
J. Plasma Phys. (2022), vol. 88, 905880122 © The Author(s), 2022.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution
and reproduction, provided the original article is properly cited.
doi:10.1017/S002237782100129X

On heat conduction in an irregular magnetic
field. Part 1

Per Helander 1,2,†, Stuart R. Hudson3 and Elizabeth J. Paul 4

1Max Planck Institute for Plasma Physics, Greifswald, Germany
2Max-Planck/Princeton Research Center for Plasma Physics

3Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA
4Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

(Received 13 August 2021; revised 6 December 2021; accepted 7 December 2021)

Anisotropic heat conduction in a plasma embedded in a magnetic field with irregular,
possibly chaotic, field lines is discussed. If the collisional mean free path exceeds the
electron gyroradius, the heat conductivity is much larger along the field lines than across
them, and this enhances the transport across a domain where good flux surfaces do not
exist. Recognising that anisotropic heat conduction may be cast in a variational form,
and by constructing increasingly sophisticated trial functions that are based on invariant
and almost-invariant structures under the magnetic field-line flow, bounds are derived
on this enhancement and on the temperature variation along the magnetic field. In this
way, remarkably accurate approximations for the temperature can be rapidly constructed
without solving the diffusion equation, even in the small perpendicular-diffusion limit
when the solution for the temperature is dominated by the fractal structure the magnetic
field lines.

Key word: plasma confinement

1. Introduction

In plasmas where the collisional mean free path, λ, is much longer than the electron
gyroradius, ρ, heat is more easily conducted along the magnetic field lines than across
them. The ratio of the classical heat conductivities perpendicular and parallel to the
magnetic field is of the order of

ε = κ⊥
κ‖

∼
(ρ
λ

)2
� 1, (1.1)

and is extremely small in plasmas of interest in fusion research and astrophysics. For this
reason, the confining quality of a magnetic field is very sensitive to the question of whether
the field lines trace out magnetic surfaces. If they do not, e.g. if the magnetic field lines are
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FIGURE 1. A Poincaré puncture plot of a partially chaotic magnetic field and, in the left panel,
isotherms of a solution of the anisotropic heat conduction equation (1.2).

chaotic, the dominant heat conduction along the field can significantly enhance the energy
losses from the plasma.

There is a large body of literature discussing the extent of this enhancement and
the underlying physical mechanisms in chaotic magnetic fields, see, e.g., Rechester &
Rosenbluth (1978), Kadomtsev & Pogutse (1979), Krommes, Oberman & Kleva (1983)
and Myra et al. (1993). In these works, scalings for the effective cross-field diffusion
coefficient are derived in terms of local diffusion coefficients and the statistical properties
of the magnetic field lines, such as Kolmogorov or correlation lengths.

Such information is meaningful insofar as these properties are approximately constant
over the region under consideration. However, chaotic magnetic fields often contain an
astonishing amount of structure, such as remnant flux surfaces, magnetic islands and
partial transport barriers, which impart a similar structure, or variability, on the transport.
For instance, the temperature is almost constant across a magnetic island if κ‖ � κ⊥ and
the island is sufficiently wide (Fitzpatrick 1995), and the temperature gradient is relatively
large in the vicinity of an intact flux surface or partial barrier (Hudson & Breslau 2008).
In other words, if the magnetic field is not completely chaotic, then the transport exhibits
strong spatial variation that is not accounted for in the traditional theory of transport in
chaotic fields.

Figure 1 illustrates this point, showing a Poincaré plot of field lines in an incompletely
chaotic magnetic field, upon which isotherms from a heat conduction equation [see (1.2)
with ε = 10−8] are superimposed in the left half of the figure. The distance between the
isotherms is highly variable, and it is clear that the net transport cannot be described
by anything like a constant ‘effective’ heat conductivity, such as that of Rechester and
Rosenbluth. The latter may be appropriate in the limit of a strongly chaotic field, which is
however rarely realised in practice.

Our aim is to understand the relation between magnetic-field geometry and transport.
Following Hudson & Breslau (2008), we consider the simplest problem of anistotropic
heat conduction in a magnetic field,

∇ · q = 0, (1.2)
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where

q = −(κ‖∇‖T + κ⊥∇⊥T) (1.3)

denotes the heat flux. Here ∇‖T = bb · ∇T and ∇⊥T = ∇T − ∇‖T , with b = B/B
denoting the unit vector along the magnetic field, B. This elliptic partial differential
equation requires boundary conditions, which we shall take to be

T(r) = T0, r ∈ S0, (1.4)

T(r) = T∞, r ∈ S∞, (1.5)

where S0 and S∞ are surfaces bounding the domain Ω in which the heat conduction
equation is solved. These surfaces are, thus, isothermals, and our primary problem consists
of determining the other isothermals and deriving bounds on the net heat flux across the
domain, defined by

Q =
∫

S∞
q · dS = −

∫
S0

q · dS, (1.6)

where dS = n dS is the surface element multiplied by the unit normal vector n, pointing
outward.

We shall assume that one of the boundary surfaces, S0 say, is a magnetic surface, so that
b · n = 0 everywhere on S0. This is, for instance, the case of actual interest in a tokamak
or stellarator with a so-called ergodic divertor, in which case S0 could represent one of the
intact magnetic surfaces and S∞ a surface further out in the plasma edge.

In classical transport theory (Braginskii 1965; Helander & Sigmar 2002), the
conductivities κ‖ and κ⊥ depend on the temperature and the magnetic-field strength.
However, these dependencies do not qualitatively affect the nature of the problem,
particularly not in the limit in which the ratio ε = κ⊥/κ‖ is very small, which is our
main concern. In the next few sections, we therefore neglect this complication and instead
take ε to be constant. We also neglect components of the classical heat flux other than
those included in (1.3). In principle, one should also include the diamagnetic heat flux,
which can be important. Its divergence is, however, relatively small if the magnetic field
strength is almost constant. In the electron channel, there is also frictional heating as well
as a component of the heat flux that is proportional to the relative velocity between the
electron and ion fluids, but these terms in the energy equation are unimportant if the
plasma current is sufficiently small. In low-collisionality plasmas, energy transport caused
by wave–particle resonances can be more important than that due to chaotic field lines, but
such transport is also ignored here.

