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ABSTRACT. Understanding firn densification is essential for interpreting ice

core records, predicting ice sheet mass balance, elevation changes, and fu-

ture sea-level rise. Current models of firn densification on the Antarctic Ice

Sheet (AIS), such as the Herron and Langway (1980) model are either simple

semi-empirical models that rely on sparse climatic data and surface density

observations or complex physics-based models that rely on poorly understood

physics. In this work, we introduce a deep learning technique to study firn

densification on the AIS. Our model, FirnLearn, evaluated on 225 cores, shows

an average root mean square error (RMSE) of 31 kg m´3 and explained vari-

ance of 91%. We use the model to generate surface density and the depths

to the 550 kg m´3 and 830 kg m´3 density horizons across the AIS to assess

spatial variability. Comparisons with the Herron and Langway (1980) model

at ten locations with different climate conditions demonstrate that FirnLearn

more accurately predicts density profiles in the second stage of densification

and complete density profiles without direct surface density observations. This

work establishes deep learning as a promising tool for understanding firn pro-

cesses and advancing towards a universally applicable firn model.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided

the original article is properly cited.
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INTRODUCTION

As snow falls on the surface of the Antarctic Ice Sheet (AIS), it compacts into glacial ice, transitioning

through an intermediate stage called firn. Firn has a density that ranges between that of settled snow (300

kg m´3) and glacial ice (917 kg m´3) depending on the network of interconnected pores which exchange air

with the atmosphere (Buizer, 2013; Van den Broeke, 2008). Firn densification into glacial ice is influenced

by several factors, such as, overburden stress, temperature, grain size, wind, impurity concentration, and

water content (Arthern and others, 2010; Hörhold and others, 2012; Kingslake and others, 2022; Baker and

Ogunmolasuyi, 2024). Understanding firn densification is important as it affects several processes in ice

sheets. Firstly, given that densification changes in response to climatic factors, it causes uncertainty in ice-

sheet elevation and mass balance estimates (Helsen and others, 2008; Smith and others, 2020). Secondly,

densification results in the closure of the interconnected network of pores, which when closed off, traps

gases in the ice. The age difference between the trapped gases and the ice is important for interpreting

ice core records (Alley, 2000; Cuffey and Paterson, 2010). Lastly, the pore space within firn columns can

serve as storage for meltwater from the warming climate, hence, breaking the link between surface melt,

runoff, and sea-level rise (Harper and others, 2012; Forster and others, 2013; Meyer and Hewitt, 2017).

Consequently, a comprehensive understanding of firn processes is crucial for accurately predicting ice sheet

responses to climate change The-Firn-Symposium-Team (2024).

Firn densification is controlled by microstructural evolution (Anderson and Benson, 1963; Arnaud and

others, 2000). It occurs in three stages, each characterized by distinct mechanisms. Initially, grain boundary

sliding, vapor transport, and surface diffusion dominate until reaching a density of 550 kg m´3 (Anderson

and Benson, 1963; Alley, 1987; Gow, 1969; Maeno and Ebinuma, 1983). In the second stage, pore space

reduction limits vapor diffusion, giving way for sintering processes and recrystallization until a density of

830 kg m´3 is attained (Gow, 1969; Maeno and Ebinuma, 1983). The depth at 830 kg m´3 is typically

denoted the pore close-off depth. Here, air becomes trapped in bubbles, slowing the densification process

as the bubbles are compressed and eventually diffuse into the surrounding ice (Salamatin and others, 1997).

Finally, bubble shrinkage and compression become dominant until the density of ice (917 kg m´3) is reached

(Bader, 1965). Several studies have been aimed at shedding more light on the microstructural processes

in firn (Maeno and Ebinuma, 1983; Freitag and others, 2004; Kipfstuhl and others, 2009; Lomonaco and

others, 2011; Burr and others, 2018; Li and Baker, 2021; Ogunmolasuyi and others, 2023). However, a

comprehensive understanding of large-scale implications of firn densification requires an integration between
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the underlying microphysics and modeling. To this end, over four decades of effort has been undertaken

to develop firn densification models (Herron and Langway, 1980; Alley, 1987; Barnola and others, 1991;

Arnaud and others, 2000; Kaspers and others, 2004; Ligtenberg and others, 2011; Stevens and others,

2020; Meyer and others, 2020; Stevens and others, 2023). These models are either empirical (Herron

and Langway, 1980; Barnola and others, 1991; Li and Zwally, 2011) or microphysics-based (Alley, 1987;

Arnaud and others, 2000; Morris and Wingham, 2014).

