportunity to control the optimal path besides

providing being more productive in terms of the multi-objective function in (7) than the CBC.
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Table V. Test results.

Path Path Multi Multi
The curve The curve length length obj. func. obj. func.
number number of curve of curve for curve for curve Multi
in R in R∗ λ1 λ2 λ3 λ∗

1 λ∗
2 λ∗

3 in R in R∗ in R in R∗ obj. func.
r4 r14 –0.7946 –0.7721 –1.0403 –1.6300 –0.4483 –1.0402 31.5959 30.9697 1.3822 1.3462 2.7284
r2 r12 –0.9868 1.7002 –0.5230 –1.6664 1.3408 –0.4410 29.9863 29.5015 1.4168 1.4049 2.8217
r5 r15 –1.8709 –0.4930 0.5965 0.1952 0.9432 –0.1963 29.0223 30.0796 1.2583 1.2538 2.5121
r4 r14 –0.3590 –0.1110 0.9788 –1.4331 1.0603 –1.2660 30.4359 31.2960 1.3836 1.4079 2.7915
r5 r15 –0.8945 0.8769 1.1209 –1.7566 1.7882 1.1029 29.1645 28.7736 1.2576 1.2585 2.5161
r5 r15 –0.5396 0.3076 –0.2129 –1.0810 0.5255 0.0431 29.8130 29.4854 1.2557 1.2566 2.5123
r4 r14 0.4529 1.3845 0.5773 –0.8642 1.4347 0.1313 31.2602 30.5746 1.4040 1.3779 2.7819
The best values are shown in bold face.
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Table VI. The comparision of optimal curve with different shape parameters and CBC.

Curves λ1 λ2 λ3 Path length of the curve OP for curve
r15 (magenta) 0.1111 −0.7799 0.0111 51.9490 1.255434
r15 (red) −1.7566 1.7882 1.1029 51.2033 1.2585
r15 (blue) −1.0810 0.5255 2 51.1669 1.2586
r15 (cyan) −1.2134 0.8085 0.8449 51.3862 1.2577
r15 (green) 0.9999 1.9999 2.9999 51.7166 1.2563
CBC (black) 0 0 0 51.9499 1.255444

Figure 13. The optimal path r15 for different values of the shape parameters in Table V.

Figure 14. The path lengths of the optimal path r15 for different values of the shape parameters and the
CBC (black).

5. Construction of Bézier ruled and developable ruled surfaces
Since the robotic arm’s end effector’s tip traces a path during the motion, the end effector generates
a robot pose ruled surface using this path. Therefore, this section will form optimal Bézier ruled and
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Figure 15. The robot pose ruled surface belong to the curve pair {r4, r14} with the shape parameters
λ1 = −1.2258, λ2 = 0.2262, λ3 = 0.3796 and λ∗

1 = −1.2134, λ∗
2 = 0.8085, λ∗

3 = 0.8449.

developable ruled surfaces for the optimal Bézier curve pairs obtained in Examples 1, 2, and 3. Before
expressing the process, the definitions of ruled and developable ruled surfaces are given in Section 5.1.

5.1. Ruled and developable ruled surfaces

Definition 3. A union of straight lines is called a ruled surface. Straight lines are called rulings of the
ruled surface [29]. A ruled surface is defined by:

R(v, t) = r(t) + vd(t) (12)

in which r(t) is the directrix or base curve and d(t) is the direction vector of the ruling at each point on
the directrix. Alternatively, the ruled surface can be represented as:

R(v, t) = (1 − t)rA(t) + vrB(t), v, t ∈ [0, 1] (13)

where rA and rB are directrices, and r(t) = rA(t) and d(t) = rB(t) − rA(t).

Definition 4. Developable surfaces are surfaces that unfolded onto a plane without stretching or tearing.
For developable ruled surfaces, the tangent plane is constant along with each ruling. Cylinders, cones,
and planes are the most known developable surfaces. A ruled surface is called developable ruled surface
if and only if the vectors r′(t), d(t), and d′(t) are linearly independent, that is [31]∣∣r′(t) d(t) d′(t)

∣∣= 0 (14)

5.2. The optimal Bézier ruled and developable ruled surface path of robotic arm
The optimal curves in Examples 1 and 2 are determined using the proposed method OPA-H. Next, the
optimal shortest robot pose ruled surface can be obtained using the Eq. in (13). If the only one shape
parameter of the directrix curve rA(t) is altered to find the other directrix curve rB(t), the condition in
the Eq. (14) will be satisfied. Consequently, the optimal developable robot pose ruled surface will be
obtained.

