S. MukaiNagoya Math. J.Vol. 81 (1981), 153-175

DUALITY BETWEEN D(X) AND $D(\hat{X})$ WITH ITS APPLICATION TO PICARD SHEAVES

SHIGERU MUKAI

Introduction

As is well known, for a real vector space V, the Fourier transformation

$$\hat{f}(lpha) = \int_V f(v) e^{2\pi i < v, lpha >} dv \qquad lpha \in V^ee$$

gives an isometry between $L^2(V)$ and $L^2(V^{\vee})$, where V^{\vee} is the dual vector space of V and $\langle , \rangle \colon V \times V^{\vee} \to R$ is the canonical pairing.

In this article, we shall show that an analogy holds for abelian varieties and sheaves of modules on them: Let X be an abelian variety, \hat{X} its dual abelian variety and \mathscr{P} the normalized Poincaré bundle on $X \times \hat{X}$. Define the functor $\hat{\mathscr{P}}$ of \mathscr{O}_X -modules M into the category of $\mathscr{O}_{\hat{X}}$ -modules by

$$\widehat{\mathscr{S}}(M) = \pi_{\widehat{x},*}(\mathscr{P} \otimes \pi_{X}^{*}M) .$$

Then the derived functor $R\widehat{\mathscr{S}}$ of $\widehat{\mathscr{S}}$ gives an equivalence of categories between two derived categories D(X) and $D(\widehat{X})$ (Theorem 2.2).

In § 3, we shall investigate the relations between our functor $R\mathscr{S}$ and other functors, translation, tensoring of line bundles, direct (inverse) image by an isogeny, etc. The result (3.14) that if X is principally polarized then D(X) has a natural action of SL(2, Z) seems to be significant.

In §§ 4 and 5, we shall apply the duality between D(X) and $D(\hat{X})$ to the study of Picard sheaves. We shall compute the cohomology of Picard sheaves (Proposition 4.4), determine the moduli of deformations of them (Theorem 4.8) and give a characterization of them in the case of dim X=2 (Theorem 5.4). Other applications of the duality will be treated elsewhere.

After the original paper was written, the author learned by a letter from G. Kempf that Proposition 3.11 and some results in § 4 had also been proved independently by him.

Received October 9, 1979.

NOTATIONS. We denote by k a fixed algebraically closed field and mean by a scheme a scheme of finite type over k. For the product variety $X \times Y \times Z$, π_X (or p_1) and $\pi_{X,Y}$ (or p_{12}) are the projections of $X \times Y \times Z$ to X and $X \times Y$, respectively. For a coherent sheaf F on a variety X, r(F) denotes the rank of F at the generic point of X. F^{\vee} denotes $\mathcal{H}_{om_{\phi_X}}(F, \mathcal{O}_X)$.

§1. Preliminary

Let X and Y be schemes and F an $\mathcal{O}_{X \times Y}$ -module. We define the functor $\mathscr{S}_{X \to Y,F}$ from the category $\operatorname{Mod}(X)$ of \mathscr{O}_X -modules into $\operatorname{Mod}(Y)$ by

$$\mathscr{S}_{X\to Y,F}(?)=\pi_{Y,*}(F\otimes\pi_X^*?),$$

where ? is an \mathcal{O}_X -module or an \mathcal{O}_X -homomorphism.

EXAMPLE 1.2. Let Γ_f be the graph of a morphism $f: X \to Y$ and F the structure sheaf \mathcal{O}_{Γ_f} of Γ_f .

Then
$$\mathcal{S}_{X\to Y,F}=f_*$$
 and $\mathcal{S}_{Y\to X,F}=f^*$.

We denote by D(X) the derived category of $\operatorname{Mod}(X)$ and by $D_{qc}(X)$ (resp. $D_c(X)$) the full subcategory of D(X) consisting of the complexes whose i-th cohomologies are quasi-coherent (resp. coherent) for all i. $D^-(X)$ (resp. $D^b(X)$) is the full subcategory of D(X) consisting of the complexes bounded above (resp. bounded on both sides) and $D_{qc}^-(X) = D^-(X) \cap D_{qc}(X)$, $D_c^b(X) = D^b(X) \cap D_c(X)$, etc.

For an object F of $D^-(X \times Y)$, we define the functor $R\mathscr{S}_{X \to Y, F}$ from $D^-(X)$ into $D^-(Y)$ by

(1.4)
$$R\mathscr{S}_{X\to Y,F}(?) = R\pi_{Y,*}(F \overset{L}{\otimes} \pi_X^*?) .$$

If F is an \mathcal{O}_X -flat module, then $R\mathscr{S}_{X \to Y, F}$ is the derived functor of $\mathscr{S}_{X \to Y, F}$. To consider the derived functors has the following advantage:

PROPOSITION 1.3. Let Z be a scheme and G an object of $D^-(X \times Y)$. Then there is a natural isomorphism of functors:

$$R\mathscr{S}_{Y\to Z,G}\circ R\mathscr{S}_{X\to Y,F}\cong R\mathscr{S}_{X\to Z,H}$$
,

where
$$H = R\pi_{X,Z,*}(\pi_{X,Y}^*F \bigotimes_{=}^L \pi_{Y,Z}^*G)$$
.

Proof. We use (1) the commutativity of R and the composition of functors, (2) the projection formula and (3) the base change theorem. (See

[2] Proposition 5.1, 5.3, 5.6, 5.12) Let ? be an object or morphism in $D^-(X)$.

$$\mathbf{R}\mathscr{S}_{Y\to Z,G}(\mathbf{R}\mathscr{S}_{X\to Y,F}(?))$$

$$\cong \mathbf{R}\pi_{Z,*}(G \overset{L}{\otimes} \pi_{Y}^{*}(\mathbf{R}\pi_{Y,*} (F \overset{L}{\otimes} \pi_{X}^{*}?)))$$

$$\cong \mathbf{R}\pi_{Z,*}(G \overset{L}{\otimes} \mathbf{R}\pi_{Y,Z,*}(\pi_{X,Y}^{*}(F \overset{L}{\otimes} \pi_{X}^{*}?)))$$
(3)

$$\cong R\pi_{Z,*}R\pi_{Y,Z,*}(\pi_{Y,Z}^*G \overset{L}{\otimes} \pi_{X,Y}^*F \overset{L}{\otimes} \pi_X^*?)$$
 (2)

$$\cong R\pi_{Z,*}R\pi_{X,Z,*}(\pi_{Y,Z}^*G \overset{L}{\otimes} \pi_{X,Y}^*F \overset{L}{\otimes} \pi_{X,Z}^*\pi_X^*?)$$
 (1)

$$\cong R\pi_{Z,*}(H \bigotimes_{=}^{L} \pi_{X}^{*}?) = R\mathscr{S}_{X \to Z,H}(?)$$
 (2)

q.e.d.

PROPOSITION 1.4. (1) If F has finite Tor-dimension as a complex of \mathcal{O}_x -modules, then we can extend the domain of definition of $R\mathcal{S}_{X-Y,F}$ to

$$R\mathscr{S}_{X\to Y,F}\colon D(X)\longrightarrow D(Y)$$

and $R\mathscr{S}_{X\to Y,F}$ maps $D^b(X)$ into $D^b(Y)$.

- (2) If F belongs to $D_{qc}^-(X \times Y)$, then $R\mathcal{S}_{X \to Y,F}$ maps $D_{qc}^-(X)$ into $D_{qc}^-(Y)$.
- (3) If X is proper and $F \in D_c^-(X \times Y)$, then $R\mathscr{S}_{X \to Y,F}$ maps $D_c^-(X)$ into $D_c^-(Y)$.

Proof. For (1), see [2] Proposition 4.2 and Corollary 4.3. (2) and (3) follow from [EGA] III 1.4.10 and 3.2.1, respectively. q.e.d.

§2. Fourier functor

Let X be an abelian variety of dimension g (the business is similar for a complex torus) and \hat{X} its dual abelian variety. Let \mathscr{P} be the normalized Poincaré bundle on $X \times \hat{X}$. Here "normalized" means that both $\mathscr{P}|_{X \times \hat{0}}$ and $\mathscr{P}|_{0 \times \hat{x}}$ are trivial. For $\hat{x} \in \hat{X}$ (resp. $x \in X$), $P_{\hat{x}}$ (resp. P_x) denotes $\mathscr{P}|_{X \times \hat{x}}$ (resp. $\mathscr{P}|_{x \times \hat{x}}$). We put $\mathscr{S} = \mathscr{S}_{\hat{X} \to X,\mathscr{P}}$ and $\hat{\mathscr{S}} = \mathscr{S}_{X \to \hat{X},\mathscr{P}}$. Since \hat{X} is complete and \mathscr{P} is $\mathscr{O}_{\hat{x}}$ -flat, we have by Proposition 1.4,

PROPOSITION 2.1. The derived functor $R\mathcal{S}: D(\hat{X}) \to D(X)$ of \mathcal{S} can be defined. It maps $D^b(\hat{X})$, $D^-_{qc}(\hat{X})$ and $D^-_c(\hat{X})$ into $D^b(X)$, $D^-_{qc}(X)$ and $D^-_c(X)$ respectively.

The following theorem is fundamental:

Theorem 2.2. There are isomorphisms of functors:

$$R\mathscr{S} \circ R\widehat{\mathscr{S}} \cong (-1_x)^*[-g]$$

and

$$R\widehat{\mathscr{S}}\circ R\mathscr{S}\cong (-1_{\widehat{x}})^*[-g]$$

where [-g] denotes "shift the complex g places to the right". In other words, $R\mathscr{S}$ gives an equivalence of categories between $D(\hat{X})$ and D(X), and its quasi-inverse is $(-1_{\hat{X}})^* \circ R\widehat{\mathscr{S}}[g]$.

Proof. It suffices to show that $(R\mathscr{S}|_{D^-(\hat{X})}) \circ (R\widehat{\mathscr{S}}|_{D^-(X)}) = (-1_X)^*[-g]$. By (1.3) the left side is isomorphic to $R\mathscr{S}_{X\to X,H}$ with $H=Rp_{12,*}(p_{13}^*\mathscr{P}\otimes p_{23}^*\mathscr{P})$, where p_{ij} are projections of $X\times X\times \hat{X}$. Since $p_{13}^*\mathscr{P}\otimes p_{23}^*\mathscr{P}\cong (m\times 1)^*\mathscr{P}\cong m^*Rp_{1,*}\mathscr{P}$. As was shown in the course of the proof of the theorem in [6] § 13, $R^ip_{1,*}\mathscr{P}=0$ for every $i\neq g$ and $R^gp_{1,*}\mathscr{P}\cong k(0)$, i.e., $Rp_{1,*}\mathscr{P}\cong k(0)[-g]$. Hence H is isomorphic to $\mathscr{O}_{\mathbb{E}}[-g]$, where E is the graph of $-1_X\colon X\to X$. Therefore $R\mathscr{S}_{X\to X,H}\cong (-1_X)^*[-g]$ (see Example 1.2).