2. Variational principle

The problem (1.2) is equivalent to finding the global minimum of the functional

D[Ttrial] = 1
2

∫
Ω

(κ‖|∇‖Ttrial|2 + κ⊥|∇⊥Ttrial|2) dV, (2.1)

over all differentiable trial functions Ttrial(r) satisfying the boundary conditions. These
trial functions need not be particularly smooth and ∇Ttrial is, for instance, allowed to
be discontinuous, but should be square integrable. This quadratic form measures the
total dissipation, which is minimised by the temperature distribution, T(r), satisfying the
differential equation (1.2). To see this, it is helpful to write the heat flux in matrix form,
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qi = −κij∂jT, (2.2)

and note that the conductivity matrix is symmetric, κij = κji, so that the first-order variation
of

D[T] = 1
2

∫
Ω

κij(∂iT)(∂jT) dV, (2.3)

becomes

δD[T] =
∫
Ω

κij(∂iT)(∂jδT) dV = −
∫
Ω

∂j(κij∂iT)δT dV. (2.4)

if δT(r) vanishes on the boundary. It is now clear that the differential equation (1.2) is
equivalent to the variational principle δD[T] = 0, where the temperature is to be held
constant on the boundaries. The functional D has no maximum, and it follows that any
minimum is attained by a solution to (1.2). That the stationary point is indeed a minimum
follows from the fact that the second variation δ2D[δT, δT] is positive for all δT 	= 0
independently of T .

This minimum is related to the net heat flux by

Q = 2D[T]
T0 − T∞

, (2.5)

as follows from

0 =
∫
Ω

T∇ · q dV = −
∫
Ω

q · ∇T dV +
∫

S0∪S∞
Tq · dS = 2D[T] − Q(T0 − T∞). (2.6)

3. Net heat flux

The variational property of D[T] and the relation (2.5) are useful for deriving upper and
lower bounds on the net transport. A convenient dimensionless measure of the latter is

Q̂ = Q
κ⊥(T0 − T∞)A0/L

, (3.1)

Here L denotes an average distance between S0 and S∞, which we define as

L = 2V
A0 + A∞

, (3.2)

where A0 and A∞ denote the areas of the boundaries and V the volume of the region
between them.

3.1. Lower bound
A lower bound is easily obtained by noting that the solution T to (1.2) satisfies

2D[T] ≥ κ⊥

∫
Ω

|∇T|2 dV, (3.3)

where the integral on the right-hand side necessarily exceeds its minimum taken over all
functions satisfying the boundary conditions,∫

Ω

|∇T|2 dV ≥ inf
T(r)

∫
Ω

|∇T|2 dV. (3.4)

Equality is realised by the (unique) harmonic function, ∇2T = 0, that equals T0 on S0 and
T∞ on S∞. If we define a dimensionless constant K characterising the geometry of the
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domain by

inf
T(r)

∫
Ω

|∇T|2 dV = (T0 − T∞)2A0

L
· K, (3.5)

then it can be concluded from (2.5), (3.1) and (3.3) that the net transport is bounded from
below by

Q̂ ≥ K. (3.6)

This result is not surprising: it merely says that the net transport will at least be that
expected from isotropic heat conduction with the conductivity κ⊥.

3.2. Upper bound
A more interesting question is to what extent the transport is enhanced by parallel heat
conduction. An upper bound on this enhancement can be obtained from the fact that the
total dissipation, (2.1), associated with the solution of (1.2) is smaller than, or equal to,
that from any trial function Ttrial,

D[T] ≤ D[Ttrial]. (3.7)

Of course, in order to make this upper bound as ‘tight’ as possible, the trial function
should be chosen optimally. In the case of interest here, where the boundary surface S0 is
tangential to the magnetic field, the normal component of the field is small in the vicinity
of this boundary. Indeed, if the magnetic field is continuously differentiable, then for some
length �0 > 0 the normal component of the magnetic field satisfies

|b · n| < z
�0
, (3.8)

where z denotes the distance from the boundary S0. For the argument that follows, it is
sufficient that this inequality be satisfied in a small neighbourhood of S0.

A useful choice of trial function is (see figure 2)

Ttrial(z) =
{

T0 − (T0 − T∞)z
δ

, 0 ≤ z < δ,

T∞, z > δ
(3.9)

so that

|∇‖Ttrial| < (T0 − T∞)z
�0δ

, (3.10)

|∇⊥Ttrial| ≤ T0 − T∞
δ

, (3.11)

and thus

D[Ttrial] ≤ 1
2

∫
z<δ

(
κ‖|∇‖T|2 + κ⊥|∇⊥T|2) dV (3.12)

is bounded by

D[Ttrial] <
κ‖A0(T0 − T∞)2

2

(
δ

3�2
0

+ ε

δ

)
, (3.13)

where the volume of the boundary layer is A0δ plus a small term of order δ2, which we
ignore.
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FIGURE 2. The trial function (3.9).

The optimal choice of δ = �0(3ε)1/2 now gives

D[Ttrial] <
κ‖A0(T0 − T∞)2

�0

√
ε

3
. (3.14)

Recalling (2.5), (3.1) and (3.6), we thus conclude

K ≤ Q̂ <
L

�0

√
3ε
. (3.15)

Within a factor of order unity that depends the geometry of the domain, the lower bound is
realised if the magnetic field is entirely regular, and we hypothesise that the scaling with ε
of the upper bound applies in a strongly chaotic field, i.e. we propose that the upper bound
cannot be improved except by lowering the numerical coefficient.

4. Transport barriers

In the previous section, nothing was assumed about the magnetic field except that it
should be tangential to one of the boundaries. The bounds (3.15) hold irrespective of
whether the magnetic field in the interior of the domain Ω traces out nested flux surfaces,
forms magnetic islands or has chaotic field lines.