However, knowledge gaps owing to an incomplete understanding of the underlying physics of firn densi-

fication still limit the accuracy of microphysics models. Hence, most firn densification models are empirical,

predicting density based only on accumulation rate and temperature. These variables are usually obtained

from ice core data such as (Buizert and others, 2012), regional climate models such as the Regional

Atmospheric Climate (RACMO) (Noël and others, 2018) or long-term weather station data such as the

Greenland climate network (GCN) (Steffen and Box, 2001). The models are then used to fit depth-density

profiles derived from firn cores, with an assumption known as Sorge’s law which states that the accumula-

tion rate, surface density, and the firn column are invariant in time (Bader, 1954) . While these models

have served the glaciology community reasonably well, their predictive accuracy can be limited, particu-

larly under conditions that differe significantly differ from those used during their callibration (Lundin and

others, 2017; Verjans and others, 2020).

In this study, we explore a novel approach to firn densification modeling based on a statistical analysis

of known depth-density profiles as an attempt to improve the firn density estimates of empirical models. In

recent years, the utility and significance of machine learning methods have grown. In particular, the ever-

growing volume of data combined with hardware and optimization algorithms that allow complex systems

to be fitted effortlessly has resulted in advances across various scientific fields, including earth sciences

(Camps-Valls and others, 2020; Reichstein and others, 2019), among several other applications. While

machine learning techniques, particularly artificial neural networks (ANNs) have seen increasing application

in glaciology, including for simulating glacier length (Steiner and others, 2005; Nussbaumer and others,

2012), and modeling glacier flow, evolution and mass balance (Bolibar and others, 2020; Brinkerhoff and

others, 2021), less attention has been paid to its implementation in firn densification modeling. Only a few

machine learning models have been applied to firn processes. Rizzoli and others (2017) applied clustering

techniques to characterize snow facies while Dell and others (2022) used a combination of clustering and

classification techniques to identify slush and melt-pond water and Dunmire and others (2021) employed
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a convolutional neural network to detect buried lakes across the Greenland Ice Sheet. Notably, the only

studies that have applied machine learning methods to modeling firn density was done by Li and others

(2023), who trained a random forest on radiometer and scatterometer data to derive spatial and temporal

variations in Antarctic firn density, and Dunmire and others (2024) who used a random forest to predict

ice-shelf effective firn air content.

Here, we present a new steady state densification model: FirnLearn, which takes a deep learning

approach to firn densification modeling. FirnLearn simulates the density profile over depth using a deep

ANN, fed by density observations from the Surface Mass Balance and Snow on Sea Ice Working Group

(SUMup) dataset (Montgomery and others, 2018; Vandecrux and others, 2024), and accumulation rate

and temperature data from RACMO (Van Wessem and others, 2014; Noël and others, 2018).

In the next section, we present an overview of the data, brief descriptions of the ANN architecture as

well as the evaluation techniques used in this study. In section 3, we present applications of FirnLearn

to predicting surface density, depths at 550 kg m´3 and 830 kg m´3 density horizons, as well as firn air

content (FAC). Here, we also discuss the performance of FirnLearn in comparison to the depth-density

model of Herron and Langway (1980). FirnLearn maintains a high accuracy and it is robust to outliers,

diverse climatic conditions, as well as surface density data. It can also predict surface density, a feature

that other models do not share. FirnLearn can be a valuable tool to scientists for better constraining the

physics governing firn densification. By examining its predictions, researchers can uncover and analyze

complex relationships within firn density data.

METHODS

DATA

The dataset used in this study is based on field observations extracted from the December 2024 release

of the SUMup dataset Montgomery and others (2018); Vandecrux and others (2024) and model outputs

from RACMO (Van Wessem and others, 2014; Noël and others, 2018) (see figure 1). We combined firn

density observations from 2689 locations across the AIS from SUMup with accumulation rate and temper-

ature outputs from RACMO2.3. Given that FirnLearn is a steady-state model, it relies on time-averaged

accumulation rate and temperature data, hence we extracted the 1979-2016 average accumulation rate and

temperature values from RACMO.
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Description No. of cores

depth < 10 m 2476

depth > 100 m 39

density >= 550 kg m´3 349

density >= 830 kg m´3 71

Table 1. Summary of core depth and density characteristics in SUMup

Density and depth

The snow/firn density subdataset was extracted from SUMup. It contains over 2 million unique measure-

ments of density at different depths across both the Antarctic and Greenland Ice Sheets. These density

measurements were obtained using density cutters of different sizes used in snow pits, gravitational methods

on ice core sections, neutron-density methods in boreholes, X-ray microfocus computer tomography on snow

samples, gamma-ray attenuation in boreholes, pycnometers on snow samples, optical televiewer (OPTV)

borehole lagging, and density and conductivity permittivity (DECOMP) (Montgomery and others, 2018).