In order to apply the theorem, we need

DEFINITION 2.3. We say that W.I.T. (weak index theorem) holds for a coherent sheaf F on X if $R^i \hat{\mathscr{S}}(F) = 0$ for all but one i. This i is denoted by i(F) and called the index of F. We denote the coherent sheaf $R^{i(F)} \hat{\mathscr{S}}(F)$ on \hat{X} by \hat{F} and call it the Fourier transform of F.

We say that I.T. (index theorem) holds for F if $H^i(X, F \otimes P) = 0$ for all $P \in \operatorname{Pic}^{\circ} X$ and all but one i.

Since $(\mathscr{P} \otimes \pi_X^* F)|_{X \times \hat{x}} \cong P_{\hat{x}} \otimes F$, we see by virtue of the base change theorem, that I.T. implies W.I.T. and \hat{F} is locally free if I.T. holds for F. We always identify \mathscr{O}_X -module F with the complex consisting of F in degree 0, and 0 elsewhere. Hence if W.I.T. holds for F, then $R\mathscr{S}(F)$ is isomorphic to $\hat{F}[-i(F)]$. Hence we have

COROLLARY 2.4. If W.I.T. holds for F, then so does for \hat{F} and $i(\hat{F}) = g - i(F)$. Moreover \hat{F} is isomorphic to $(-1_x)^*F$.

COROLLARY 2.5. Assume that W.I.T. holds for F and G. Then $\operatorname{Ext}_{\mathfrak{o}_{x}}^{i}(F,G)$ $\cong \operatorname{Ext}_{\mathfrak{o}_{x}}^{i+\mu}(\hat{F},\hat{G})$ for every integer i, where $\mu=i(F)-i(G)$. Especially, we have an isomorphism $\operatorname{Ext}_{\mathfrak{o}_{x}}^{i}(F,F)\simeq \operatorname{Ext}_{\mathfrak{o}_{x}}^{i}(\hat{F},\hat{F})$ for every i.

$$\begin{array}{ll} \textit{Proof.} & \operatorname{Ext}_{\mathscr{O}_{\mathcal{X}}}^{i}(F,G) \cong \operatorname{Hom}_{\mathcal{D}(\mathcal{X})}(F,G[i]) \\ & \cong \operatorname{Hom}_{\mathcal{D}(\hat{\mathcal{X}})}(R\hat{\mathscr{S}}(F),R\hat{\mathscr{S}}(G)[i]) \\ & \cong \operatorname{Hom}_{\mathcal{D}(\hat{\mathcal{X}})}(\hat{F}[-i(F)],\; \hat{G}[i-i(G)]) \\ & \cong \operatorname{Ext}_{\mathscr{O}_{\mathcal{X}}}^{i+\mu}(\hat{F},\hat{G}) \end{array} \qquad \text{q.e.d.}$$

EXAMPLE 2.6. Let $k(\hat{x})$ be the one dimensional sky-scraper sheaf supported by $\hat{x} \in \hat{X}$. Since $H^i(X, k(\hat{x}) \otimes P) = 0$ for every i > 0 and $P \in \operatorname{Pic}^{\circ} \hat{X}$, I.T. holds for $k(\hat{x})$, $i(k(\hat{x})) = 0$ and $\widehat{k(\hat{x})} \simeq P_{\hat{x}}$. Hence by Corollary 2.4, W.I.T. holds for $P_{\hat{x}}$, $i(P_{\hat{x}}) = g$ and $\widehat{P_{\hat{x}}} \simeq k(-x)$. Note that I.T. does not hold for $P_{\hat{x}}$.

Combining the above with Corollary 2.5, we have

Proposition 2.7. Assume that W.I.T. holds for a coherent sheaf F on X. Then we have

$$H^i(X, F \otimes P_{\hat{x}}) \cong \operatorname{Ext}_{g \, \hat{x}}^{g-i(F)+i}(k(\hat{x}), \hat{F})$$

and

$$\operatorname{Ext}_{\sigma_X}^i(k(x),F)\cong H^{i-i(F)}(\hat{X},\hat{F}\otimes P_{-x})$$
.

Proof. By Corollary 2.4, it suffices to show the first isomorphism. Since $P_{\hat{x}}$ is locally free, $H^i(X, F \otimes P_{\hat{x}})$ is isomorphic to $\operatorname{Ext}^i_{\sigma_X}(P_{-\hat{x}}, F)$. Hence by Corollary 2.5, it is isomorphic to $\operatorname{Ext}^{i+\mu}_{\sigma_X^{\hat{x}}}(\hat{P}_{-\hat{x}}, \hat{F}) \cong \operatorname{Ext}^{i+\mu}_{\sigma_X^{\hat{x}}}(k(\hat{x}), \hat{F})$, where $\mu = i(P_{-\hat{x}}) - i(F) = g - i(F)$.

Corollary 2.8. The Euler-Poincaré characteristic of F is equal to $(-1)^{i(F)}r(F)$.

$$egin{align} Proof. & \chi(X,F) = \sum\limits_{i} (-1)^{i} h^{i}(X,F) \ &= \sum\limits_{i} (-1)^{i} \dim \operatorname{Ext}_{e_{X}}^{i+g-i(F)}(k(\hat{x}),\hat{F}) \ &= (-1)^{i(F)} r(\hat{F}) \ . & ext{q.e.d.} \end{array}$$

Example 2.9 ([4] \S 4). A vector bundle U on X is said to be unipotent if it has a filtration

$$0 = U_0 \subset U_1 \subset \cdots \subset U_{n-1} \subset U_n = U$$

such that $U_i/U_{i-1} \cong \mathcal{O}_X$ for $i=1,2,\cdots,n$. Since the functor $R^i\widehat{\mathscr{S}}$ is semi-exact for all i, W.I.T. holds for U, i(U)=g and the coherent sheaf \widehat{U} is supported by $\widehat{0} \in \widehat{X}$. Hence $R^g\widehat{\mathscr{S}}$ gives an equivalence of the categories

(Unipotent vector bundles on \hat{X}) and (Coherent sheaves on \hat{X} supported by $\hat{0}$) = (Artinian B-modules), where B is the local ring $\mathcal{O}_{\hat{X},\hat{0}}$ of \hat{X} at $\hat{0}$. Moreover we have by Proposition 2.7.

$$H^{i}(X, U) \cong \operatorname{Ext}_{B}^{i}(k(\hat{0}), \hat{U})$$
.

§3. Relations between RS and other functors

The properties of the Poincaré bundle \mathscr{P} give relations between \mathscr{S} and other functors. From this we obtain by the universal property of $R\mathscr{S}$, relations between $R\mathscr{S}$ and other functors. For example, from the isomorphism $T^*_{(0,\hat{x})}\mathscr{P}\cong\mathscr{P}\otimes\pi_X^*P_{\hat{x}}$, we obtain the isomorphism of functors $\mathscr{S}\circ T^*_{\hat{x}}\cong(\otimes P_{-\hat{x}})\circ\mathscr{S}$ because $\mathscr{S}(T^*_{\hat{x}}?)=\pi_{X,*}(\mathscr{P}\otimes T^*_{(0,\hat{x})}\pi_X^*?)\cong\pi_{X,*}T^*_{(0,\hat{x})}$ $(T^*_{(0,-\hat{x})}\mathscr{P}\otimes\pi_X^*?)\cong\pi_{X,*}(\mathscr{P}\otimes\pi_X^*P_{-\hat{x}}\otimes\pi_X^*?)\cong\mathscr{S}(?)\otimes P_{-\hat{x}}.$ Hence we have

(3.1) (Exchange of translations and \otimes Pic°)

$$R\mathscr{S} \circ T_{\hat{x}}^* \cong (\otimes P_{-\hat{x}}) \circ R\mathscr{S}$$

 $R\mathscr{S} \circ (\otimes P_x) \cong T_x^* \circ R\mathscr{S}$.

EXAMPLE 3.2. W.I.T. holds for every homogeneous vector bundle H on X. The index i(H) is equal to g and \hat{H} is a coherent sheaf supported by a finite set of points. Hence $R^g \hat{\mathscr{S}}$ gives an equivalence of categories between $H_X =$ (Homogeneous vector bundles on X) and $C_X' =$ (Coherent sheaves on \hat{X} supported by a finite set of points).

Proof. If a coherent sheaf M on \hat{X} is supported by a finite set of points, then $M \otimes P \cong M$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$ and hence $\mathscr{S}(M)$ is a homogeneous vector bundle by (3.1). Therefore it suffices to show the first statement. Put $M_i = R^i \hat{\mathscr{S}}(H)$. Since $T_x^* H \cong H$ for all $x \in X$, $M_i \otimes P \cong M_i$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$ by (3.1). Hence by the lemma (3.3) below M_i is supported by a finite set of points. By Theorem 2.2, there is a spectral sequence whose E_2 term is $R\mathscr{S}^j(M_i)$ and which converges to zero when $i+j\neq g$. Since $R\mathscr{S}^j(M_i)=0$ if $j\neq 0$, the spectral sequence degenerates and M_i is zero for every $i\neq g$.

Lemma 3.3. Let M be a coherent sheaf on an abelian variety \hat{X} . If $M \otimes P \cong M$ for all $P \in \text{Pic}^{\circ} \hat{X}$, then Supp M is finite.

Proof. Suppose that dim Supp $M \geq 1$. Take a curve C contained in Supp M and let \tilde{C} be its normalization. Put $N = M \otimes_{\mathfrak{o}_{\tilde{X}}} \mathcal{O}_{\tilde{C}}$ and L = N/2 "the torsion part of N". Then N is a vector bundle on \tilde{C} and $N \otimes f^*P$

 $\cong N$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$, where f is the natural morphism $\tilde{C} \to C \subseteq X$. Therefore, taking the determinant of both sides, we see that $(f^*P)^{\otimes r(N)}$ is trivial for all $P \in \operatorname{Pic}^{\circ} \hat{X}$. This is a contradiction because the morphism f^* : $\operatorname{Pic}^{\circ} \hat{X} \to \operatorname{Pic}^{\circ} \tilde{C}$ is not zero.