4.1. One flux surface
If some good flux surfaces withinΩ do exist, the upper bound can, however, be improved.
To see how this can be done, suppose that one such surface, S1, lies somewhere between S0
and S∞. Let A1 be the area of this surface, and introduce a coordinate z such that z = z0 = 0
on S0, z = z1 on S1, and |∇z| = 1 in the vicinity of both S0 and S1. The magnetic field then
satisfies b · ∇z = 0 on S0 and S1, and there are numbers �0 and �1 such that

|b · ∇z| <
∣∣∣∣z − zi

�i

∣∣∣∣ in the vicinity of Si (4.1)

for i ∈ {0, 1}. For the following trial function (figure 3)

Ttrial(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T0 − (T0 − T1)
z
δ0
, 0 < z < δ0,

T1, δ0 < z < z1 − δ1,

T1 − (T1 − T∞)
z − z1 + δ1

2δ1
, −δ1 < z − z1 < δ1,

T∞, δ1 < z − z1,

(4.2)
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FIGURE 3. The trial function (4.2).

the gradients satisfy the following inequalities

|∇‖Ttrial| <
∣∣∣∣ (T0 − T1)z

δ0�0

∣∣∣∣ , (4.3)

|∇⊥Ttrial| <
∣∣∣∣T0 − T1

δ0

∣∣∣∣ , (4.4)

for 0 ≤ z ≤ δ0, and analogous inequalities for −δ1 ≤ z − z1 ≤ δ1,

|∇‖Ttrial| <
∣∣∣∣(T1 − T∞)z

2δ1�1

∣∣∣∣ , (4.5)

|∇⊥Ttrial| <
∣∣∣∣T1 − T∞

2δ1

∣∣∣∣ . (4.6)

Our variational form (2.1) is thus bounded from above by

D[Ttrial] ≤ κ‖A0(T0 − T1)
2

2

(
δ0

3�2
0

+ ε

δ0

)
+ κ‖A1(T1 − T∞)2

4

(
δ1

3�2
1

+ ε

δ1

)
, (4.7)

where A1 denotes the area of S1. This expression is minimised by choosing δj = �j(3ε)1/2
and

T1 − T∞
T0 − T∞

= 1
�0A1

2�1A0
+ 1

. (4.8)

The result then becomes

D[Ttrial] <
κ‖A0(T0 − T∞)2

�0

(
1 + 2�1A0

�0A1

)√ε
3
, (4.9)

which is smaller than (3.14), in fact three times smaller if �0 = �1 and A0 = A1.
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4.2. Several flux surfaces
It is straightforward to generalise this result to the case of n > 1 intact flux surfaces,
situated at z = zi, having areas Ai, and in whose vicinity |∇z| = 1 and

|b · ∇z| <
∣∣∣∣z − zi

�i

∣∣∣∣ . (4.10)

for 1 ≤ i ≤ n. An appropriate trial function is

Ttrial(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T0 − (T0 − T1)
z
δ0
, 0 < z < δ0

Ti, zi−1 + δi−1 < z < zi − δi

Ti − (Ti − Ti+1)
z − zi + δi

2δi
, −δi < z − zi < δi

T∞, δn < z − zn,

(4.11)

where we set Tn+1 = T∞ and δi = �i

√
3ε. Note the qualitative similarity between this trial

function and the numerical solution of the heat conduction equation obtained by Hudson
& Breslau (2008). With this choice of Ttrial, we obtain

D[Ttrial] < κ‖

√
ε

3

[
A0(T0 − T1)

2

�0
+

n∑
i=1

Ai(Ti − Ti+1)
2

2�i

]
, (4.12)

which is minimised by requiring

∂D
∂Ti

= 0, i = 1, . . . , n. (4.13)

This equation gives

2A0

�0
(T0 − T1) = Ai

�i
(Ti − Ti+1) = An

�n
(Tn − T∞), (4.14)

for 1 ≤ i ≤ n − 1, which implies

T0 − T∞ = (Tn − T∞)
An

�n

(
�0

2A0
+

n∑
i=1

�i

Ai

)
, (4.15)

and, finally, leads to

D[Ttrial] < κ‖

√
ε

3
(T0 − T∞)2

2

/(
�0

2A0
+

n∑
i=1

�i

Ai

)
. (4.16)

In particular, if all �i and all Ai are the same, then this result is equal to our earlier result
(3.14) divided by 2n + 1. Thus, if there are many intact surfaces within the domain Ω ,
then the upper bound on the heat flux is much smaller than the basic estimate (3.15). If
one of the surfaces has a large ratio �i/Ai, then this surface effectively acts as a bottleneck
and the overall transport becomes particularly small.
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4.3. Imperfect flux surfaces
Fully intact magnetic flux surfaces thus impede the transport considerably, but this is
true also for a wider class of surfaces known as partial barriers in the literature on
dynamical systems (Meiss 1992). Magnetic field lines pass through partial barriers, unlike
flux surfaces, but they do so slowly in some sense.1 If Si is a surface with normal vector n
and area Ai, we shall declare it to be an imperfect flux surface if the number Ri defined by

Ri = 1
Ai

∫
Si

(b · n)2dS (4.17)

is much smaller than unity. Note the similarity to the quadratic-flux-minimising (QFM)
surfaces of Dewar, Hudson & Price (1994) and Hudson & Dewar (2009).2 Moreover, we
assume that this surface is optimally positioned in the sense that the quadratic flux through
neighbouring surfaces is larger than RiAi and satisfies∫

z=constant
(b · n)2 dS ≤ Ai

[
Ri +

(
z − zi

λi

)2
]

(4.18)

for some number λi if |z − zi| < δi. If the trial function is chosen in the same way (4.11) as
before, then

1
2

∫
|z−zi|<δi

(∇‖T|2 + ε|∇⊥T|2) dV ≤ Ai(Ti − Ti+1)
2

4δi

(
Ri + ε + δ2

i

3λ2
i

)
, (4.19)

where the right-hand side is minimised by choosing(
δi

λi

)2

= 3(Ri + ε) (4.20)

and then becomes equal to
Ai(Ti − Ti+1)

2

2λi

√
Ri + ε

3
. (4.21)

In other words, if we write

�i = λi√
1 + Ri

ε

, (4.22)

then we have

1
2

∫
|z−zi|<δi

(|∇‖T|2 + ε|∇⊥T|2) dV =
√
ε

3
Ai(Ti − Ti+1)

2

2�i
, (4.23)

a result strongly reminiscent of (4.12). Hence, we conclude that if the domain Ω is
permeated by a number of surfaces Si, some of which are ordinary flux surfaces and
the others imperfect flux surfaces, then the dissipation is bounded from above by (4.12)
where the numbers li are defined by (4.10) for the ordinary flux surfaces and by (4.22) for
the imperfect ones. As is clear from this equation, an imperfect flux surface impedes the
transport roughly much as a full flux surface does if the quadratic flux through it is small
enough, Ri ≤ ε.