The number of cores at important depths and densities are detailed in table 1

Climate Variables

Accumulation rate: The accumulation rate dataset was obtained from the output of the RACMO2.3

model, containing total precipitation (snowfall and rainfall), runoff, melt, refreezing, and reten-

tion. For our accumulation rate input, we average annual surface mass balance (SMB) outputs from

RACMO2.3 for 1979-2016. SMB values were converted to meters of water equivalent per year (m

w.e. yr´1). For the purpose of this study we assume zero ablation in Antarctica and use SMB as the

accumulation rate.

Temperature: For our surface temperature input, we average annual surface temperature outputs

from RACMO2.3 for 1979-2016.

Both variables have an initial dimension of (240,262), which we subsequently reshaped into a vector with

dimensions (62880,1). The RACMO datasets were combined with the SUMup datasets to create a combined

dataset of Antarctic observations containing density, depth, accumulation rate, and temperature.

Downloaded from https://www.cambridge.org/core. 26 Apr 2025 at 02:50:42, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Ogunmolasuyi and others: FirnLearn applied to Antarctica 6

a. b. c.

Fig. 1. (a) Locations of the 2689 cores used for density predictions extracted from SUMup colored with their

maximum depths(b)surface mass balance and (c) surface temperature from RACMO2.3

FirnLearn model development

In this section, we describe the procedures for preprocessing the input data, and building, training, vali-

dating and testing the machine learning models. In the supplement of this paper, we describe other models

employed in predicting density profiles, as well as their relative performance.

Neural network architecture

Artificial Neural Networks (ANNs) are nonlinear statistical models that recognize relationships and patterns

between the input and output variables of structured data (figure 2) in a manner that models the biological

neurons of the human brain(Hatie and others, 2009; O’Shea and Nash, 2015). The structure of an ANN

consists of (1) an architecture of node layers containing the input layer that receives the data, the output

layer that produces an estimate of the dependent variable, and hidden layers that take in and sum the

weighted inputs and produce an output for other hidden layers or the output layer, (2) an optimization

algorithm that determines and updates the weights of the connections between the neurons O’Shea and

Nash (2015), and (3) an activation function that determines the output of each neuron.

The goal of the training process is to continuously update the weights in every iteration to minimize a

loss function, which in most cases, as in our case, is the mean squared error. This cost function is expressed

as

Jpθq “
1
N

N
ÿ

i“1
pρNNpxi; θq ´ ρtruepxiqq

2 , θ̂ “ arg min
θ

Jpθq (1)

where θ̂ represents the optimal parameters of the neural network, θ denotes the sets of parameters (weights)
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of the neural network that the optimization algorithm is adjusting to minimize the cost function, Jpθq is

the cost function, N is the total number of data points in the dataset. xi is the input vector for the i-th

data point, where i is the index of the current data point that runs from 1 to N , and x is contains the

features accumulation rate, temperature and depth. Latitude and longitude are not included as they are

already captured in the accumulation rate and temperature. To test this, we included them in a version of

our model and found a marginal improvement that was less general. Moreover, when the results from this

model were geographically plotted, there were boundary artifacts which may point to scaling issues that

cause the NN to overfit to coordinate-specific patterns.

The variables that determine the structure and performance of a model are called hyperparameters and

they include the number of neurons per layer, number of layers, activation function, optimizer, learning

rate, batch size and number of epochs.

FirnLearn, shown in Figure 2 is a seven-layered ANN coded in python using using tensorflow keras and

sci-kit learn. The hyperparameters used to construct FirnLearn were tuned using cross validation to find

the best performing combination of hyperparameters, i.e., the hyperparameter combination with the lowest

root mean squared error (RMSE - see Evaluation section below). It consists of 1 input layer with 3 neurons

corresponding to the number of selected features, accumulation rate, temperature, and depth; 5 hidden

layers with 100, 50, 20, 20, 10 neurons, respectively; and 1 output layer corresponding to density. Leaky

ReLU was chosen as the activation function for the hidden layers. ReLU, short for Rectified Linear Unit,

is a piecewise function that outputs the input value if it is greater than 0. It is given by:

fpxq “

$

’

&

’

%

αx, if x ď 0

x, if x ą 0
(2)

Where α is a small constant (e.g. 0.01) ensuring the gradient is non-zero for negative values.

For the output layer, the sigmoid function was chosen as the activation function. It is represented as

fpxq “
1

1 ` e´x
. (3)

We used the Adam optimizer technique (Kingma and Ba, 2017) to optimize the weights for gradient descent.

We also tuned the learning rate, which determines how much the weights are changed in each iteration.

The best performing learning rate was 0.0001 among a starting range of 0.01,0.001 and 0.0001.