Combining Example 2.9 and 3.2, we have

THEOREM (Matsushima, Morimoto, Miyanishi, Mukai). A vector bundle F on X is homogeneous if and only if F is isomorphic to $\bigoplus_{i=1}^n P_i \otimes U_i$ for some $P_1, \dots, P_n \in \operatorname{Pic}^{\circ} X$ and unipotent vector bundles U_1, \dots, U_n .

Let Y be an abelian variety, $\varphi \colon Y \to X$ an isogeny and $\hat{\varphi} \colon \hat{X} \to \hat{Y}$ the dual isogeny of φ .

(3.4) (Exchange of the direct image and the inverse image)

$$\varphi^* \circ R\mathcal{S}_X \cong R\mathcal{S}_Y \circ \hat{\varphi}_*$$
$$\varphi_* \circ R\mathcal{S}_Y \cong R\mathcal{S}_X \circ \hat{\varphi}^*.$$

Proof. The second isomorphism is obtained from the first in the following manner. Replacing φ by $\hat{\varphi}$ in the first isomorphism, we have $\hat{\varphi}^* \circ R \hat{\mathcal{F}}_Y \cong R \hat{\mathcal{F}}_X \circ \varphi_*$. By Theorem 2.2,

$$\begin{split} \varphi_* \circ R\mathscr{S}_{\scriptscriptstyle Y} &\cong (-1_{\scriptscriptstyle X})^* \circ R\mathscr{S}_{\scriptscriptstyle X} \circ R\widehat{\mathscr{S}}_{\scriptscriptstyle X} \circ \varphi_* \circ R\mathscr{S}_{\scriptscriptstyle Y}[g] \\ &\cong (-1_{\scriptscriptstyle X})^* \circ R\mathscr{S}_{\scriptscriptstyle X} \circ \hat{\varphi}^* \circ R\widehat{\mathscr{S}}_{\scriptscriptstyle Y} \circ R\mathscr{S}_{\scriptscriptstyle Y}[g] \\ &\cong (-1_{\scriptscriptstyle X})^* \circ R\mathscr{S}_{\scriptscriptstyle X} \circ \hat{\varphi}^* \circ (-1_{\scriptscriptstyle Y})^* \\ &\cong R\mathscr{S}_{\scriptscriptstyle X} \circ \hat{\varphi}^* \; . \end{split}$$

Hence it suffices to show $\varphi^* \circ \mathscr{S}_X \cong \mathscr{S}_Y \circ \hat{\varphi}_*$. By the definition of $\hat{\varphi}$, $(\varphi \times 1)^*\mathscr{P}_X \cong (1 \times \hat{\varphi})^*\mathscr{P}_Y$. Hence we have

$$\varphi^* \mathscr{S}_{X}(?) = \varphi^* \pi_{X,*} (\mathscr{D}_{X} \otimes \pi_{\hat{X}}^*?)$$

$$\cong \pi_{Y,*} ((\varphi \times 1)^* \mathscr{D}_{X} \otimes \pi_{\hat{X}}^*?)$$

$$\cong \pi_{Y,*} (1 \times \hat{\varphi})_{*} ((1 \times \hat{\varphi})^* \mathscr{D}_{Y} \otimes \pi_{\hat{X}}^*?)$$

$$\cong \pi_{Y,*} (\mathscr{D}_{Y} \otimes (1 \times \hat{\varphi})_{*} \pi_{\hat{X}}^*?)$$

$$\cong \mathscr{S}_{Y} (\hat{\varphi}_{*}?) .$$

Remark 3.5. The second isomorphism can be also proved in the same way as the first by the isomorphism $(1 \times \hat{\varphi})_* \mathscr{P}_{X} \cong (\varphi \times 1)_* \mathscr{P}_{Y}$ which was proved in [7].

EXAMPLE 3.6. If H is a homogeneous vector bundle on X (resp. Y), so is φ^*H (resp. φ_*H). Moreover the following diagram is (quasi-)commutative.

$$\begin{array}{cccc} C'_{\hat{x}} & \xrightarrow{\mathscr{G}_X} & H_X & C'_{\hat{x}} & \xrightarrow{\widetilde{\mathscr{G}}_X} & H_X \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ &$$

Now we investigate other properties of the Fourier functor $R\mathscr{S}$. Let $m: X \times X \to X$ be the group law of X. For \mathscr{O}_X -modules M and N, we define the Pontrjagin product M*N of M and N by $M*N = m_*(p_1^*M \otimes p_2^*N)$. * is a bifunctor from $\operatorname{Mod}(X) \times \operatorname{Mod}(X)$ into $\operatorname{Mod}(X)$. We denote its derived functor by R .

(3.7) (Exchange of the Pontrjagin product and the tensor product)

$$\mathbf{R}\mathscr{S}\left(F\overset{\mathbb{R}}{\underset{=}{*}}?\right) \cong \mathbf{R}\mathscr{S}(F) \overset{\mathbb{L}}{\underset{=}{\otimes}} \mathbf{R}\mathscr{S}(?)
\mathbf{R}\mathscr{S}\left(F\overset{\mathbb{L}}{\otimes}?\right) \cong \mathbf{R}\mathscr{S}(F)\overset{\mathbb{R}}{\underset{=}{*}} \mathbf{R}\mathscr{S}(?) [g]$$

where $F \in D(\hat{X})$ and ? is an object or a morphism in $D(\hat{X})$.

Proof. It suffices to show the first isomorphism. We use the isomorphism $(1 \times m)^* \mathscr{P} \cong p_{12}^* \mathscr{P} \otimes p_{13}^* \mathscr{P}$, where p_{ij} 's are projections of $X \times \hat{X} \times \hat{X}$.

$$R\mathscr{S}(F_{\frac{\pi}{2}}^{R}?) \cong R\pi_{X,*}(\mathscr{P} \otimes \pi_{\hat{X}}^{*}(Rm_{*}(p_{1}^{*}F \otimes p_{2}^{*}?)))$$

$$\cong R\pi_{X,*}(\mathscr{P} \otimes R(1 \times m)_{*}p_{23}^{*}(p_{1}^{*}F \otimes p_{2}^{*}?)))$$

$$\cong R\pi_{X,*}R(1 \times m)_{*}((1 \times m)^{*}\mathscr{P} \otimes p_{2}^{*}F \otimes p_{3}^{*}?)$$

$$\cong Rp_{1,*}(p_{12}^{*}\mathscr{P} \otimes p_{13}^{*}\mathscr{P} \otimes p_{2}^{*}F \otimes p_{3}^{*}?)$$

$$\cong Rp_{1,*}(p_{12}^{*}\mathscr{P} \otimes \pi_{\hat{X}}^{*}F) \otimes p_{13}^{*}(\mathscr{P} \otimes \pi_{\hat{X}}^{*}?))$$

$$\cong R\mathscr{P}(F) \overset{L}{\otimes} R\mathscr{P}(?)$$

$$X \longleftarrow X \times \hat{X} \overset{1 \times m}{\longleftarrow} X \times \hat{X} \times \hat{X}$$

$$\downarrow^{p_{23}}$$

$$\hat{X} \longleftarrow \hat{X} \times \hat{X}$$
q.e.d.

Let Δ_X be the dualizing functor. Since the canonical module of X is trivial, $\Delta_X(?) = R \, \mathcal{H}_{om_{\mathcal{O}_X}}(?, \mathcal{O}_X)[g]$.

(3.8) (Skew commutativity of $R\mathcal{S}$ and Δ)

$$\Delta_{x} \circ R\mathcal{S} \cong ((-1_{x})^{*} \circ R\mathcal{S} \circ \Delta_{\hat{x}}) [g].$$

Proof. We use the isomorphism $\mathscr{P}^{-1} \cong ((-1_x) \times 1_{\hat{x}})^* \mathscr{P}$ and the Grothendieck duality.

$$\Delta_{X}(\mathcal{R}\mathscr{S}(?)) = \Delta_{X}\mathcal{R}\pi_{X,*}(\mathscr{P}\otimes\pi_{\hat{X}}^{*}?)$$

$$\cong \mathcal{R}\pi_{X,*}\Delta_{X\times\hat{X}}(\mathscr{P}\otimes\pi_{\hat{X}}^{*}?)$$

$$\cong \mathcal{R}\pi_{X,*}(\mathscr{P}^{-1}\otimes\pi_{\hat{X}}^{*}\Delta_{\hat{X}}?)[g]$$

$$\cong \mathcal{R}\pi_{X,*}(((-1_{X})\times1_{\hat{X}})^{*}\mathscr{P}\otimes\pi_{\hat{X}}^{*}\Delta_{\hat{X}}?)[g]$$

$$\cong (-1_{X})^{*}\mathcal{R}\mathscr{S}(\Delta_{\hat{X}}?)[g]$$
q.e.d.

EXAMPLE 3.9. Let U and V be unipotent vector bundles on X. As we saw in Example 2.9, \hat{U} and \hat{V} are artinian B-modules. $U \otimes V$ and U^{\vee} are also unipotent vector bundles. $\widehat{U} \otimes V$ is isomorphic to $\widehat{U} * \widehat{V}$ and \widehat{U}^{\vee} is isomorphic to $(-1_B)^* \mathcal{A}(\widehat{U})$. $\widehat{U} * \widehat{V}$ is $\widehat{U} \otimes_k \widehat{V}$ regarded as a \widehat{B} -modules via the co-multiplication $\mu \colon \widehat{B} \to \widehat{B} \otimes \widehat{B}$ of the formal group \widehat{B} . -1_B is an automorphism of B induced by $-1_{\widehat{x}} \colon \widehat{X} \to \widehat{X}$ and Δ is the dualizing functor of Mod (B).

Next we investigate the relation between $R\mathscr{S}$ and $\otimes N$ for a line bundle N on X. In the rest of this section we always assume that N is nondegenerate, i.e., $\chi(N) \neq 0$. Hence ϕ_N ([6] p. 59, p. 131) is an isogeny.

(3.10)
$$?^{\mathbb{R}}_{\underline{*}} N \cong (\otimes N \circ \phi_{N}^{*} \circ \mathbb{R} \mathscr{D} \circ \otimes N \circ (-1_{X})^{*})$$
 (?) where ? is an object or a morphism in $D(X)$.

Proof. Consider the isomorphism $\psi \colon X \times X \to X \times X$ such that $\psi(x,y) = (x, x + y)$. The morphisms p_1, p_2 and m is sent by ψ to p_1, μ and $p_2, p_2 = (x, x + y)$. The morphisms $p_1, p_2 = (x, y) = (x, y)$

Since I.T. holds for N ([6] § 16), \hat{N} is a vector bundle on \hat{X} . \hat{N} is simple, i.e., $\operatorname{End}_{\sigma\hat{X}}(\hat{N}) \cong k$ by Corollary 2.5.