Figure 15 shows the robot pose ruled surface and developability degree for the curve pair {r4, r14} in
Example 1. Since the developability degree is different than zero (see Fig. 15(b)), the robot pose ruled
surface (see Fig. 15(a)) is not a developable robot pose ruled surface.
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Figure 16. The developable robot pose ruled surface belong to the curve pair {r4, r14}.

Figure 17. The robot pose ruled surface belong to the curve pair {r5, r15} with the shape parameters
λ1 = −1.8709, λ2 = −0.4930, λ3 = 0.5965 and λ∗

1 = 0.1952, λ∗
2 = 0.9432, λ∗

3 = −0.1963.

If the shape parameters are changed such as λ1 = −1.2258, λ2 = 0.2262, λ3 = 0.3796 and λ∗
1 =

−1.2258, λ∗
2 = 0.2262, λ∗

3 = 0.8449, then the formed robot pose ruled surface will be developable robot
pose ruled surface as seen from Fig. 16.

Figure 17 shows the ruled surface and developability degree for the curve pair {r5, r15} in Example 2.
Since the developability degree is different than zero (see Fig. 17(b)), the robot pose ruled surface (see
Fig. 17(a)) is not a developable robot pose ruled surface.

If the shape parameters are changed such as λ1 = −1.8709, λ2 = −0.4930, λ3 = 0.5965 and λ∗
1 =

0.1952, λ∗
2 = −0.4930, λ∗

3 = 0.5965, then the formed robot pose ruled surface will be developable robot
pose ruled surface as seen from Fig. 18.

The ruled surface and developability degree for the curve pair {r5, r15} in Example 3 are presented
in Fig. 19. Since the developability degree is different than zero (see Fig. 19(b)), the robot pose surface
(see Fig. 19(a)) is the robot pose ruled surface.

If the shape parameters is changed such as λ1 = −0.8945, λ2 = 1.7882, λ3 = 1.1029 and λ∗
1 =

−1.7566, λ∗
2 = 1.7882, λ∗

3 = 1.1029, then the formed robot pose ruled surface will be developable robot
pose ruled surface as seen from Fig. 20.
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Figure 18. The developable robot pose ruled surface belong to the curve pair {r5, r15}.

Figure 19. The robot pose ruled surface belong to the curve pair {r5, r15} with the shape parameters
λ1 = −0.8945, λ2 = 0.8769, λ3 = 1.1209 and λ∗

1 = −1.7566, λ∗
2 = 1.7882, λ∗

3 = 1.1029.

Figure 20. The developable robot pose ruled surface belong to the curve pair {r5, r15}.
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6. Conclusion
This article proposed a novel algorithm (OPA-H) to determine the optimal path for a robotic arm. We
used the 3D cubic Bézier curve with three shape parameters for path planning. Assuming that the starting
and the goal points are known for the Kinova Gen3 robotic arm, the obstacles are taken as the other con-
trol points. Since we can not change the location of obstacles, modifying the path curve when needed
is very important for path planning. Altering shape parameters provides a modification of the Bézier
path without changing any control points that correspond to the obstacles. Different Bézier paths are
generated according to various obstacles and shape parameters. We extracted the feature vector consist-
ing of the curvature, torsion, and path length of each Bézier path curve to apply hierarchical clustering.
Then, hierarchical clustering is used to find curve pairs with the same control points but different shape
parameters.

Experiments show that the proposed method finds the optimal path for the robotic arm concerning
the curvature, torsion, jerk, distance to the line path, and path length. The optimal path provides different
cases regarding the shape parameters while preserving the optimality compared to the classical Bézier
curve.

Moreover, the optimal robot pose ruled and developable robot pose ruled surfaces are presented based
on the optimal 3D cubic Bézier path. After obtaining the optimal curve pair using the algorithm OPA-H,
the optimal shortest robot pose ruled surface can be generated via this curve pair. This article shows that
if either two or three shape parameters are changed to obtain the optimal path pair, the optimal robot pose
ruled surface will be formed. On the other hand, if only one shape parameter is changed, the optimal
developable ruled surface will be formed.

Most path planning methods are proposed in 2D environments. However, our method works in a 3D
environment with different obstacles. The algorithm presented in this article generates the optimal path
by controlling the optimal path in terms of efficiency and flexibility in addition to the path length using
three shape parameters, while other curve-based studies determine only one optimal path.
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