FirnLearn predicts firn density (ρ) using the function ρ “ fpA, T, zq where A represents the accumulation
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Fig. 2. FirnLearn’s Artificial Neural Network Architecture. FirnLearn’s goal is to minimize thef cost function (in

red box). Here, ρNN is the density predicted by the neural network, xi is each individual feature, θ is the weight of

the neural network, and ρT rue is the observed density value.

rate, T represents temperature, and z represents depth. For surface density predictions (z = 0), the model

simplifies to ρ “ fpA, T, 0q. These inputs capture the primary drivers of firn densification processes,

aligning with the benchmark Herron and Langway (1980) model

Training and testing

After the dataset was extracted, we split it into training, testing, and validation sets. The training set is

used to train the model, allowing it to learn patterns and relationships in the data. The validation set is

used during training to tune model hyperparameters and prevent overfitting by providing an independent

evaluation of the models performance. Finally, the testing set is used after training to assess the model’s per-

formance on unseen data and evaluate its generalization capabilities. Before training commenced, sklearn’s

StandardScaler was used to normalize the input variables and MinMaxScaler was used to normalize the

output variable from 0 to 1. We conducted a 72-8-20 split on the cores for the training-testing-validation

sets. The validation cores (536 cores) were selected at random, while the testing cores (225 cores) were

selected to ensure 9 of the cores were at least 50 m deep, and 1 was below 50 m in order to provide visual

representation of FirnLearn’s performance with depth, as shown in figure 3. We selected these sites to be
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representative of the full spread of regions in Antarctica, selecting one site from the Antarctic Peninsula,

East Antarctica, West Antarctica, the South Pole and near the Ross Sea. This also let us test a range of

surface density values from around 320 kg m´3 to greater than 550 kg m´3. Our tests were conducted on

one from the Larsen C Ice Shelf (66.58 ˝S,63.21 ˝W), Marie Byrd Land (78.12˝S, 120˝W), Ellsworth land

(78.1 ˝S, 95.65˝W) Taylor Dome (77.88˝S, 158.46˝E), near Vostok Station (82.08˝S, 101.97˝E), Dumbont

D’Urville Station (66.66˝S, 140˝E), two cores in the Queen Maud Land region [(73.1˝S, 39.8˝E); 75˝S, 0˝],

and two cores from the South Pole [(88.51˝S, 178.53˝E), (90˝S,0)]. Across all 225 test cores, the RMSE

was 30 kg m´3 and the explained variance was 98%.

Evaluation

We evaluate our model’s performance using several metrics. We use the coefficient of determination r2 to

quantify how well the model predicts the dependent variable (density). It is given by

r2 “ 1 ´

řN
i“1pρi ´ ρ̂iq

2
řN

i“1pρi ´ ρ̄q2
. (4)

where ρi are the actual density value at each data point, ρ̂i is the predicted density value for each data

point, and ρ̄ is the mean of the actual density values.

The root mean squared error (RMSE) is an average measure of the difference between the observed density

and the predicted density, given by

RMSE “

d

řN
i“1 pρi ´ ρ̂iq

2

N
, (5)

where N is the number of model-observation pairs, ρi is the true density value, ρ̂i is the predicted density

value, and ρ̄i is the mean of the observed density values. We evaluate the RMSE for an independent test

set with a split discussed in the ‘Training and testing’ section. To estimate the difference between modeled

and observed surface density and FAC, we use the relative bias metric. The relative bias is given as

relative bias “
ρ̂i ´ ρi

ρi
ˆ 100%. (6)

A positive relative bias indicates an overestimation by the model, while negative bias indicates an under-

estimation by the model.
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Herron and Langway, 1980

Herron and Langway (1980), denoted HL in this study, is a benchmark empirical firn densification model,

upon which many contemporary models are built due to its foundational assumptions. The assumptions

made in HL are: (1) the densification rate is a function of the porosity, and (2) the densification rate has

an Arrhenius dependence on the temperature. These assumptions are combined to form the equation

dρ

dt
“ Cpρice ´ ρq, (7)

where ρice is the density of ice (917 kg m´3), ρ is the density at a given depth, and C is a site-specific

constant. It is worth noting that while dρ
dt may seem time dependent, the time-dependent change in density

is captured in the depth variability of density.

C “ k exp
ˆ

´
Q

RT

˙

Aa, (8)

where k in equation 8 is a temperature-dependent Arrhenius-type rate constant, a is a constant dependent

on the densification mechanism, Q is the Arrhenius activation energy (kJ mol´1), R is the gas constant

(8.314 kJ mol´1 K´1), T is the mean annual temperature at the site (K), and A is the accumulation rate

in waters-equivalent. The site-specific constant, C, for ρ ď 550 kg m´3, is given by

C “ 11 exp
ˆ

´
10.16
RT

A

˙

, (9)

and for ρ ą 550 kg m´3, we have

C “ 575 exp
ˆ

´
21.4
RT

A0.5
˙

. (10)