Proposition 3.11. (1) $\phi_N^* \hat{N} \cong (N^{-1})^{\oplus |\chi(N)|}$

- $(2) \quad \hat{N}^{\oplus |\chi(N)|} \cong \phi_{N,*} N^{-1}$
- (3) If $|\chi(N)|=1$, e.g., N is a principal polarization of X, then $\hat{N}\cong (\phi_N^{-1})^*N^{-1}$.
- (4) There is an isogeny $\pi\colon X\to Y$ of degree $|\chi(N)|$ and a line bundle L on Y such that $N\cong \pi^*L$. Since $\mathrm{Ker}\,(\pi)\subset K(N)$, there is an isogeny $\tau\colon Y\to \hat{X}$ such that $\tau\circ\pi=\phi_N$. Then \hat{N} is isomorphic to τ_*L^{-1} .

Proof. (1) is obtained from (3.10) by putting $?=\mathscr{O}_{X}$, because then the left side is $\mathscr{O}_{X}\overset{R}{=}N\cong Rp_{2,*}(p_{1}^{*}N)\cong\mathscr{O}_{X}\otimes_{k}H^{i}(X,N)$ [-i] and the right side is $N\otimes\phi_{N}^{*}\hat{N}$ [-i], where i=i(F). Replacing N by N^{-1} in (1), we have $N^{\oplus|\chi(N)|}\cong(-\phi_{N})^{*}\hat{N}^{-1}$. Operating $^{\wedge}$ on both sides, we have (2) because $\hat{N}^{\oplus|\chi(N)|}\cong(-\phi_{N})_{*}(-1_{x})^{*}N^{-1}\cong\phi_{N,*}N^{-1}$ by (3.4). Since $\deg\phi_{N}=|\chi(N)|^{2}$, ϕ_{N} is an isomorphism if $|\chi(N)|=1$. Hence (3) is a special case of (1) or (2). For the first half of (4), see [6] § 23. It suffices to show the last statements. Since $|\chi(L)|=1$, we have by (3), $\hat{N}\cong\hat{\pi^{*}L}\cong\hat{\pi}_{*}\hat{L}\cong\hat{\pi}_{*}\phi_{L,*}L^{-1}$. On the other hand, since $N\cong\pi^{*}L$, we have $\phi_{N}=\hat{\pi}\circ\phi_{L}\circ\pi$. Since $\phi_{N}=\tau\circ\pi$ and π is an isogeny, we have $\tau=\hat{\pi}\circ\phi_{L}$. Hence $\hat{N}\cong\tau_{*}L^{-1}$.

(3.10) gives us an interesting relation between two functors $R\mathcal{S}$ and $\otimes N$.

$$(3.12) \quad (\otimes N \circ \phi_N^* \circ R \widehat{\mathscr{S}})^3 \quad [g+i(N)] \cong (\otimes \mathscr{O}_X^{\oplus |\chi(N)|}) \circ \phi_N^* \circ \phi_{N,*}.$$

Especially, when the group scheme K(N) is discrete, e.g., when $\chi(N)$ is prime to the characteristic exponent p of the ground field, then we have

$$(3.12') \quad (\otimes N \circ \phi_N^* \circ R \mathscr{D})^{\scriptscriptstyle 3} \left[g + i(N) \right] \cong (\bigoplus_{x \in \mathbb{K}(N)} T_x^*)^{\oplus |\chi(N)|}.$$

Proof. First operate $R\mathcal{S}$ on both sides of (3.10). By (3.7), we have

$$R\widehat{\mathscr{S}}(?) \overset{L}{\otimes} R\widehat{\mathscr{S}}(N) \cong (R\widehat{\mathscr{S}} \circ \otimes N \circ \phi_N^* \circ R\widehat{\mathscr{S}} \circ \otimes N \circ (-1_x)^*) \ (?)$$

i.e.,

$$\otimes \hat{N} \circ R \hat{\mathscr{S}}[-i(N)] \cong R \hat{\mathscr{S}} \circ \otimes N \circ \phi_N^* \circ R \hat{\mathscr{S}} \circ \otimes N \circ (-1_r)^*.$$

Operating $(-1_x)^* \circ R\mathscr{S} \circ \phi_{N,*}$ from the right, we have

$$\begin{split} \otimes \, \hat{N} \circ \varphi_{N,*}[-g - i(N)] & \cong \, R \hat{\mathscr{G}} \circ \otimes \, N \circ \phi_N^* \circ R \hat{\mathscr{G}} \circ \otimes \, N \circ R \mathscr{G} \circ \phi_{N,*} \\ & \cong \, R \hat{\mathscr{G}} \circ \otimes \, N \circ \phi_N^* \circ R \hat{\mathscr{G}} \circ \otimes \, N \circ \phi_N^* \circ R \hat{\mathscr{G}} \\ & \cong \, R \hat{\mathscr{G}} \circ (\otimes \, N \circ \phi_N^* \circ R \hat{\mathscr{G}})^2 \; . \end{split}$$

Hence $\otimes N \circ \phi_N^* \circ \otimes \hat{N} \circ \phi_{N,*} \cong (\otimes N \circ \phi_N^* \circ R \hat{\mathscr{P}})^3 [g+i(N)].$ By (1) of Proposi-

tion 3.11, we have $\phi_N^* \hat{N} \cong (N^{-1})^{\oplus |\chi(N)|}$ and hence $\phi_N^* \circ \otimes \hat{N} \cong (\otimes \phi_N^* \hat{N}) \circ \phi_N^* \cong (\otimes (N^{-1})^{\oplus |\chi(N)|}) \circ \phi_{N,*}$, which proves our assertion. q.e.d.

In the case (X, L) is a principally polarized abelian variety, \hat{X} is identified with X by the isomorphism $\phi_L \colon X \to \hat{X}$. Hence $R\mathscr{S}$ is considered to be an automorphism of D(X). We summarize the results derived in this section for this case.

Theorem 3.13. Let (X, L) be a principally polarized abelian variety of dimension g. Then we have

- $(1) \quad (R\mathcal{S})^2 \cong (-1_x)^*[-g],$
- (2) $R\mathscr{S} \circ \otimes P_x \cong T_X^* \circ R\mathscr{S} \text{ for } x \in X$,
- (3) $R\mathscr{S} \circ \varphi \cong \hat{\varphi} \circ R\mathscr{S}$ for an isogeny $\varphi \colon X \to X$.
- (4) $R\mathscr{S} \circ \Delta \cong ((-1_x)^* \circ \Delta \circ R\mathscr{S})[g]$, where Δ is the dualizing functor of D(X),
- (5) $\hat{L} \cong L^{-1} \text{ and } \hat{L}^{-1} \cong (-1_x)^*L$,
- (6) $(\otimes L \circ R\mathcal{S})^3 \cong [-g].$
- (1) and (6) implies that the relation modulo the shift [] between two automorphisms $R\mathscr{S}$ and $\otimes L$ is same as the relation between the generators $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ of SL(2, Z). In other words,
- (3.14) if X is principally polarized, then $\mathrm{SL}(2, \mathbb{Z})$ acts on D(X) modulo the shift.

Remark 3.15. The relation between automorphisms of D(X) and semi-homogeneous vector bundles on X will be discussed in [5]. Some applications of (3.14) to the vector bundles on an abelian surface will be treated in a forthcoming paper.

§ 4. Picard sheaves

In this section as an application of Fourier functor, we calculate the cohomology of Picard sheaves and determine the moduli of deformations of Picard sheaves.

Let C be a nonsingular complete curve of genus ≥ 2 . We fix a point c of C and put $\xi_n = \mathcal{O}_C(n(c))$. We identify C with the subvariety $\{(x) - (c) | x \in C\}$ of the Jacobian variety X = J(C) and also identify a sheaf on C with a sheaf on X supported by C. The subvariety $W_i = \overbrace{C + \cdots + C}^i$ of X is said to be the distinguished subvariety of dimension i, for $0 \leq i \leq g-1$.

 W_{g-1} is a divisor of X and (X, L) is a principally polarized abelian variety of dimension g, where $L = \mathcal{O}_X(W_{g-1})$. We denote the canonical point of (X, L) by κ , that is, $\kappa - W_{g-1} = W_{g-1}$.

Definition 4.1. The sheaf $F_n=R^{\scriptscriptstyle 1}\mathscr{S}(\xi_n)$ is called a Picard sheaf of rank g-n-1.

Our definition of F_n is same as that in [8], because a normalized Poincaré bundle \mathscr{L} on $C \times X$ is isomorphic to $\mathscr{D}|_{C \times X}$. Replacing c by another point $c' \in C$, we get another Picard sheaf F'_n .

Proposition 4.2. $F_n' \cong T_{n(c'-c)}^* F_n \otimes P_{c-c'}$

$$egin{aligned} Proof. & F_n' &= R^1 \mathscr{S}(T_{c'-c}^* \xi_n') \ &\cong R^1 \mathscr{S}(\xi_n') \otimes P_{c-c'} \ &\cong R^1 \mathscr{S}(\xi_n \otimes P_{nc'-nc}) \otimes P_{c-c'} \ &\cong T_{n(c'-c)}^* F_n \otimes P_{c-c'} \ . \end{aligned}$$
 q.e.d.

We summarize some fundamental properties of F_n .

THEOREM 4.2 (See [8].)

- (1) F_n is zero for n > 2g-2. Supp F_n is κW_{2g-2-n} for $g-1 \le n \le 2g-2$. Supp F_n is X and the rank of F_n at the generic point of X is g-n-1 for n < g-1. F_n is locally free for n < 0.
- (2) The i-th Chern class $c_i(F_n)$ is rationally equivalent to W_{g-i} for $i \le g-1$. Especially, $\det F_n \cong L$ for $n \le g-1$.
- (3) The projective fibre space $P(\alpha^*F_n)$ associated with α^*F_n is isomorphic to the (2g-2-n)-th symmetric product $\operatorname{Sym}^{2g-2-n}(C)$. Where α is the automorphism of X for which $\alpha(x) = \kappa x$.

By the following proposition, we can apply the theory of Fourier functor to Picard sheaves.

PROPOSITION 4.3. (1) For $n \leq g-1$, F_n is $\hat{\xi}_n$, W.I.T. holds for F_n , $i(F_n) = g-1$ and $\hat{F}_n \cong (-1_x)^* \xi_n$.

