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1. Introduction. It is known (Perron (10); Frobenius (5, 6)) that if 
4̂ = (ailc) is a finite matrix with elements aik > 0, then A has a real, non-

negative eigenvalue /z, satisfying /x = max|X| where X is in the spectrum of A, 
with a corresponding eigenvector x = (x\, . . . , xn) for which xt > 0. More
over if aik > 0, then /z is a simple point of the spectrum with an eigenvector 
x (unique, except for constant multiples) with components xt > 0. Much 
has been written on this and related issues; cf., for example, the recent papers 
(4, 12) wherein are given several references. Rutman and Krein (8, 11) have 
placed the problem in the general setting of operators in a Banach space 
leaving invariant certain cones. 

In the present paper, a Hilbert space consisting of real vectors x = (xh Xi, 
. . .), and bounded operators, represented by real matrices A = (aik), will be 
considered. Thus, for any such A, there exists a constant M > 0 such that 
||-4#[| < Af||x|| whenever ||x||2 = J2xk2 < °° • For this case, the Rutman-
Krein results lead to certain theorems on completely continuous operators. 
The object of the present note is to obtain certain analogous results for 
operators which are not necessarily completely continuous. In fact, a series of 
theorems will be given, where, in the beginning (cf. (I) below) only the assump
tion aik > 0 (and boundedness) will be made, and, as needed, additional 
restrictions will be imposed. 

The author is indebted to the referee for pointing out some recent work of 
Bonsall (1, 2, 3) which includes, among other things, generalizations of 
certain results of Rutman and Krein. Theorem (I) below is contained in 
(2; cf. pp. 148 ff.), also Theorem B of (3, p. 54). 

2. By A > 0 and A > 0 will be meant that aik > 0 and aik > 0 respectively. 
Similarly a vector x = (xi, X2, . . * ,) will be written x > 0 or x > 0 according 
as all Xi > 0 or all Xi > 0 respectively. The spectrum of A will be denoted by 
sp(A). The following will be proved: 

(I) If A > 0, then /x = sup|X|, where X is in sp(A), also belongs to sp{A). 
(II) If A > 0 and if at least one diagonal element, say d, of An (for some 

n > 1) is positive, then ft of (I) above satisfies JJ, > dl,n. 
(III) If A > 0 and if JJL of (I) is positive and is a pole of the resolvent R(K) — 

(A — XI)-1 (hence, in particular, fi is an isolated point of sp(A) and is in the 
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point spectrum) then there exists at least one characteristic vector x (Ax = fix, 
x T^ 0) satisfying x > 0. 

(IV) If A > 0 (or even, if for every pair i, k there exists an integer M = 
M(i, k) > 1 such that (AM)i]c > 0) and if M of (I) (where, by (II), /x > 0) is a 
pole of R(\), then n is (a) a simple pole of R(\) and (b) a simple characteristic 
number. Moreover, (c) there exists a characteristic vector x > 0 belonging to fx. 

Remarks. The above theorems are patterned after similar ones, in which A 
is supposed to be completely continuous, of (8, pp. 80-82). (Cf. also the last 
paragraph of §1 above.) Parts of some of the proofs (as noted below) are vir
tually identical with those in (8) but, in order to make the present paper self-
contained, complete proofs of all the theorems will be given. 

In (I) and (II), where only A > 0 is assumed, it should be noted that 
/x may not be in the point spectrum and that A may not have any point 
spectrum whatever. In fact, if A is the Jacobi matrix belonging to 2 J^xnxn+i, 
then A > 0 and A has no point spectrum. Actually, A can be chosen so as to 
satisfy A > 0, for instance, a bounded Toeplitz matrix with positive elements; 
then necessarily the point spectrum is empty (cf. 2, p. 149; 7, p. 868). 

In (III) and (IV), the assumption that M (>0) be a pole of R(\) is surely 
fulfilled if A is completely continuous. In fact, in this case, the above results 
(except possibly (a) of (IV)) are contained in the results of (8, pp. 80-82). 
Part (a) of (IV) does not seem to be contained here, although something 
similar to it (when A is completely continuous) is contained in Theorems 5 
(Rutman) and 5a (Krein) of (11, pp. 91-92). In these latter theorems however, 
it is assumed that the "invariant cone" has an interior point. In the present 
case however, what corresponds to this cone is the set of vectors x > 0 in 
Hilbert space, and this set has no interior points. 

It can be remarked that the statement given in (8, p. 91), namely that if 
A is completely continuous, if A > 0, and if all the diagonal elements of every 
power An are zero, then 0 is the only point of sp(A), may not be true without 
the assumption of complete continuity. (The proof given, loc. cit., pp. 91-92, 
involves the approximation of A by its sections.) 