HL requires a surface density boundary condition. In order to obtain predictions for depth-density profiles,

we used both surface density values from observations, as well as surface density predictions from Ligtenberg

and others (2011). However, for predicting depths at 550 kg m´3 and 830 kg m´3, we used surface density

predictions from FirnLearn, which allowed for a direct comparison.
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RESULTS AND DISCUSSION

Depth-density profiles

We use FirnLearn and HL to simulate firn profiles at 10 test sites and compare the results in figure 3,

tables 2, 3, and 4. This allows us to visually evaluate the difference in performance between HL and

FirnLearn. For HL, we evaluated the HL function using two different surface density values, and the two

curves are named HL80-observation and HL80-Ligtenberg. For the HL80-observation curves, we use the

surface density value directly from the observations, while for the HL80-Ligtenberg curves, we set the

surface density values to surface density predictions from Lightenberg and others (2011). The FirnLearn

curves, depicted as black lines, are generated by applying function evaluations of the FirnLearn model,

taking in specified accumulation rates, temperatures, and depths, i.e. ρ “ fpA, T, zq. All three models

do a good job of predicting the observations. FirnLearn outperforms both HL80 models across the full

depth range, in locations c,d,e, and j (figure 3 and table 2). HL80-observation outperforms FirnLearn

and HL80-Ligtenberg at locations a,b, f, and g, while FirnLearn performs comparably to HL80-observation

at locations h and i.

Of the three model predictions plotted for each core, although FirnLearn perfoms well, HL80-observation

leads in the first stage of densification due to accurate surface density inputs in cores b, c, d, f, and g (table

3), with FirnLearn having a comparable performance at these locations. FirnLearn outperforms in the

second stage across most locations (table 4 c, d, e, and j) and is comparable or better than HL80-

observation in overall performance, while HL80-Ligtenberg generally underperforms consistently due to a

greater mismatch in surface density predictions.

A more pronounced discrepancy in performance is evident in figure 3a for the Larsen C ice shelf. This

location was included to represent conditions on an ice shelf with meltwater conditions, as well as conditions

that may become more frequent with climate change. Here, owing to the accurate surface density input,

HL80-observation predicts the density trend with greater accuracy than HL80-Ligtenberg and FirnLearn.

On the other hand, at location g, the Dumbont D’Urville Station, FirnLearn underperforms in the third

stage of densification (>830 kg m´3). This underperformance is attributed to the limited number of

observations under conditions similar to those at this site in Antarctica. As discussed in the introduction

and evidenced in the SUMup density dataset, surface density measurements have only been collected for a

small percentage of the AIS. Figure 3 shows that without accurate surface density observations, FirnLearn
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Fig. 3. Depth-density profiles at the 6 test sites. Shown corresponding to each site are the observed density profile

in grey, the FirnLearn modeled density in red, and the HL modeled density in black for (a) a location on the Larsen

C Ice Shelf, (b) location on the Marie Byrd Land, (c) location near the South Pole,(d) the South Pole, (e) the Taylor

dome, and (f) a location near Vostok station

is a better density prediction model than Herron and Langway (1980).

It is worth highlighting that FirnLearn offers the added advantage of providing density information at

specific depths for a given site without requiring surface density or density data from previous depths. This

characteristic further enhances the speed and utility of FirnLearn in densification research. Additionally,

it could be useful in ice core drilling operations for optimized site selection and resource allocation.

Surface Density

We predict surface density across the AIS by putting accumulation rate and temperature from RACMO2.3

(Noël and others, 2018) at z “ 0 into the trained and validated FirnLearn model. These predictions are

based on the equation ρ “ fpA, T, 0q, where the function f is FirnLearn, A represents the accumulation
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Profiles Core No. FirnLearn (kg m´3) HL80-Observation (kg m´3) HL80-Ligtenberg (kg m´3)

a 659 155.1 59 195.1

b 24 20.4 7.9 20.3

c 25 20.7 21.3 41.6

d 2 25.5 45.1 35.6

e 1937 10.3 14.8 23.6

f 26 56.1 32.2 41.6

g 4435 35.5 15.3 22.2

h 10 22.7 22.6 41.5

i 2556 30.5 30.6 28

j 740 7.9 22.4 33.1

Table 2. RMSE values for the density profile predictions in Fig. 3

Profiles Core No. FirnLearn (kg m´3) HL80-Observation (kg m´3) HL80-Ligtenberg (kg m´3)

a 659 – – –

b 24 87.6 37 117.8

c 25 25.1 18.1 15.9

d 2 33.8 26.4 57.8

e 1937 16.7 17.4 59.1

f 26 66.4 62 73.5

g 4435 21.9 20.1 55.6

h 10 22.7 22.6 41.5

i 2556 43.6 54 37.4

j 740 – – –

Table 3. RMSE values for the first stage of densification (<= 550 kg m´3) density profile predictions in Fig.