- (2) For $n \geq g-1$, F_n is isomorphic to $\alpha^* \mathcal{E}_{xt^1_{\sigma_X}}(F_{2g-2-n}, \mathcal{O}_X)$ and $\mathscr{S}(\xi_n) \cong \alpha^* \mathcal{H}_{om_{\sigma_X}}(F_{2g-2-n}, \mathcal{O}_X)$.
 - (3) $\mathcal{E}_{xt_{\mathscr{O}_X}^i}(F_n, \mathscr{O}_X)$ is zero for $i \geq 2$, $n \geq g-1$.

Proof. Since dim Supp $\xi_n = 1$, $R^i \mathcal{S}(\xi_n)$ is zero for i > 1. On the other hand, $\mathcal{S}(\xi_n)$ is zero for n < g ([8] § 3). Hence, when n < g, W.I.T. holds for

 ξ_n and $i(\xi_n) = 1$. Therefore (1) follows from Corollary 2.4. Since $\Delta(\mathcal{O}_c)$ is isomorphic to $K_c[1] \cong \xi_{2g-2} \otimes P_s[1]$, ξ_n is isomorphic to $\Delta(\xi_{2g-2-n} \otimes P_s)[-1]$. Hence, by (3.8), we have

$$R\mathscr{S}(\xi_n) \cong R\mathscr{S}(\Delta(\xi_{2g-2-n} \otimes P_{\epsilon})[-1])$$

$$\cong ((-1_x)^*\Delta R\mathscr{S}(\xi_{2g-2-n} \otimes P_{\epsilon}))[-g-1]$$

$$\cong (-1_x)^*T_{\epsilon}^*(\Delta R\mathscr{S}(\xi_{2g-2-n}))[-g-1]$$

$$\cong \alpha^*(\Delta R\mathscr{S}(\xi_{2g-2-n}))[-g-1].$$

When $n \geq g-1$, $R\mathcal{S}(\xi_{2g-2-n})$ is isomorphic to $F_n[-1]$ by (1). Hence we have

$$\begin{split} R\mathscr{S}(\xi_n) &\cong \alpha^*(R \, \mathcal{H}_{om_{\mathscr{O}_X}}(F_{2g-2-n}[-1], \, \mathscr{O}_X)[g])[-g-1] \\ &\cong \alpha^*R \, \mathcal{H}_{om_{\mathscr{O}_X}}(F_{2g-2-n}, \, \mathscr{O}_X) \; . \end{split}$$

Therefore, $R^i \mathcal{S}(\xi_n)$ is isomorphic to $\alpha^* \mathcal{E}_{xt_{\sigma_X}^i}(F_{2g-2-n}, \mathcal{O}_x)$, which shows (2) and (3).

Applying the result in $\S 3$ and $\S 4$, we have the following three propositions.

Proposition 4.4 (Cohomology of Picard sheaf). Assume that $n \leq g$ -1.

(1) $h^g(X, F_n \otimes P_x) = 0$ for all $x \in X$. When $0 \le i \le g-1$, we have

$$h^i(X, F_n \otimes P_X) = egin{cases} (g-1) & & if & -x \in C \ i & & \\ 0 & & if & -x \notin C \end{cases}$$

(2)
$$h^i(X, F_n \otimes L^{-1} \otimes P_x) = h^{i-g+1}(C, \xi_{n+g} \otimes P_{\varepsilon+x})$$
 for all $x \in X$

(3)
$$h^i(X, F_n \otimes L \otimes P_x) = \begin{cases} 2g - n - 1 & \text{for } i = 0 \\ 0 & \text{for } i > 0 \end{cases}$$

Proof. By Proposition 2.7, $H^i(X, F_n \otimes P_x)$ is isomorphic to $\operatorname{Ext}_{\varrho_X}^{i+1}(k(x), (-1_x)^*\xi_n)$, which shows (1). By Corollary 2.5 and (5) of Theorem 3.13, $H^i(X, F_n \otimes L^{-1} \otimes P_x) \cong \operatorname{Ext}_{\varrho_X}^i(L \otimes P_{-x}, F_n)$ is isomorphic to $\operatorname{Ext}_{\varrho_X}^{i-g+1}(\widehat{L \otimes P_{-x}}, \widehat{F}_n) \cong \operatorname{Ext}_{\varrho_X}^{i-g+1}(L^{-1} \otimes P_x, (-1_x)^*\xi_n)$. Since $L|_{\mathcal{C}} \cong \xi_g$, we have $H^i(X, F_n \otimes L^{-1} \otimes P_x) \cong H^{i-g+1}(X, L \otimes P_{-x} \otimes (-1_x)^*\xi_n) \cong H^{i-g+1}(C, \xi_n \otimes (-1_x)^*L|_{\mathcal{C}} \otimes P_x) \cong H^{i-g+1}(C, \xi_{n+g} \otimes P_{x+x})$, which shows (2). In a similar manner, we have $H^i(X, F_n \otimes L \otimes P_x) \cong \operatorname{Ext}_{\varrho_X}^{i+1}((-1_x)^*(L \otimes P_x), (-1_x)^*\xi_n) \cong H^{i+1}(C, \xi_{n-g} \otimes P_{-x})$. Since $\deg \xi_{n-g} = n - g < 0$, we have by Riemann-Roch theorem, $h^0(C, \xi_{n-g} \otimes P_{-x}) = 0$ and $h^1(C, \xi_{n-g} \otimes P_{-x}) = 2g - n - 1$. Hence we have proved (3). q.e.d.

Proposition 4.5 (Local property of Picard sheaf).

$$\operatorname{Tor}_{i}^{\sigma_{X}}\left(F_{n},\,k(x)
ight)\congegin{cases} H^{i}(C,\,\xi_{n}\otimes P_{x}) & i=0\ H^{0}(C,\,\xi_{n}\otimes P_{x}) & i=1\ \operatorname{Tor}_{i-2}^{\sigma_{X}}\left(\mathscr{S}(\xi_{n}),\,k(x)
ight) & i\geq2 \end{cases}$$

Proof. Assume that $n \leq g-1$. Then we have by Proposition 2.7, $\operatorname{Ext}_{\sigma_X}^i(k(x), F_n) \cong H^{i-g+1}(X, (-1_X)^*\xi_n \otimes P_{-x})$. Hence by the duality theorem, $\operatorname{Tor}_{\sigma_X}^i(F_n, k(x))$ is isomorphic to $\operatorname{Ext}_{\sigma_X}^{g-i}(k(x), F_n) \cong H^{i-i}(C, \xi_n \otimes P_x)$, which proves our assertion for $n \leq g-1$ because $\mathscr{S}(\xi_n)$ is zero for $n \leq g-1$. By what we have shown, the minimal resolution of $F_n \otimes \mathscr{O}_{X,x}$ is

$$0 \longleftarrow F_n \otimes \mathscr{O}_{X,x} \longleftarrow \mathscr{O}_{X,x} \bigotimes_{\iota} H^{\iota}(C, \xi_n \otimes P_x) \longleftarrow \mathscr{O}_{X,x} \otimes H^0(C, \xi_n \otimes P_x) \longleftarrow 0.$$

By (2) of Proposition 4.3, the sequence

$$(4.6) \quad 0 \leftarrow F_{2g-2-n} \otimes \mathscr{O}_{X,\alpha(x)} \leftarrow \mathscr{O}_{X,\alpha(x)} \otimes H^0(C,\xi_n \otimes P_x)^\vee \leftarrow \mathscr{O}_{X,\alpha(x)} \otimes H^1(C,\xi_n \otimes P_x)^\vee \leftarrow \mathscr{O}_{X,\alpha(x)} \otimes H^1(C,\xi_n \otimes P_x)^\vee \leftarrow \mathscr{O}_{X,\alpha(x)} \otimes \mathscr{O}_{X,\alpha(x)} \leftarrow 0 \quad \text{is exact.}$$

It is easy to see that the left three terms of (4.6) is the minimal resolution of $F_{2g-2-n}\otimes \mathcal{O}_{X,\alpha(x)}$. Hence $\operatorname{Tor}_i^{\sigma_X}(F_{2g-2-n},k(\alpha(x)))$ is isomorphic to $H^i(C,\xi_n\otimes P_x)^\vee\cong H^{1-i}(C,K_C\otimes \xi_{-n}\otimes P_{-x})\cong H^{1-i}(C,\xi_{2g-2-n}\otimes P_{\alpha(x)})$ for i=0,1 and isomorphic to $\operatorname{Tor}_{i-2}^{\sigma_X}(\mathscr{S}(\xi_{2g-2-n}),k(\alpha(x)))$. Hence our assertion has been proved for $n\geq g-1$, too.

PROPOSITION 4.7. Assume that $n \leq g-1$. Then I.T. holds for $F_n \otimes L$, its index is zero and $\widehat{F_n \otimes L} \cong \alpha^* F_{n-g} \otimes L^{-1}$.

Proof. The first half has been proved in (3) of Proposition 4.4. By (6) of Theorem 3.13, we have $(\otimes L \circ R\mathscr{S} \circ \otimes L)(F_n \otimes L) = (\otimes L \circ R\mathscr{S})^3(\xi_n)[1] \cong \xi_n[1-g]$. Hence $\widehat{F_n \otimes L}$ is isomorphic to $(\otimes L^{-1} \circ R\mathscr{S}^{-1} \circ \otimes L^{-1})(\xi_n)[1-g] \cong ((-1_x)^*R\mathscr{S}(\xi_n \otimes L^{-1}) \circ \otimes L^{-1})[1] \cong ((-1_x)^*R\mathscr{S}(\xi_{n-g} \otimes P_s) \otimes L^{-1})[-1] \cong \alpha^*F_{n-g} \otimes L^{-1}$. q.e.d.

Next we consider the moduli of deformations of Picard sheaves. Define the functor $\mathcal{S}_{p}l_{x}$ from the category of schemes (of finite type over k) into the category of sets by

 $\mathscr{S}_{p}l_{x}\left(T\right)=\{E\,|\,E \text{ is a T-flat coherent } \mathscr{O}_{X\times T}\text{-module and }E_{t}=E\,|_{X\times t} \text{ is simple for every }t\in T\}/_{\sim},$

for every scheme T, where $E \sim E'$ if and only if $E \cong E' \otimes_{O_T} L$ for some line bundle L on T, and $\mathscr{S}_{pl_X}(f)$: $\mathscr{S}_{pl_X}(T') \to \mathscr{S}_{pl_X}(T)$ is the usual pull back for every morphism $f: T \to T'$. For every simple coherent sheaf F

on X, $\mathscr{S}_p l_X^F$ denotes the connected component of $\mathscr{S}_p l_X$ containing F. The following is the main theorem in this section.