1For the partial barriers known as cantori, the magnetic-field-line flux can be quantified (Meiss 1992).
2These surfaces are intimately related (Hudson & Dewar 2009; Dewar, Hudson & Gibson 2010) to the ghost surfaces

of Hudson & Breslau (2008).
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4.4. Bounds on the net transport
All the results in this section can be summarised as follows. When ordinary and imperfect
flux surfaces are present, then the normalised heat flux (3.1) is subject to the following
bounds:

K ≤ Q̂ <
L√
3ε

/(
�0 + 2A0

n∑
i=1

�i

Ai

)
, (4.24)

where the numbers �i are defined by (4.10) and (4.22).

5. A continuous set of surfaces

We may go one step further and construct the optimal upper bound on the net heat
flux given a continuous set of isotherms. Suppose we are able to guess the approximate
geometry of all the isotherms by inspecting the geometry of the magnetic field, i.e. we
know that the temperature is approximately constant on surfaces of constant z(r) ∈ [0, 1],
some known function of space, but we do not know the function T(z). It is then possible
to construct the ‘optimal’ such function in the sense of the variational principle, by
minimising D[T] subject to the constraint that T depend only on z. If we introduce two
other coordinates (x, y) and the Jacobian

√
g = 1/(∇x × ∇y) · ∇z > 0, then

D[T] = κ‖
2

∫ (|∇‖T|2 + ε|∇⊥T|2) dV = 1
2

∫ 1

0
k(z)

(
dT
dz

)2

dz, (5.1)

where

k(z) = κ‖

∫
z=const.

[
(b · n)2 + ε|∇z|2]√g dx dy. (5.2)

The Euler–Lagrange equation for the function T(z) that minimises (5.1) is

d
dz

(
k

dT
dz

)
= 0, (5.3)

and implies (Hudson 2009)
dT
dz

= C
k(z)

, (5.4)

where C is an integration constant, which is determined by the boundary conditions,

C
∫ 1

0

dz
k(z)

= T∞ − T0. (5.5)

The optimal trial function is, thus, given by

T(z) = T0 + (T∞ − T0)

∫ z

0

dz′

k(z′)

/∫ 1

0

dz
k(z)

. (5.6)

Substituting this result in (5.1) gives

D[T] = (T0 − T∞)2

2

/∫ 1

0

dz
k(z)

, (5.7)
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and it follows from (2.5) that

Q = (T0 − T∞)
/∫ 1

0

dz
k(z)

. (5.8)

From our variational principle, we thus conclude that the total dissipation is given by this
formula if the temperature is constant on surfaces of constant z and is otherwise bounded
by it from above. Our dimensionless measure of the total heat flux (3.1) thus satisfies

Q̂ ≤ κ‖L

κ⊥A
∫ 1

0 dz
/∫

z=const.

[
(b · n)2 + ε|∇z|2]√g dx dy

. (5.9)

6. Parallel temperature variation

The result (3.14) can be used to derive an upper limit on the temperature variation along
the magnetic field. The bound is most effective in subdomains Φ of Ω aligned with the
magnetic field, usually known as ‘flux tubes’ in the plasma physics literature. A flux tube
is a region whose boundary can be written as ∂Φ = Fa ∪ S ∪ Fb, where the magnetic field
is tangential to the ‘side surface’ S and perpendicular to the ‘end faces’ Fa and Fb. (It is
assumed that the magnetic field does not vanish anywhere.) Because of the divergence-free
nature of magnetic fields, the latter are connected by magnetic field lines, i.e. from each
point on Fa there is a magnetic field line to a point on Fb, and vice versa.

Suppose that the temperature difference between the coldest point on Fa and the hottest
point on Fb exceeds 
T > 0. The total dissipation in the flux tube Φ is certainly less than
that in the entire domain Ω ,

DΦ[T(r)] ≤ D[T(r)], (6.1)

and can be bounded from below by neglecting perpendicular heat conduction

DΦ[T(r)] ≥ 1
2

∫
Φ

κ‖|∇‖T|2 dV. (6.2)

If l denotes the arc length along the field and dS the area element perpendicular to it,

DΦ[T(r)] ≥ κ‖
2

∫
dS
∫ (

∂T
∂l

)2

dl, (6.3)

where the last integral is bounded from below by∫ (
∂T
∂l

)2

dl ≥ (
T)2

L‖
, (6.4)

where L‖ is the length of the of the longest field line within the flux tube. If we denote the
area of its smallest cross section by a, we thus have

DΦ[T(r)] ≥ κ‖a(
T)2

2L‖
, (6.5)

which we combine with (3.14) and (6.1) to establish∣∣∣∣ 
T
T0 − T∞

∣∣∣∣ <
(

L‖A
�0a

)1/2 (ε
3

)1/4
. (6.6)

It follows from this inequality that the temperature variation along a flux tube approaches
zero as ε → 0.
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7. Numerical results

We consider a magnetic field given by the vector potential

A = ρ∇θ − χ(ρ, θ, ζ )∇ζ, (7.1)

where (ρ, θ, ζ ) are ‘toroidal’ coordinates, with ρ being the radial or action coordinate,
θ being the poloidal angle or position coordinate and ζ being the toroidal angle or time
coordinate; and where the field-line Hamiltonian is given by

χ(ρ, θ, ζ ) = χ0(ρ)+
∑

χm,n(ρ) cos(mθ − nζ ), (7.2)

where χ0(ρ) and χm,n(ρ) are commonly referred to as the integrable Hamiltonian and the
perturbation.

Any toroidal magnetic field that is nearly integrable can be written in such a form.
A transformation to straight field-line coordinates, x(ρ, θ, ζ ) for which χ = χ(ρ), for
the integrable part of the nearly integrable magnetic field might be first required. A
construction of a nearby integrable field for a given non-integrable field is given by Hudson
& Dewar (1998).