3
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Profiles Core No. FirnLearn (kg m´3) HL80-Observation (kg m´3) HL80-Ligtenberg (kg m´3)

a 659 – – –

b 24 20.3 7.6 12.7

c 25 19.7 21.9 44.8

d 2 23 48.5 27.7

e 1937 9 14.3 11.2

f 26 54.4 24.9 34.5

g 4435 36.5 14.2 14.9

h 10 – – –

i 2556 27 22.2 25.5

j 740 7.9 19.9 34.1

Table 4. RMSE values for the second stage of densification (> 550 kg m´3) density profile predictions in Fig.

3

rate, and T represents the temperature. Across Antarctica, the surface density exhibits a notable spatial

variation (Figure 4a). In the interior of East Antarctic, we observe relatively lower values in the range

320–380 kg m´3, reflecting the region’s colder surface temperatures. In contrast, we find higher surface

density values, exceeding 450 kg m´3,along the coastal areas and on ice shelves. We attribute these higher

densities to the higher temperatures, higher accumulation rates, and the higher wind speeds prevalent

in these regions (McDowell and others, 2020). For the majority of the sites, the relative bias is within

˘25%, with only one site having a relative bias above 100% (Figure 4b). For this site in the Southeastern

Antarctica, FirnLearn overpredicts the surface density by 174%.

Semi-empirical models require a prescribed surface density boundary condition, making these surface

density predictions a key output of FirnLearn. The importance of the surface density boundary condition

was underscored by Thompson-Munson and others (2023). They employed two models, the physics-based

SNOWPACK Bartelt and Lehning (2002) with a surface density that varies based on atmospheric con-

ditions, and the Community Firn Model configured with a semi- empirical densification equation (CFM-

GSFC; Stevens and others (2020)) run with a constant surface density of 350 kg m´3. Their analysis of

firn properties across the GrIS revealed that SNOWPACK simulated more variability between firn layers

compared to CFM-GSFC, although some of this variability could be associated with SNOWPACK’s mi-

crostructure dependence. Importantly, our predictions are similar to prior research findings (Kaspers and
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surface density.jpg surface density.bb

Fig. 4. (a) The FirnLearn predicted surface density field for Antarctica and (b) Relative bias between the predicted

surface density and the observed surface density

others, 2004; van den Broeke, 2008; Ligtenberg and others, 2011) that have employed parameterizations

based on combinations of surface temperature, accumulation rate, wind speed to derive surface density

predictions.

Depths at 550 kg m´3 and 830 kg m´3

Figure 5a depicts the depth at 550 kg m´3 with a depth range from 0-30 m, with higher values (18-30

m) concentrated in East Antarctica and lower values (0-15 m) prevalent in West Antarctica and along

the coast. This spatial distribution is similar to the pattern of surface density, reflecting an expected

relationship between the two variables.Figure 5c shows the depth at 830 kg m´3 which ranges from 20 -

122 m, with higher values (80 - 122 m) predominantly found in East Antarctica. The spatial distribution of

z830 is different than z550 in that for z830, there are higher values in regions of West Antarctica, the Antarctic

Peninsula, and certain coastal areas. This is primarily attributed to the higher accumulation rates, which

result in the rapid burial of fresh snow. Consequently, densification rates reduce with depth. These trends

align with the trends observed in earlier models such as van den Broeke (2008) and Lightenberg and others

(2011). In the vicinity of the major ice shelves, such as the Ross, Filchner-Ronne, Larsen and Amery

Ice Shelves , z550 ranges from 5 to 13 m in FirnLearn, a close range to both van den Broeke (2008) and
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Lightenberg and others (2011), while z830 ranges from 60 to 90 m in FirnLearn, 50 to 70m in van den

Broeke (2008) and Lightenberg and others (2011). The discrepancy in z830 values may stem from limited

data availability at these depths. Figure 5b compares the observed and modelled z550 for 220 locations

with densities beyond 550 kg m´3, while 5d compares the observed and modelled z830 for 88 locations with

densities beyond 830 kg m´3. For z550, there is a clustering of points along the line of perfect agreement,

particularly in the mid-range observed depth values (5-15 m), indicating strong predictive accuracy in this

range. FirnLearn exhibits slightly tighter clustering compared to HL80, as reflected in its lower RMSE

value (4.1 m vs 4.3 m for HL80). However, at depths below 5 m, there are more points lying above the

upper confidence interval for both FirnLearn and HL, indicating that both models typically overestimate

the depth values along the coast where the conditions are warmer and wetter, and accumulation rates are

higher. This is possibly due to an underestimation of surface density, causing the models to densify slower

than in observations. At greater depths, FirnLearn performs better than HL with more HL values lying

below the line of perfect agreement. For z830, there is a similar trend with more points above the upper

confidence interval for lower to mid-range observed depth values (0-60 m), and a cluster around the line

of perfect agreement for the remaining points. FirnLearn typically overpredicts z830 as compared to HL,

which as mentioned earlier may be a result of the sparsity of data at deeper depths.