Theorem 4.8. Assume that $n \leq g-1$ and (*) g(C)=2 or C is not hyperelliptic. Then $\mathscr{S}_pl_X^{F_n}$ is represented by $X\times X$ and the coherent sheaf $\tilde{F}_n=p_{12}^*m^*F_n\otimes p_{13}^*\mathscr{P}$ on $X\times (X\times X)$.

Let $A_F\colon X\times \hat X\to \mathscr S_pl_X^F$ be the morphism of functors such that $A_F(f,g)=T_f^*F_T\otimes P_g$ for every scheme T and T-valued point (f,g) of $X\times \hat X$, where we always identify a scheme S and the contravariant functor h_S on the category of schemes for which $h_S(T)$ is the set of T-valued points of S, i.e., morphisms from T to S. Theorem 4.8 says that A_F is an isomorphisms for $F=F_n$ $(n\leq g-1)$ under the assumption (*). The following three lemmas are essential for the proof of the theorem.

Lemma 4.9. Picard sheaf F_n $(n \le g-1)$ is simple and we have

$$\dim_k \operatorname{Ext}^1_{\sigma_X}(F_n, F_n) = 3g - 2$$
 if C is hyperelliptic
= $2g$ otherwise.

Proof. By Corollary 2.5 and Proposition 4.3, it suffices to show the equality for $\dim_k \operatorname{Ext}^1_{\sigma_x}(\xi_n, \xi_n)$. Since there is a spectral sequence

$$H^{i}(X, \mathscr{E}xt^{j}_{\mathscr{O}X}(\xi_{n}, \xi_{n})) \Rightarrow \operatorname{Ext}_{\mathscr{O}X}^{i+j}(\xi_{n}, \xi_{n})$$
 ,

we have the exact sequence

$$0 \longrightarrow H^{1}(X, \operatorname{End}_{\sigma_{X}}(\xi_{n})) \longrightarrow \operatorname{Ext}_{\sigma_{X}}^{1}(\xi_{n}, \xi_{n}) \longrightarrow H^{0}(X, \operatorname{Ext}_{\sigma_{X}}^{1}(\xi_{n}, \xi_{n})) \longrightarrow H^{2}(X, \operatorname{End}_{\sigma_{X}}(\xi_{n})) \longrightarrow 0.$$

Since $\mathscr{E}_{nd_{\mathscr{O}_{X}}}(\xi_{n})$ is isomorphic to \mathscr{O}_{c} , $H^{2}(X,\mathscr{E}_{nd_{\mathscr{O}_{X}}}(\xi_{n}))$ is zero and we have

$$\begin{split} \dim_k \operatorname{Ext}^1_{\mathscr{O}_X}(\xi_n, \xi_n) &= h^1(C, \mathscr{O}_C) + h^0(X, \mathscr{E}_{xt^1_{\mathscr{O}_X}}(\xi_n, \xi_n)) \\ &= g + h^0(X, \mathscr{E}_{xt^1_{\mathscr{O}_X}}(\xi_n, \xi_n)) \;. \end{split}$$

Sublemma. Let ξ be a line bundle on a subscheme C of X. Then there is a canonical isomorphism $\varphi \colon \mathscr{E}_{xt_{\mathscr{O}_{X}}^{i}}(\mathscr{O}_{c},\mathscr{O}_{c}) \cong \mathscr{E}_{xt_{\mathscr{O}_{X}}^{i}}(\xi,\xi)$ for every i.

Since \mathscr{E}_{xt} commutes with localizations, it suffices to give the canonical isomorphism in the case X is affine and $\xi \cong \mathscr{O}_{c}$. Let $f \colon \mathscr{O}_{c} \rightrightarrows \xi$ be an isomorphism. Since $\mathscr{E}_{xt_{\mathscr{O}_{X}}^{i}}(^{*},^{*})$ is a bifunctor, we have two isomorphisms

$$f_a = \mathscr{E}_{xt_{\mathscr{O}_X}^i}(\mathrm{id}, f) \colon \mathscr{E}_{xt_{\mathscr{O}_X}^i}(\mathscr{O}_{\mathcal{C}}, \mathscr{O}_{\mathcal{C}}) \cong \mathscr{E}_{xt_{\mathscr{O}_X}^i}(\mathscr{O}_{\mathcal{C}}, \xi)$$

$$f_b = \mathscr{E}_{xt_{\mathscr{O}_X}^i}(f, \mathrm{id}) \colon \mathscr{E}_{xt_{\mathscr{O}_X}^i}(\xi, \xi) \cong \mathscr{E}_{xt_{\mathscr{O}_X}^i}(\mathscr{O}_{\mathcal{C}}, \xi) .$$

Put $\varphi = f_b^{-1} \circ f_a$. If $g \colon \mathscr{O}_c \cong \xi$ is another isomorphism, then there is a unit \overline{u} of \mathscr{O}_c such that $g = f \circ (\times \overline{u})$. There is an affine neighbourhood Y of C and a unit u of \mathscr{O}_Y whose image by the natural homomorphism $\mathscr{O}_Y \to \mathscr{O}_C$ is \overline{u} . Since $(g_b^{-1} \circ g_a)|_Y = ((\times u) \circ f_b|_Y)^{-1} \circ (f_a|_Y \circ (\times u)) = \varphi|_Y$ and $\mathscr{E}_{xt_{\mathscr{O}_X}}(\mathscr{O}_c, \mathscr{O}_c) \otimes \mathscr{O}_{X,x}$ is zero for every $x \notin Y$, φ does not depend on the choice of the isomorphism f. This proves the sublemma.

By this sublemma, we have only to compute the dimension of

$$H^0(X, \mathscr{E}_{xt^1_{\mathscr{O}_X}}(\mathscr{O}_C, \mathscr{O}_C)) \cong H^0(C, N_{C/X})$$
.

There is a natural exact sequence

$$0 \longrightarrow (N_{c/x})^{\vee} \longrightarrow \Omega_x \otimes \mathcal{O}_c \longrightarrow K_c \longrightarrow 0.$$

Since Ω_X is trivial, tensoring K_c , we have the exact sequence

$$0 \longrightarrow (N_{C/X})^{\vee} \otimes K_C \longrightarrow K_C^{\oplus g} \longrightarrow K_C^{\otimes 2} \longrightarrow 0$$
 .

In the long exact sequence

$$H^{0}(K_{C})^{\oplus g} \stackrel{\alpha}{\longrightarrow} H^{0}(K_{C}^{\otimes 2}) \longrightarrow H^{1}((N_{C/X})^{\vee} \otimes K_{C})$$
 $\longrightarrow H^{1}(K_{C})^{\oplus g} \longrightarrow H^{1}(K_{C}^{\otimes 2}) \longrightarrow 0$,

the map α is just the natural map $H^0(K_c)\otimes H^0(K_c)\to H^0(K_c^{\otimes 2})$. By Riemann-Roch theorem, we have $h^0(N_{c/x})=h^1((N_{c/x})^\vee\otimes K_c)=\dim\operatorname{Coker}\alpha+gh^1(K_c)-h^1(K_c^{\otimes 2})=\dim\operatorname{Coker}\alpha+g$. In the case C is hyperelliptic, dim Coker α is g-2 and otherwise α is surjective by a theorem due to Noether, [3] p. 502, which completes our proof.

LEMMA 4.10. If $n \leq g-1$ and $T_x^*F_n \otimes P_y \cong T_{x'}^*F_n \otimes P_{y'}$ for $x, x', y, y' \in X$, then x=x' and y=y'.

Proof. The assumption implies that $P_x \otimes T_{-y}^* \xi_n \cong P_{x'} \otimes T_{-y'}^* \xi_n$ by (3.1). Since Supp $\xi_n = C$, y equals to y' and since $\operatorname{Pic}^\circ X \to \operatorname{Pic}^\circ C$ is injective, x is equal to x'.

We denote the tangential map of A_F at $(0, \hat{0})$ by α_F . Since the tangent spaces of X at 0, of \hat{X} at $\hat{0}$ and of $\mathscr{S}_{P}l_X$ at F are identified with $H^0(X, T_X)$, $H^1(X, \mathscr{O}_X)$ and $\operatorname{Ext}^1_{\mathscr{O}_X}(F, F)$, respectively, α_F is a k-linear map from $H^0(X, T_X)$ $\oplus H^1(X, \mathscr{O}_X)$ into $\operatorname{Ext}^1_{\mathscr{O}_X}(F, F)$.

Lemma 4.11. α_{F_n} is injective for the Picard sheaf F_n $(n \leq g-1)$.

Assume that W.I.T. holds for F. By (3.1), we have $T_x^*\widehat{F\otimes P_y}\cong T_y^*\widehat{F}$

 $\otimes P_{-x}$. This is easily extended to scheme valued points and we have $T_f^*F_s \otimes P_g \cong T_g^*\hat{F}_s \otimes P_{-f}$ for every scheme S and S-valued point (f,g) of $X \times \hat{X}$. As a special case $S = \operatorname{Spec} k[\varepsilon]/(\varepsilon^2)$, we have

Proposition 4.12. Assume that W.I.T. holds for a coherent sheaf F on X. Then the diagram

$$\alpha_{F} \colon H^{0}(X, T_{X}) \oplus H^{1}(X, \mathscr{O}_{X}) \longrightarrow \operatorname{Ext}^{1}_{\mathscr{O}_{X}}(F, F)$$

$$\downarrow \downarrow j \qquad \qquad \downarrow \backslash R\mathscr{S}$$

$$\alpha_{\hat{F}} \colon H^{1}(X, \mathscr{O}_{X}) \oplus H^{0}(X, T_{X}) \longrightarrow \operatorname{Ext}^{1}_{\mathscr{O}_{\hat{X}}}(\hat{F}, \hat{F})$$

$$\parallel \downarrow \qquad \qquad \downarrow \downarrow \downarrow$$

$$H^{0}(\hat{X}, T_{\hat{X}}) \oplus H^{1}(\hat{X}, \mathscr{O}_{\hat{X}})$$

is commutative, where j(a, b) = (b, -a).

By this proposition, the injectivity of α_{F_n} is equivalent to that of α_{ξ_n} . Let

$$0 \longrightarrow H^{1}(X, \mathscr{E}_{n}d_{\sigma_{X}}(F)) \longrightarrow \operatorname{Ext}^{1}_{\sigma_{X}}(F, F) \stackrel{\varepsilon}{\longrightarrow} H^{0}(X, \mathscr{E}_{\times t^{1}_{\sigma_{X}}}(F, F))$$

be the exact sequence obtained from the local-global spectral sequence with respect to Ext. The following proposition is easily verified.