The reconnected flux inside magnetic islands, the existence of flux surfaces, the flux
through cantori, and the fractal structure of phase space are completely determined by the
field-line Hamiltonian. The ‘average’ or ‘background’ rotational transform profile is given
by

ι-0(ρ) ≡ ∂χ0(ρ)

∂ρ
. (7.3)

The actual rotational transform profile will be influenced by the perturbations. For
irregular ‘chaotic’ field lines, the rotational transform may not be defined because
θ/
ζ ,
where 
θ is the increment in the poloidal angle along a field line, may not converge
even as 
ζ → ∞. The geometry of flux surfaces etc. is determined by the coordinate
transformation, x(ρ, θ, ζ ).

In this article, we are primarily concerned with understanding how the non-integrabilty
of the magnetic field influences transport. For the geometry, for convenience, we consider
a doubly periodic Cartesian slab, x(ρ, θ, ζ ) = θ i + ζ j + ρk, with ρ ∈ [0, 1]. We set the
rotational transform profile to vary between ι-(1) = 0 and ι-(1) = 1 by choosing χ0(ρ) =
ρ2/2.

For each χm,n(ρ) 	= 0, there will be an ι- = n/m island. For each pair of n/m and n′/m′

islands, there will be a smaller (n + n′)/(m + m′) island, and so on ad infinitum. If the
islands are sufficiently large, then large regions of extended irregular trajectories (chaos)
will emerge.

Throughout this section, we choose our domain to be bounded by ρ = 0 and ρ = 1 and
impose boundary conditions T(0, θ, ζ ) = 0 and T(1, θ, ζ ) = 1.

7.1. Transport with one intact flux surface
In this section, we verify the lower (§ 3.1) and upper (§ 4.1) bounds on the transport in the
presence of one intact flux surface. We will assume both of the bounding surfaces, S0 and
S∞, to be magnetic surfaces and the inequality (4.10) to be satisfied in the neighbourhood
of each surface. In this case, the upper bound on the transport can be further reduced by

https://doi.org/10.1017/S002237782100129X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782100129X


Heat conduction in irregular magnetic fields 13

assuming a trial function of the form,

Ttrial(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 − (T0 − T1)z
δ0

, 0 < z < δ0,

T1, δ0 < z < z1 − δ1,

T1 − (T1 − T2) (z − (z1 − δ1))

2δ1
, z1 − δ1 < z < z1 + δ1,

T2, z1 + δ1 < z < z∞ − δ∞,

T2 − (T2 − T∞) (z − (z∞ − δ∞))
δ∞

, z∞ − δ∞ < z,

(7.4)

where z1 is the location of the interior flux surface.
The diffusion is minimised by δj = �j(3ε)1/2 and

T1 = 2A0A∞�1T0 + A0A1�∞T0 + A1A∞�0T∞
A1A∞�0 + 2A0A∞�1 + A0A1l∞

(7.5a)

T2 = A0A1�∞T0 + A1A∞�0T∞ + 2A0A∞�1T∞
A1A∞�0 + 2A0A∞�1 + A0A1�∞

, (7.5b)

resulting in the upper bound,

D[Ttrial] <
(T∞ − T0)

2A0A1A∞
A1A∞l0 + 2A0A∞�1 + A0A1�∞

√
ε

3
κ||. (7.6)

To numerically test these bounds, we consider a model Hamiltonian which possesses
magnetic surfaces at ρ = 0, ρ = 0.5 and ρ = 1,

χ = χ0(ρ)+ Eρ(ρ − 1)(ρ − 0.5)
∑
n,m

cos(mθ − nζ ) (7.7)

with n/m = [1/10, 1/5, 3/10, 2/5, 3/5, 7/10, 4/5, 9/10]. We take our boundaries to be at
ρ = 0 and ρ = 1 and have an internal flux surface at ρ = 0.5. Thus, we can associate ρ
with the coordinate z appearing in the trial function. We adjust the level of the perturbation
amplitude, E , to investigate the effect on the transport as it approaches the upper bound.

We can compute the length scales, �j, for the radial component of the field, which satisfy
the inequality,

|Bρ| =
∣∣∣∣∂χ∂θ

∣∣∣∣ ≤ Eρ|ρ − 1||ρ − 0.5|
∣∣∣∣∣
∑
m,n

m sin(mθ − nζ )

∣∣∣∣∣ . (7.8)

The maximum of the function

f (θ, ζ ) =
∣∣∣∣∣
∑
m,n

m sin(mθ − nζ )

∣∣∣∣∣ (7.9)

is numerically computed to be fmax ≈ 54.7163 such that

|Bρ|
B

� Eρ|ρ − 1||ρ − 0.5|fmax√
1 + ρ2

. (7.10)

In the neighbourhood of ρ = 0, |Bρ |/B � 0.5Eρfmax giving a length scale of �0 =
2/(E fmax). Similarly, the length scales at ρ = 0.5 and ρ = 1 are given by �1 =
2
√

5/(E fmax) and �∞ = 2
√

2/(E fmax).
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We compute the numerical solution to the anisotropic diffusion equation (1.2)–(1.3)
using a Fourier Galerkin discretisation in θ and ζ and a fourth-order finite-difference
radial discretisation. The resulting sparse linear system is solved with the PETSc library
using the MUMPS package (Amestoy et al. 2001, 2019) to compute the LU-factorisation.
In figure 4 we present Poincaré sections of our model field at ζ = 0 in addition to the
computed isotherms with ε = 10−6. At smaller values of the perturbation amplitude, we
see the remnants of island chains in addition to barriers and chaotic regions. The isotherms
conform to the structure of the separatrices of the island chains. We note that, as the
perturbation amplitude is increased, the magnetic field becomes visually chaotic and the
temperature gradient becomes localised near the magnetic surfaces, but away from these
the isotherms display a remarkable degree of structure. For a moderately large perturbation
amplitude, E = 0.1, the field appears to be strongly stochasticised. Nonetheless, there
remain several isotherms which conform to the remnants of secondary island structures
near the barriers. Only in the case of the largest perturbation amplitude, E = 0.5, do the
pressure gradients become extremely localised near the boundaries. As the trial functions
involve complete flattening of the temperature gradient over large regions, we expect to
approach the upper transport bound only for sufficiently small ε and sufficiently large E ,
so that the field is strongly stochastic with dominantly parallel diffusion.