Firn Air Content

We explore predictions of FAC, the amount of air-filled pore space within the firn layer, using FirnLearn and

HL, and compared them to the FAC from observations. FAC is an important parameter as it is essential

for deriving the mass balance estimates of an ice sheet (Helsen and others, 2008; Horlings and others, 2020)

improves our understanding and estimates of gas exchange dynamics and climate records (Trudinger and

others, 2002; Buizert and others, 2013). It is also essential for estimating meltwater content of ice sheets,

hence ice sheet contribution to sea level rise (Medley and others, 2022). To facilitate comparison between

FirnLearn and HL, we employed the surface density predictions generated by FirnLearn as the surface

density conditions for HL. The FAC is calculated by integrating porosity over the depth of the firn column

and is represented as:

FAC “

ż zu

zl

ρice ´ ρpzq

ρice
dz (11)

where ρice is the density of ice (917 kg m´3) and ρpzq is the firn density at a given depth, and the depth

interval is set by an upper bound depth zu and a lower bound depth zl “ 0, representing the surface.
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and 830 depth.jpg and 830 depth.bb

Fig. 5. (a) The predicted depth at 550 kg m´3 in meters (b) Comparison of modelled to observed depth at 550

kg m´3 (c) The predicted depth at 830 kg m´3 in meters (d) Comparison of modelled to observed depth at 830 kg

m´3. Here the FirnLearn computed surface density is used for the Herron and Langway (1980) model.
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As depicted in figure 6a and table 1, the majority of density cores used in this study are shallow (below

10 m), indicating correspondingly low observed FAC values in figure 6b. Hence, for a direct comparison

between the modeled (FirnLearn and HL), and observed FAC, we evaluated the FAC of each core up to its

respective maximum depth from SUMup. This results in the difference in FirnLearn’s and HL’s evaluation

of FAC being a reflection of their accuracy in predicting the densities in the first stage of densification. Very

little difference is visually observed between the observed FAC and FirnLearn’s and HL’s predicted FAC

(Figures 6 b, c and d). Figures 6 e and f depict the relative bias between FirnLearn’s FAC and the observed

FAC, and between HL’s FAC and the observed FAC respectively. Given that we used FirnLearn’s surface

density as the boundary condition for HL’s FAC calculations, FirnLearn’s FAC bias values are similar to

HL’s FAC bias values, with a bulk relative bias of -5.5% for HL and -5.7% for FirnLearn. The root mean

squared error however, shows a better performance in FirnLearn than in HL. In west Antarctica where we

have deeper cores, more variation is observed. Specifically, FirnLearn slightly overestimates FAC in these

deeper cores, while HL slightly underestimates FAC. To obtain a broader representation of the full firn

column, we calculated FAC over a wider accumulation rate (0 to 3 m.w.e.yr ´1) and temperature (215 to

273 K [-58 to 0˝C]) parameter space from the surface to 100 m depth. It is worth noting that some of these

conditions are extreme in Antarctica. The heat maps shown in figure 7 depict the firn air content from

FirnLearn, Herron and Langway (1980), and the difference between the two. As shown in these figures,

FirnLearn and HL produce similar FAC patterns, with FAC being highest at low temperatures, and lowest

at low accumulation rates and high temperatures. Relating this to ice sheets, FAC is predicted by both

models to be approximately 30 - 50 m on the interior, where accumulation rates and temperatures are low

(<0.5 m.w.e yr´1 and <225 K [-48˝C] respectively), and in coastal regions where accumulation rates could

be as high as 2 m.w.e yr´1, and temperatures could be higher than 270 K [-23˝C]. In West Antarctica,

with accumulation rates between 0.5 and 2 m.w.e yr´1, and temperatures higher than 250K [-23˝C, FAC

is predicted by FirnLearn and HL to be greater than 40 m.