Proposition 4.13. (1) $\alpha_F(H^1(X, \mathcal{O}_X))$ is contained in $H^1(X, \mathcal{E}_{nd_{\mathcal{O}_X}}(F))$.

(2) The diagram

$$0 \longrightarrow H^{1}(X, \mathscr{O}_{X}) \longrightarrow T_{X \times \widehat{X}, (0, \widehat{0})} \longrightarrow H^{0}(X, T_{X}) \longrightarrow 0$$

$$\downarrow^{\beta_{F}} \qquad \qquad \downarrow^{\alpha_{F}} \qquad \downarrow^{\epsilon_{\circ} \gamma_{F}}$$

$$0 \longrightarrow H^{1}(X, \mathscr{E}_{nd_{\mathscr{O}_{X}}}(F)) \longrightarrow \operatorname{Ext}^{1}_{\mathscr{O}_{X}}(F, F) \stackrel{\varepsilon}{\longrightarrow} H^{0}(X, \mathscr{E}_{xt^{1}_{\mathscr{O}_{X}}}(F, F))$$

is commutative, where β_F and γ_F are the restrictions of α_F to $H^1(X, \mathcal{O}_X)$ and $H^0(X, T_X)$, respectively.

- (3) β_F is equal to $H^1(i)$, where i is the natural homomorphism from \mathcal{O}_X into $\operatorname{End}_{\sigma_X}(F)$.
- (4) $H^0(X, T_X)$ is the set of derivations of \mathcal{O}_X . For $D \in \operatorname{Der}_k(\mathcal{O}_X, \mathcal{O}_X)$, $\gamma_{\mathbb{F}}(D)$ is the extension class of

$$0 \longrightarrow F \longrightarrow F_n \longrightarrow F \longrightarrow 0$$
,

where F_D is $F \oplus F$ as a sheaf of abelian groups and regarded as an \mathcal{O}_X -module by a(m, m') = (am + D(a)m', am') for every $a \in \mathcal{O}_X$ and $(m, m') \in F$ $\oplus F$.

- (5) $\varepsilon \circ \gamma_F$ is equal to $H^0(\tilde{\gamma}_F)$, where $\tilde{\gamma}_F$ is an \mathscr{O}_X -homomorphism from T_X into $\mathscr{E}_{\times t^1_{\mathscr{O}_X}}(F,F)$ such that $\tilde{\gamma}_F|_U$ is equal to $\gamma_{F_U}\colon \operatorname{Der}_k(\mathscr{O}_U,\mathscr{O}_U) \to \operatorname{Ext}^1_{\mathscr{O}_U}(F_U,F_U)$ for every affine open subset U of X.
- (6) If Y is a subscheme of X and F is a line bundle on Y, then $\tilde{\gamma}_F$ is the composition of the natural morphisms $T_X \to T_X \otimes \mathcal{O}_Y$ and $T_X \otimes \mathcal{O}_Y \to N_{Y/X} \cong \mathscr{E}_{xt}^1_{\mathscr{O}_X}(F,F)$.

In the case F is ξ_n , a line bundle on C, $\beta_F = H^1 [\mathcal{O}_X \to \mathcal{O}_C]$ is an isomorphism, $H^0[T_X \to T_X \otimes \mathcal{O}_C]$ is also an isomorphism and by the exact sequence

$$0 \longrightarrow T_c \longrightarrow T_x \otimes \mathscr{O}_c \longrightarrow N_{c/x} \longrightarrow 0$$
,

 $H^0[T_X \otimes \mathcal{O}_C \to N_{C/X}]$ is injective. Hence by (6) of Proposition 4.13, $\varepsilon \circ \gamma_F = H^0(\tilde{\gamma}_F)$ is an injection. Therefore by the diagram (2) of the proposition, α_F is an injection. This completes the proof of Lemma 4.11.

For the proof of Theorem 4.8, we need the following general facts about the flat deformation of a simple coherent sheaf.

- (4.14) (Relative representability of \mathscr{S}_{pl}) Let $f \colon V \to S$ be a proper integral morphism and F and G coherent \mathscr{O}_{V} -modules. Assume that F is S-flat and $F \otimes k(s)$ is simple for every $s \in S$. Then there exists a subscheme W of S such that for every morphism $\alpha \colon T \to S$, F_{T} is isomorphic to $G_{T} \otimes_{\mathscr{O}_{T}} L$ with some line bundle L on T if and only if α factors through the inclusion $W \subseteq S$. We call W the maximal subscheme over which F and G are isomorphic to each other.
- (4.15) (Pro-representability of \mathcal{S}_{pl}) Let F be a simple coherent \mathcal{O}_{x} -module. The functor \mathcal{D} on artinian local rings A over k such that
- $\mathscr{D}(A) = \{E | E \text{ is an } A\text{-flat coherent } \mathscr{O}_{X_A}\text{-module such that } E \bigotimes_A A/m \text{ is isomorphic to } F\}/\text{isom.}$

is representable by a complete local ring R whose Zariski tangent space t_R is canonically isomorphic to $\operatorname{Ext}^1_{\sigma_X}(F,F)$. We call R the local moduli of F.

(4.16) (Jumping never happens) Let E be an element of $\mathscr{S}_{pl_{\mathcal{X}}}(T)$. If $E|_{X\times t}\cong F$ for every closed point t of an open dence subset U of T, then $E|_{X\times t}\cong F$ for every $t\in T$.

The proofs are not so difficult and those of (4.14) and (4.15) are similar

to the case of simple vector bundles. The stronger fact that the étale sheafification of $\mathcal{S}_{pl_{V/S}}$ is representable by an algebraic space has been proved in [1]. Since the fact does not make our business so easy, we prove our theorem directly by (4.14), (4.15) and (4.16).

Step I. The functor A_{F_n} is injective.

Let f and g be two morphism from T to $X \times X$ such that $A_{F_n} \circ f = A_{F_n} \circ g$. Since $X \times X$ is a group scheme and A_{F_n} is an $X \times X$ -morphism with respect to the natural action of $X \times X$ to $\mathcal{F}_p l_X^{F_n}$, we may assume that g is the constant map to (0,0). Let $\Phi(F_n)$ be the maximal subscheme of $X \times X$ over which \tilde{F}_n and $p_1^*F_n$ on $X \times (X \times X)$ are isomorphic to each other. Since $A_{F_n} \circ f$ is the constant map to F_n by our assumption, f factors the inclusion $\Phi(F_n) \subseteq X \times X$. By Lemma 4.10, $\Phi(F_n)$ is supported by the origin (0,0) and by Lemma 4.11, the tangent space of $\Phi(F_n)$ is zero. Hence $\Phi(F_n)$ is (0,0) and f is zero. (It is easily seen that $\Phi(F_n)$ is a group subscheme of $X \times X$. Hence Lemma 4.11 is not necessary for the proof of our assertion in the case char k = 0.)

Step II. A_{F_n} is an open immersion.

 A_{F_n} induces the homomorphism $f \colon R \to Q$ of complete local rings, where (R, \mathfrak{m}) is the local moduli of F_n and (Q, \mathfrak{n}) is the completion of $\mathcal{O}_{X \times X, (0,0)}$. Since A_{F_n} is injective, the fibre $Q/\mathfrak{m}Q$ of f is isomorphic to Q/\mathfrak{n} . Hence f is a surjection. By Lemma 4.9, we have

$$2g = \dim Q \leq \dim R \leq \dim t_R = 2g$$
.

Hence dim R=2g, R is regular and f is a bijection. For every morphism $g\colon T\to \mathscr{S}_{pl_X^{F_n}}$, by virtue of (4.14), $T\times_{\mathscr{S}_{pl_X^{F_n}}}(X\times X)$ is representable by a scheme U. By what we have shown, $\hat{\mathcal{O}}_{T,h(u)}\to\hat{\mathcal{O}}_{U,u}$ is an isomorphism for every $u\in U$.

Hence h is étale. By Step I, h is an open immersion.

Step III. A_{F_n} is a closed immersion.

In the above situation, we have to show that U is a union of con-

nected components of T. Hence we may assume that T is irreducible and it suffices to prove that the set of k-rational points U(k) of U is empty or equal to T(k). Hence we may also assume that T is reduced. Assume that $U(k) \neq \phi$. Since $X \times X$ is an abelian variety, every rational map from T to $X \times X$ is a morphism. Hence there is a morphism $e = (e_1, e_2) \colon T \to X \times X$ whose restriction to U is equal to ℓ . Let $\mu \colon X \times X \times \mathcal{S}_p|_X^{F_n} \to \mathcal{S}_p|_X^{F_n} \to \mathcal{S}_p|_X^{F_n}$ be the natural action of $X \times X$ on $\mathcal{S}_p|_X^{F_n}$. Put $c = [T \xrightarrow{(-e,g)} X \times X \times \mathcal{S}_p|_X^{F_n} \xrightarrow{\mu} \mathcal{S}_p|_X^{F_n}]$. Then $c(U(k)) = \{F_n\}$ and hence by virtue of (4.16), we have $c(T(k)) = \{F_n\}$, that is, $g(a) = T_{e_1(a)}^*F_n \otimes P_{e_2(a)}$ for every $a \in T(k)$. Hence U(k) is equal to T(k).

Step IV. A_{F_n} is an isomorphism.

It suffices to show that $A_{F_n}(k)$: $(X \times X)(k) \to \mathcal{S}_p l_X^{F_n}(k)$ is a surjection. By the definition, $\mathcal{S}_p l_X^{F_n}$ is connected. Hence, for every $F \in \mathcal{S}_p l_X^{F_n}(k)$, there exist a connected scheme T and a morphism $g \colon T \to \mathcal{S}_p l_X^{F_n}$ such that g(T(k)) contains both F and F_n . By what we have shown in Step II and Step III, g factor through A_{F_n} . Hence F is contained in Im $A_{F_n}(k)$.

We have completed the proof of Theorem 4.8.

Remark 4.17. Even if the condition (*) does not hold, $A_{F_n}(k)$ is bijective for $n \leq g-1$. But if C is hyperelliptic and $g(C) \geq 3$, then the dimension of the tangent space of $\mathscr{S}_p l_X^{F_n}$ is greater than 2g, hence $\mathscr{S}_p l_X^{F_n}$ is not reduced.

§ 5. A characterization of Picard sheaf

In this section we give a characterization of the Picard sheaf in the case g(C) = 2.