In figure 5 we compare the numerical value of the diffusion with the upper and lower
bounds for ε = 10−6, 10−7 and 10−8 and several values of the perturbation amplitude E .
The lower bound is computed using the minimiser of the isotropic diffusion integral,
Dlower[T̃] = (κ⊥/2)

∫
Ω

|∇T̃|2 dV , which yields Tlower = ρ(T∞ − T0). For the smallest
perturbation amplitude, the total diffusion is within an order of magnitude of the lower
bound. As ε decreases, parallel diffusion becomes more dominant, and the difference
between D and Dlower increases marginally. Only for the largest perturbation amplitude
(E = 0.5) does the total diffusion come within an order of magnitude of the upper bound.
There are several factors controlling the difference between D and Dupper. Given the finite
value of κ⊥, there remains a small temperature gradient between the interfaces. The
diffusion is further reduced from the upper bound due to the sinusoidal variation of the
radial field. Finally, there is a further slight reduction in the diffusion due to the small
angular dependence of the isotherms.

In figure 6 we choose a specific value of the perturbation amplitude, E = 0.5, and
compare the numerical solution (ε = 10−6) for the temperature profile averaged over
θ and ζ to the trial function (7.4). We note that the numerical temperature profile
is somewhat smoother than the trial function. Nonetheless, several of the features are
captured, including the value of the temperature between the interfaces and the location
of the strong gradient. We remark that the trial function coincides with the physical
temperature profile only for very large perturbation amplitudes (E = 0.5), as significant
poloidal and toroidal variation of the isotherms remain at E = 0.1 in addition to a widening
of the temperature gradient length scale in comparison with the predicted δj.

7.2. Transport with continuously nested isotherms
In this section, we build upon the ideas presented above in § 5 and illustrate the
construction of accurate trial functions for the temperature when a continuous family
of isotherms can be approximated. The representation of the magnetic field and the
boundary conditions are the same as that described in § 7. For the magnetic perturbation,
we choose χm,n(ρ) = εm,nρ

2(ρ − 1)2, with ε2,1 = 3ε, ε3,1 = ε3,2 = ε and ε4,1 = ε4,3 = ε/2
for ε = −0.005. These perturbations vanish on the boundary, and ρ = 0 and ρ = 1 are
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(a) (b)

(c) (d)

FIGURE 4. Numerical solutions of the anisotropic diffusion equation with ε = 10−6 are
overplotted on the Poincaré section of the model magnetic field (7.1) with the displayed values
of E : (a) E = 0.01, (b) E = 0.05, (c) E = 0.1 and (d) E = 0.5. For each plot, 50 equally spaced
isotherms are displayed (red). The following resolution parameters were used: m ≤ 20, |n| ≤ 20,
Nρ = 250 (E = 0.01); m ≤ 20, |n| ≤ 20, Nρ = 250 (E = 0.05); m ≤ 30, |n| ≤ 30, Nρ = 600
(E = 0.1); m ≤ 5, |n| ≤ 5, Nρ = 105 (E = 0.5). Here m is the poloidal mode number, n is the
toroidal mode number and Nρ is the number of radial grid points.

flux surfaces. A Poincaré plot of this field is shown in figure 7. In this section, we take
ε = κ⊥/κ‖ = 10−7.

We consider three trial functions that are constructed by first constructing a continuous
set of surfaces, which are assumed to approximate isotherms and which we call trial
isotherms, and which may be labelled by an arbitrary surface label, ψ . For the first of the
trial functions, we take the temperature profile to be given by the solution to the isothermal
transport case. For the latter two of the trial functions, given the geometry of the trial
isotherms, we solve (5.3) for the temperature profile. The accuracy of these trial functions
is evaluated by constructing the ‘exact solution’ numerically.

Given that the boundaries of the domain are themselves assumed to be isotherms, the
simplest construction of a family of trial isotherms is obtained by suitably interpolating
between the boundaries. A particularly relevant interpolation is provided by the contours
of the harmonic function ∇2Tiso = 0 that equals T0 on S0 and T∞ on S∞, as this
corresponds to the isotropic diffusion case as discussed in § 3.1. Thus, for our first
family of trial isotherms, we take the isotherms of the solution that is obtained when the
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(a) (b)

(c) (d)

FIGURE 5. The numerical value of the total diffusion (2.1) is compared with the lower (3.6)
and upper (7.6) bounds: (a) E = 0.01, (b) E = 0.05, (c) E = 0.1 and (d) E = 0.5.

enhanced parallel transport is ignored, which is obtained when ε = κ⊥/κ‖ = 1. For the
simple geometry considered here, this solution is Tiso(ρ, θ, ζ ) = ρ, which has contours
ρ = const. Substituting this function directly into the diffusion integral (that is, without
changing the geometry of the isotherms and without changing the temperature profile), we
obtain D[Tiso] = 213.178.

For the second trial function we assume that the isotherms remain coincident with those
of the isothermal solution (in this case, surfaces ρ = const.), but we now solve (5.3)
with ε = κ⊥/κ‖ = 10−7 to obtain the temperature profile. Inserting the trial function for
the temperature thus obtained, which we call T̃iso, into the diffusion integral we obtain
D[T̃iso] = 89.5803.

More accurate trial functions can be obtained if, by some means, more accurate
approximations to the isotherms can be constructed. Given that, as κ‖ becomes larger
(or as κ⊥ becomes smaller), it is the spatial structure of the magnetic field that primarily
determines transport. It becomes increasingly plausible that we can set more accurate (i.e.
lower) upper bounds on transport across non-integrable magnetic fields by identifying
structures that are invariant or almost-invariant under the magnetic field-line flow, such as
KAM surfaces and cantori.

A practical numerical approach for constructing invariant and almost invariant surfaces
is provided by the construction of (weighted) QFM surfaces (Dewar et al. 1994; Hudson
& Suzuki 2014). An algorithm for constructing these surfaces is described in Appendix A.
A set of QFM surfaces, defined by their periodicities p/q = {0/1, 1/10, 1/9, 1/8, 2/15,
1/7, 3/20, 2/13, 3/19, 1/6, 3/17, 2/11, 3/16, 1/5, 3/14, 2/9, 3/13, 1/4, 3/11, 5/18,
2/7, 5/17, 3/10, 4/13, 1/3, 4/11, 3/8, 5/13, 2/5, 5/12, 3/7, 7/16, 4/9, 5/11, 1/2, 6/11,
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(a) (b)

(c) (d)

FIGURE 6. The numerical solution of the temperature profile (blue) averaged over θ and ζ is
compared with the trial function (red). The heat diffusion equation is solved with ε = 10−6 for
the magnetic field (7.1) with perturbation amplitude E = 0.5. (a) The overall temperature profile,
which exhibits strong variation in thin boundary layers at ρ = 0, ρ = 0.5 and ρ = 1. These are
magnified in (b)–(d).