Figure 7c shows that on average, FirnLearn’s FAC is in agreement with HL’s FAC, with minor dis-

agreements where FirnLearn underpredicts when compared to HL. The regions with the highest positive

differences (FirnLearn " Herron and Langway (1980)) are at lower accumulation rates, as indicated by the

red hues. Conversely, the regions with the highest negative differences (FirnLearn ! Herron and Langway

(1980)) are at mid to higher accumulation rates, as indicated by the blue hues, a region which coincides

with the parameter space of the training data. It is worth noting that conditions where accumulation rates
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Fig. 6. Firn air content across Antarctica, comparing models to observations and assessing bias: (a) Spatial

distribution of 2689 SUMup cores, with shading denoting core depth, (b) Observed FAC from calculated from the

densities of the SUMup cores(c) FAC in m, calculated with FirnLearn (d) FAC in m, calculated with Herron and

Langway (1980) (e) Relative bias between the FAC calculated with FirnLearn and the observed FAC and (d) Relative

bias between the FAC calculated using Herron and Langway (1980) and the observed FAC.
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Fig. 7. (a) FAC in m, calculated with FirnLearn, (b) firn air content in meters, calculated with Herron and

Langway (1980) (c) Difference in FAC in m, between the FAC calculated using FirnLearn and the FAC calculated

using Herron and Langway (1980). The difference is presented as FirnLearn minus HL80.

are very low (< 1 m.w.e. yr ´1) and temperatures are very high (> 260K [-13˝C]) or where accumulation

rates are very high (> 1 m.w.e. yr ´1) and temperatures are very low (< 230K [-43˝C]) rarely exist in

Antarctica, at least not within its current climate regime. Figure 7 is shown in order to understand FAC

values within a wider accumulation rate and temperature parameter space.

LIMITATIONS TO FIRNLEARN

Despite its promising performance, FirnLearn has limitations due to data quality and quantity. As shown in

figure 1, the spatial distribution of density observations is notably limited, particularly in East Antarctica.

Additionally, as shown in figure 6a, the majority of density observations in the dataset are concentrated at

shallow depths. Consequently, the discrepancies between FirnLearn’s density predictions and observations

increase as depth increases, as evident by the higher RMSE in the predictions of depth at 830 kg m´3 com-

pared to the predictions of depth at 550 kg m´3 (Fig. 5). Also, as seen in tables 2,3, and 4, FirnLearn still

underperforms HL80 in certain conditions. For these conditions, for instance, regions with sparse-depth ob-

servations (>830 kg m´3), using a weighted combination of HL80 and FirnLearn predictions could provide

better results. This approach would leverage the strengths of both methods, compensating for FirnLearn’s

inaccuracies at greater depths with HL80’s depth performance, while benefiting from FirnLearn’s surface

density predictions and better performance in stage 2 (550 <= ρ <830 kg m´3). With the growth of the

SUMup dataset as more firn data is collected, FirnLearn’s density predictions are bound to improve, as it

is trained on new data.

FirnLearn is also limited to a steady-state assumption, therefore unable to predict temporal firn density
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evolution. Density observations from SUMup are collected over several years, and at different periods

of the year, leading to knowledge gaps regarding seasonal variability in firn properties. Without explicit

time-dependent inputs, FirnLearn struggles to generalize to evolving firn conditions. However, with addi-

tional training on newer datasets that include temporal markers, its ability to capture temporal firn density

evolution is expected to improve.

It is also worth noting that while FirnLearn’s surface density predictions are in line with surface density

predictions from (Kaspers and others, 2004; van den Broeke, 2008; Lightenberg and others, 2011), its pre-

dictions may still be less reliable in parts of East Antarctica due to the limited number of data points in

that region.

Another challenge lies in the lack of interpretability of deep learning models like FirnLearn. These

models are effectively ’black boxes’, such that it is difficult to understand the underlying processes governing

model predictions. However, given the black-box nature, ANNs serve as effective tools in contexts where

predictive accuracy outweighs model interpretability, which is likely the case for depth-density profiles in

Antarctica at this time. The improved accuracy offered by ANNs holds the potential to produce improved

parameters for understanding firn densification physics.

CONCLUSIONS

In this study, we introduced FirnLearn, a new steady-state densification model for the Antarctic firn

layer based on deep learning of data from observations and output from the regional atmospheric climate

model. Comparison with observations highlights FirnLearn’s improved predictability of firn density at

intermediate depths, where discrepancies between observations and traditional models, such as Herron and

Langway (1980) are more pronounced. In addition, we have used FirnLearn to accurately derive surface

density, depth at 550 kg m´3 and 830 kg m´3 (pore close-off), and firn air content across Antarctica. This

study demonstrates the potential of deep learning techniques in improving Antarctic firn density estimates,

and strengthens the promising foundation for the development of a generally applicable firn model. In the

future, we plan to expand this model by applying it to the Greenland Ice Sheet and coupling it to physics

to develop a Physics Informed Neural Network (PINN) which can be applied to both dry and wet firn

densification.
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DATA AVAILABILITY

FirnLearn’s code is available at https://github.com/ayobamiogunmolasuyi/FirnLearn. The repository

contains all the scripts used to train the models and produce the plots and results. The SUMup dataset

is available at https://github.com/MeganTM/SUMMEDup while the racmo dataset is here https://doi.

pangaea.de/10.1594/PANGAEA.896940

SUPPLEMENTAL MATERIAL

The supplement to this article is attached.
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