Let ξ_n be the same as in the beginning of § 4. There is a natural exact sequence

$$0 \longrightarrow \xi_{n-1} \longrightarrow \xi_n \longrightarrow k(0) \longrightarrow 0.$$

This gives the exact sequence

$$0 \longrightarrow \mathcal{S}(\xi_{n-1}) \longrightarrow \mathcal{S}(\xi_n) \longrightarrow \mathcal{O}_X \xrightarrow{f} F_{n-1} \longrightarrow F_n \longrightarrow 0.$$

If $n \leq g-1$, then $\mathcal{S}(\xi_n)$ is zero ([8] § 3). Hence, for $n \leq g-1$, we have the exact sequence

$$(5.1) \quad 0 \longrightarrow \mathcal{O}_{\mathcal{X}} \xrightarrow{f} F_{r-1} \longrightarrow F_r \longrightarrow 0.$$

By (1) of Proposition 4.4, both dim $\operatorname{Hom}_{\sigma_X}(\mathcal{O}_X, F_n) = h^0(F_n)$ and dim $\operatorname{Ext}^1_{\sigma_X}(F_n, \mathcal{O}_X) = h^{g-1}(F_n)$ is equal to 1 for $n \leq g-1$. Hence we have

LEMMA 5.2. Assume that $n \leq g-1$. Then f is the unique (up to constant multiplications) nonzero homomorphism from \mathcal{O}_X into F_n and (5.1) is the unique nontrivial extension of F_n by \mathcal{O}_X .

We denote the set $\{T_x^*F_n\otimes P_y|x,y\in X\}$ by Φ_n . The above lemma is generalized for members of Pic° X and Φ_n .

Proposition 5.3. Assume that $n \leq g - 1$.

- (1) Every nonzero homomorphism f from $P_x \in \operatorname{Pic}^{\circ} X$ to $F \in \Phi_{n-1}$ is injective and Coker f is isomorphic to a member of Φ_n .
 - (2) If $P_x \in \text{Pic}^{\circ} X$, $F \in \Phi_n$ and the exact sequence

$$0 \longrightarrow P_r \longrightarrow F' \longrightarrow F \longrightarrow 0$$

does not split, then F' is isomorphic to a member of Φ_{n-1} .

Proof. We prove only (2), because (1) can be proved in a quite similar manner. First we may assume that $F = F_n$. Since $\operatorname{Ext}^1_{e_X}(F_n, P_x) \neq 0$, we have by (1) of Proposition 4.4, that x belongs to C and $\operatorname{dim} \operatorname{Ext}^1_{e_X}(F_n, P_x)$ is equal to 1. Since $x \in C$, there is a surjection $\xi_n \to k(x)$ and we have the non-splitting exact sequence

$$0 \longrightarrow \xi_{n-1} \otimes P_n \longrightarrow \xi_n \longrightarrow k(x) \longrightarrow 0$$
.

Operating $R\mathcal{S}$, we have the exact sequence

$$0 \longrightarrow P_x \longrightarrow T_x^* F_{n-1} \longrightarrow F_n \longrightarrow 0$$
.

Since this does not split, F' is isomorphic to $T_x^*F_{n-1}$. q.e.d.

For every nontorsion coherent sheaf F on X, let $\mu(F)$ denote the rational number $r(F)^{-1} \deg (\det F)|_c$. Umemura has showed that F_n is μ -stable for $n \leq g-1$ in the case g(C)=2 ([9]). The following theorem says that the converse is also true.

THEOREM 5.4. Assume that g(C) = 2 and F is a torsion free coherent sheaf with $r(F) = r \ge 1$, det F algebraically equivalent to $\mathcal{O}_{\chi}(C)$ and $\chi(F)$ zero. Then the following conditions are equivalent to one another:

1) F is μ -stable, i.e., $\mu(E) < \mu(F)$ for every $E \subseteq F$ with r(E) < r.

- 1') F is μ -semi-stable, i.e., $\mu(E) \leq \mu(F)$ for every $E \subseteq F$.
- 2) $\operatorname{Hom}_{e_X}(F, P)$ is zero for every $P \in \operatorname{Pic}^{\circ} X$. If H is a homogeneous vector bundle with r(H) < r contained in F, then the quotient F/H is torsion free.
 - 3) $F \cong T_x^* F_{1-x} \otimes P$ for some $x \in X$ and $P \in Pic^{\circ} X$.

Proof. Obviously 1) implies 1'). Assume that F is μ -semi-stable and H is a homogeneous vector bundle with r(F) < r contained in F. Since $\mu(F) = 2/r$ is greater than $\mu(P) = 0$, $\operatorname{Hom}_{\sigma_X}(F, P)$ is zero for every $P \in \operatorname{Pic}^{\circ} X$. Let $f \colon F \to F/H$ be the projection and T the torsion part of F/H. Then $H' = f^{-1}(T)$ contains H and r(H') is equal to r(H). We have a nonzero homomorphism $\det H \to \det H'$. Hence $\det H' \cong \det H \otimes \mathscr{O}_X(D)$ for some divisor $D \geq 0$. Since $\det H \in \operatorname{Pic}^{\circ} X$ and F is μ -semi-stable, we have

$$\frac{(\mathscr{O}_{X}(D).\,\mathscr{O}_{X}(C))}{r(H)} = \frac{(\det H'.\,\mathscr{O}_{X}(C))}{r(H')} \leq \mu(F) = \frac{2}{r}.$$

Since $D \geq 0$, $(\mathcal{O}_X(D), \mathcal{O}_X(C))$ is not less than zero and different from one ([9] Lemma 3.5). Hence by the inequality above $(\mathcal{O}_X(D), \mathcal{O}_X(C))$ is zero. Hence D=0 and $\det H \to \det H'$ is an isomorphism. Since H is locally free, H' is isomorphic to H. Therefore T is zero. Hence 1') implies 2). 3) implies 1), because if F is μ -stable, so is $T_x^*F \otimes P$ for every $x \in X$ and $P \in \operatorname{Pic} X$. Hence we have only to show that 2) implies 3). We prove it by induction on r.

Case r=1. Sym² $C \to X$ is the blowing up whose center is the canonical point κ . Hence, by (3) of Proposition 4.2, F_0 is isomorphic to $N \otimes \mathfrak{m}_{X,0}$ with some line bundle N, where $\mathfrak{m}_{X,0}$ is the maximal ideal of \mathcal{O}_X at 0. By (2) of Proposition 4.2, N is isomorphic to $\mathcal{O}_X(C)$. Since r(F)=1 and F is torsion free, F is contained in det F. By the assumption, det $F \cong \mathcal{O}_X(C) \otimes P$ for some $P \in \operatorname{Pic}^\circ X$. Since length $(\det F/F) = \chi(\det F) - \chi(F) - 1$, det F/F is isomorphic to the one dimensional sky-scraper sheaf k(x) supported by a point $x \in X$. Hence F is isomorphic to $\det F \otimes \mathfrak{m}_{X,x} \cong T_x^* F_0 \otimes P \otimes P_{-x}$.

Case $r \geq 2$. We need the following easy but useful lemma.

LEMMA 5.5. Let F be a nonzero coherent sheaf on an abelian surface. If $\chi(F)$ is zero, then $\operatorname{Hom}_{\sigma_X}(P,F)$ or $\operatorname{Hom}_{\sigma_X}(F,P)$ is not zero for some $P \in \operatorname{Pic}^{\circ} X$.

Assume the contrary. Since dim $\operatorname{Hom}_{\sigma_X}(F,P)$ is equal to $h^2(F\otimes P^{-1})$

by virtue of the duality theorem and since $\chi(F \otimes P^{-1})$ is zero, $h^1(F \otimes P^{-1})$ is zero for all $P \in \operatorname{Pic}^{\circ} X$. Hence $R^i \hat{\mathscr{S}}(F)$ is zero for every i. This means that $R \hat{\mathscr{S}}(F)$ is zero. Therefore by virtue of Theorem 2.2, F is zero. This shows Lemma 5.5.

By the assumption and the above lemma, $\operatorname{Hom}_{\sigma_X}(P, F)$ is not zero for some $P \in \operatorname{Pic}^{\circ} X$. Let $f \colon P \to F$ be a nonzero homomorphism. Since F is torsion free, f is injective. Since P is homogeneous, $F' = \operatorname{Coker} f$ is torsion free. We have the exact sequence

$$0 \longrightarrow P \xrightarrow{f} F \xrightarrow{g} F' \longrightarrow 0$$
.

Since $\operatorname{Hom}_{\sigma_X}(F,P)$ is zero, this exact sequence does not split. Hence by (2) of Proposition 5.3, it suffices to show $F' \cong T_x^*F_{2-r} \otimes Q$ for some $x \in X$ and $Q \in \operatorname{Pic}^{\circ} X$. F' is torsion free, $\det F' = \det F \otimes P^{-1}$ is algebraically equivalent to $\mathcal{O}_X(C)$ and $\chi(F') = \chi(F) - \chi(P)$ is equal to zero. By induction hypothesis, we have only to show that 2) holds for F'. Obviously $\operatorname{Hom}_{\sigma_X}(F',Q)$ is zero for every $Q \in \operatorname{Pic}^{\circ} X$. Let H' be a homogeneous vector bundle contained in F'. $H = g^{-1}(H')$ is an extension of H' by P. Hence by the theorem after Lemma 3.3, H is also homogeneous. By the assumption on F, $F'/H' \cong F/H$ is torsion free. Hence 2) holds for F', which completes the proof of Theorem 5.4.

REFERENCES

- [EGA] A. Grothendieck and J. Dieudonne, Éléments de géométrie algébrique, Publ. Math. I.H.E.S.
- [1] A. Altman and S. Kleiman, Compactifying the Picard scheme, to appear in Adv. Math.
- [2] R. Hartshorne, Residues and duality, Lect. Note in Math., 20, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [3] K. Hensel and G. Landsberg, Theorie der algebraischen Functionen, Leipzig, 1902.
- [4] S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ., 18 (1978), 239-272.
- [5] ----, Semi-homogeneous vector bundles on an abelian variety, II, in preparation.
- [6] D. Mumford, Abelian varieties, Oxford University Press, 1974.
- [7] T. Oda, Vector bundles over an elliptic curve, Nagoya Math. J., 43 (1971), 41-71.
- [8] R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math., 7 (1963), 257-268.
- [9] H. Umemura, On a property of symmetric products of a curve of genus 2, Proc. Int. Symp. on Algebraic Geometry, Kyoto, 1977, Kinokuniya, Tokyo, 709-721.

Department of Mathematics Nagoya University