5/9, 9/16, 4/7, 7/12, 3/5, 8/13, 5/8, 7/11, 2/3, 7/10, 12/17, 5/7, 8/11, 3/4, 7/9,
11/14, 4/5, 9/11, 5/6, 11/13, 6/7, 13/15, 7/8, 8/9, 9/10, 1/1)}, are shown as the blue
curves in the left figure in figure 7. (How these periodicities were chosen is described
further in the following.)) These surfaces are taken as coordinate surfaces to construct
the coordinate mapping x(ψ, θs, ζ ), where ψ labels the enclosed toroidal flux and θs
is a straight pseudo-field-line angle. An interpolation between the surfaces provides a
continuous coordinate framework for non-integrable magnetic fields, which reduces to
straight-field-line coordinates where flux surfaces exist. Much of the field-line dynamics
that remains invariant after perturbation can be incorporated into the coordinates, and we
call these coordinates chaotic coordinates (Hudson & Suzuki 2014). The Poincaré plot of
the same magnetic field as shown in the left plot of figure 7 is shown in chaotic coordinates
in the right plot of figure 7.

We take as our third family of trial isotherms to be the QFM surfaces and their radial
interpolates, where the temperature profile is given by the solving (5.3). For the trial
function, T = Tp/q, thus obtained, the diffusion is D[Tp/q] = 24.8809.

We may compute the exact solution using a mixed finite-difference Fourier
representation for the temperature, T(ρi, θ, ζ ) = ∑M

m=0

∑N
n=−N Tm,n,i cos(mθ − nζ )

including Fourier modes up and including M = 10 and N = 10 with a second-order
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(a) (b)

FIGURE 7. (a) Poincaré plot of the magnetic field shown in (ρ, θ) coordinates, the isotherms
of the exact solution shown as black lines (left half only), and the selected QFM surfaces shown
as blue lines (right half only). (b) Poincaré plot of the same magnetic field shown in (ψ, θs)
coordinates, and the isotherms of the numerically computed temperature shown as black lines
(left half only). To a good approximation, the isotherms coincide with surfaces ψ = const.

finite-difference approximation for the radial derivatives and 256 radial grid points, and
minimise D[T] with respect to the Tm,n,i. The numerically constructed temperature, Te,
which for convenience we consider to be the exact solution, is shown as the black curves in
the right-hand figure in figure 7. Note that, visually, the isotherms coincide with coordinate
surfaces to a very good approximation. With the accurate approximation of the exact
temperature, Te, obtained numerically, the diffusion is D[Te] = 22.8721.

We can compare the values of D[Tiso], D[T̃iso] and D[Tp/q] to D[Te]. We see that
(D[Tiso] − D[T̃iso])/(D[Tiso] − D[Te]) ≈ 0.65, which means that 65 % of the total possible
reduction of the diffusion integral (starting from the isothermal solution) is achieved
merely by solving for the isothermal solution to obtain a family of trial isotherms and then
solving (5.3) for the temperature profile. (Note that solving for the isothermal solution is
a much simpler numerical task than solving for the exact solution, because the isothermal
solution only depends on the geometry of the boundary and not on the magnetic field
itself.) For the trial function based on the QFM surfaces and their interpolates, and solving
(5.3), we obtain (D[Tiso] − D[Tp/q])/(D[Tiso] − D[Te]) ≈ 0.99. Based on this, the trial
function based on chaotic coordinates and solving (5.3) yields an improvement of 99 % in
the sense that over 99 % of the total possible reduction of the diffusion integral resulting
from including the strong parallel transport has been achieved. It is much faster to construct
QFM surfaces than to solve the anisotropic diffusion equation numerically.

The selection of the QFM surfaces requires some explanation. QFM surfaces are
characterised by their periodicity, and we may distinguish the following cases.

(i) For ( p, q) that are low-order rationals, e.g. p/q = 1/2, 1/3, . . . , because the
low-order islands are typically larger than the high-order islands and because the
( p, q) QFM surface pass through the ( p, q) island, we may expect that low-order
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( p, q) QFM surfaces are isotherms because the temperature tends to flatten inside
the larger islands.

(ii) For ( p, q) that are high-order rationals that approximate a strongly irrational number,
then the QFM surface is an excellent approximation to the KAM surface if it exists,
or if it does not the QFM surface effectively ‘fills in the gaps’ in the cantorus. In both
cases, because complete barriers and partial barriers to magnetic field-line transport
are likely to be isotherms, then these QFM surfaces are likely to be isotherms too.

(iii) A particularly interesting case is when p/q is a high-order rational that approximates
a low-order rational, e.g. p/q = 101/200. In this case, the QFM surface lies just
outside of the low-order island separatrix, and whether this QFM surface is an
isotherm depends on how large the low-order island is and on κ⊥.

The question thus arises: which QFM surfaces are most likely to coincide with
isotherms? The answer partly depends on the structure of the non-integrable magnetic
field, namely whether the magnetic field is completely integrable, nearly integrable or
strongly chaotic, and also on how much the parallel transport dominates the perpendicular.
A practical algorithm, used in this study, is provided by constructing successively
sophisticated trial functions and evaluating the diffusion integral. If the diffusion integral
decreases, then the trial function is a more accurate approximation of the true solution.