3. Proof of (I). Since A is bounded its spectrum is contained in a finite 
portion of the complex plane, so that the resolvent R(\) is given by R(\) — 
— YiAn/\n+l for |X| sufficiently large. The elements of —R(\) are series of the 
form YL&nZn where z = X"1 and an > 0. If every one of these series is convergent 
for \z\ arbitrarily large, then, of course, 0 is the only point of the spectrum of 
A. Otherwise, there exists a real number a > 0 such that every series is con
vergent for \z\ < a (that is, for | \ | > l/a) but at least one series is divergent 
for \z\ > a. By the Vivanti-Pringsheim theorem (9, p. 72), z = a must be a 
singularity of such a series. Consequently the number X = l / a is in sp(A) 
while every X in sp(A) satisfies |X| < a. This completes the proof of (I).* 

*The above proof, using the Vivanti-Pringsheim theorem, is due to the late Professor Wintner, 
with whom the author had several valuable discussions concerning non-negative matrices. 
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4. Proof of (II). Let d denote the kth diagonal element of An. Then the &th 
diagonal element of Anm is given by a series with non-negative terms, one 
of which is dm. Hence, if X is real and satisfies X > /x, then the &th diagonal 
element of — i£(X), which is not less than the &th diagonal element of 

00 

m—1 

is not less than 
£ dm/\nm+\ 

m 

But, since this last series is divergent if X < d1/n, it follows that /x > d1/n. 
This completes the proof of (II). Cf. (8, pp. 68-69), wherein is given a similar 
proof for a completely continuous operator in a Banach space. 

5. Proof of (III). If fx > 0 is a pole of R(X) then R(X) is given by 
CO 

22(A) = Z cn(\ - M)B 

n=-N 

for ]X — jtt| sufficiently small and positive, where N > 1, ^-^ < 0 and C-N ^ 0. 
In fact, as was noted above, if n > 0, then some element of R(X) tends to 
— oo when X —» JJL + 0 (X real). The remainder of the proof is essentially iden
tical with that of (8, p. 66). For 

(X - M)"I = (X - ÙN{A - XI) R(X) = (A - \I)c.N + B, 

where B represents a term which tends to 0 as X tends to JJL. Consequently 
(A — IJLI)C-N = 0 and a characteristic vector x > 0 of /JL is given by any 
column of — C-N which does not consist entirely of zeros. 

6. Proof of (a) of (IV). It follows from the functional equation of the resolvent 
that dR/dX = R2(X). Hence, if N(see above) satisfies N > 1, then, on equating 
coefficients in the series for dR/dX and R2(X) one obtains c_N

2 = 0. If c^N — 
(cijc), then this last result is that 

2~i cimcmh = 0. 
m 

In particular, if i = k, it follows that Cu = 0, for all i = 1, 2, . . . . By hypo
thesis, for every pair (i, k) there exists a positive integer M = M(i, k) such 
that (AM)ik > 0. But AMc-N = »MC-Nl and hence 

X) (AM)imcmi = nMc{i = 0. 
m 

Consequently, cki = 0 (i, & arbitrary) and so C-.N = 0, a contradiction. This 
completes the proof of (a). 

Proof of (c) of (IV). The proof in §5 shows that if some element cim of the 
mth column of C is zero, then in fact every element ciw, c2m, . . . , of this column 
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is zero. For, suppose cim — 0; then for this fixed i, choose an arbitrary k and 
then M = M(i, k) as before. Then 

/ J \A ) ipCpm = M £ im = = " 

and hence cfcm = 0 (fe = 1, 2, . . . ,). Consequently, since C-N < 0 and C-^ ^ 0, 
it follows that there exists at least one column of — C-N consisting of positive 
elements only. This column serves as a positive characteristic vector and the 
proof of (c) is complete. 

Proof of (b) of (IV). The proof is essentially that given in (8, pp. 78-80, 82) 
for integral equations. First, let y be any characteristic vector of A*. Then 

23 akiyk = wt 
k 

and hence 

Let x be a positive characteristic vector of A belonging to fx (see above). 
Multiplication by xt of both sides of the last inequality followed by a sum
mation and an interchange of the orders of summations, yields 

Z) xk\yk\ > X) xtyi 
k i 

where, since all xt > 0, the sign > (and hence a contradiction) obtains only 
if the components of y fail to satisfy either all yt > 0 or all yt < 0. Thus if 
y is any characteristic vector of A belonging to /x, then either y > 0 or y < 0. 
Interchanging the roles of A and A* (and noting that R*(\) is the resolvent of 
A* and that n plays the same role for A* as it does for A) it follows that any 
characteristic vector z of A belonging to /x satisfies either z > 0 or z < 0. 
Consequently, M is a simple point of the spectrum of A. Otherwise, there 
would exist a characteristic vector, say z (necessarily z > 0 or z < 0) orthogonal 
to x(> 0) and this is clearly impossible. This completes the proof of (b) of 
(IV). 
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