We start from a trial function, Tp/q, built on a family of trial isotherms constructed
by an interpolation of a selection of a few, low-order QFM surfaces (in this example
we may begin with the p/q = {0/1, 1/2, 1/1} set of QFM surfaces) and solve for the
temperature profile given in (5.3), and then compute D[Tp/q]. Next, we construct a
refined trial function by augmenting the previous selection of QFM surfaces by, typically,
adding mediants, to obtain ( pi + pi+1)/(qi + qi+1), to obtain, for example, the set of
p/q = {0/1, 1/2, 1/2, 2/3, 1/1} QFM surfaces, recompute the interpolation to construct
the family of trial isotherms, re-solve (5.3) and then recompute the diffusion. Adding
more and higher-order QFM surfaces effectively adds more of the fractal structure of the
magnetic field to the trial function. If the diffusion integral for the refined trial function
decreases, then a better (lower) upper bound on transport has been obtained and the refined
trial function is a better approximation to the exact solution. Additional mediants can be
included, one at a time if need be, until the diffusion integral no longer decreases, and this
may occur when the scale length of the QFM surfaces is smaller than the scale length of
the true solution, which is in part set by ε = κ⊥/κ‖. In this fashion, we may systematically
improve our estimate for the global temperature solution, and in so doing identify the
most important barriers to anisotropic transport for non-zero ε in non-integrable magnetic
fields. There are other potential algorithms for identifying the most suitable QFM surfaces
to be used as trial isotherms, and we shall explore these ideas in future work.

8. Discussion

Magnetic fields with chaotic field lines can possess a surprising degree of structure,
which is not readily visible in a Poincaré puncture plot but becomes apparent when one for
instance considers anisotropic transport processes. In such situations, traditional estimates
(Rechester & Rosenbluth 1978; Kadomtsev & Pogutse 1979; Krommes et al. 1983) of
the ‘effective’ diffusion coefficient are unreliable and one must instead take the detailed
geometry of the magnetic field into consideration. KAM surfaces, and remnants thereof,
act as barriers to the diffusion, and their effect can be quantified through rigorous upper
and lower bounds on the net transport. A more restrictive upper bound can be found
whenever the isothermal surfaces can be guessed to good accuracy. Such surfaces can
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be constructed in natural by using ‘chaotic coordinates’, which also find wide application
in other parts of plasma physics and in Hamiltonian dynamical systems.
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Appendix A. Area-constrained extremising curves and QFM surfaces

Here we present an algorithm for constructing rational, p/q, QFM surfaces. The
calculation is performed in toroidal coordinates, x(ρ, θ, ζ ). After a selection of QFM
surfaces have been constructed, the QFM surfaces can themselves be used as coordinate
surfaces. We seek periodic curves, C, that are stationary points of the constrained-area
action integral (Hudson & Suzuki 2014),

S[C] ≡
∮
C

A · dl + ν

[
1

2πq

∮
C
θ∇ζ · dl − pπ − α

]
, (A1)

where α ∈ [0, 2π/q] is given and ν is a Lagrange multiplier. Note that

∮
θ∇ζ · dl =

∫ 2πq

0
θ dζ (A2)

is the ‘area’ under the θ(ζ ) curve, and dividing by 2πq and subtracting pπ is done for
convenience. The parameter α will later be used as a field-line label. An arbitrary periodic
trial curve is described by

ρ(ζ ) = ρc
0 +

qN∑
n=1

[
ρc

n cos(nζ/q)+ ρs
n sin(nζ/q)

]
, (A3)

θ(ζ ) = θ c
0 + pζ/q +

qN∑
n=1

[
θ c

n cos(nζ/q)+ θ s
n sin(nζ/q)

]
, (A4)

where the periodicity of the curve is defined by the integers p and q, and the independent
degrees of freedom that describe the curve geometry are the quantities ρc

n, ρs
n, θ c

n , and θ s
n

for n = 0, 1, . . . ,N, where N is the chosen Fourier resolution. Note that ρ(ζ + 2πq) =
ρ(ζ ) and θ(ζ + 2πq) = θ(ζ )+ 2πp. The vector potential can be written A = Aρ∇ρ +
Aθ∇θ + Aζ∇ζ . (Note that in the following, the vector potential itself is not actually
required.)
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Allowing for variations δρ(ζ ) and δθ(ζ ) in the trial curve, and δν in the Lagrange
multiplier, the variation in S is

δS =
∫ 2πq

0

[
δS
δρ
δρ + δS

δθ
δθ

]
dζ + ∂S

∂ν
δν, (A5)

where

δS
δρ

= θ̇
√

gBζ − √
gBθ , (A6)

δS
δθ

= √
gBρ − ρ̇

√
gBζ + ν/2πq, (A7)

∂S
∂ν

= 1
2πq

∫ 2πq

0
θ dζ − pπ − α, (A8)

where Bρ = B · ∇ρ, Bθ = B · ∇θ and Bζ = B · ∇ζ ,
√

g is the coordinate Jacobian, and ρ̇
and θ̇ are the (total) derivatives of ρ(ζ ) and θ(ζ ), respectively.

We can find extrema by identifying zeros of the gradient,

∂S
∂ρc

n

=
∫ 2πq

0

(
θ̇Bζ − Bθ

)√
g cos(nζ/q) dζ, (A9)

∂S
∂ρs

n

=
∫ 2πq

0

(
θ̇Bζ − Bθ

)√
g sin(nζ/q) dζ, (A10)

∂S
∂θ c

n

=
∫ 2πq

0

(
Bρ − ρ̇Bζ

)√
g cos(nζ/q) dζ, (A11)

∂S
∂θ s

n

=
∫ 2πq

0

(
Bρ − ρ̇Bζ

)√
g sin(nζ/q) dζ, (A12)

together with (A8). For systems with shear, it is possible to invert (A6) to obtain ρ =
ρ(θ̇, θ, ζ ), and the result can be used to eliminate ρ(ζ ) as an independent degree of
freedom; however, doing so complicates the algorithm. A straight ‘pseudo-field-line’ angle
is constructed along each extremal curve, θs = α + pζ/q. By varying α ∈ [0, 2π/q], we
may construct a family of periodic curves that together comprise the QFM surface.

Each QFM surface can be labelled by the enclosed toroidal flux,

ψ =
∫
S

B · ds, (A13)

where S is the surface on the ζ = 0 plane bounded by θ = 0, θ = 2π, ρ = 0 and
the QFM surface. A Fourier decomposition of ρ(ψ, θs, ζ ) and λ(ψ, θs, ζ ) ≡ θ − θs can
be computed, and a continuous coordinate system can, thus, be constructed by an
interpolation of the Fourier harmonics of ρ(ψ, θs, ζ ) and λ(ψ, θs, ζ ) in terms of toroidal
flux.
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