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ABSTRACT. We consider a theory for shallow ice shelves that includes an isotropic damage variable. A

zeroth-order shallow-shelf approximation allows a simple yet consistent treatment of both ice dynamics

and damage evolution. We find that the damage variable (like temperature) has, in general, to vary with

depth; a purely two-dimensional membrane theory can only be considered a rough approximation for

isothermal ice shelves.
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1. INTRODUCTION

Ice shelves are of crucial importance for the overall behavior
of the Antarctic ice sheet. They govern, to a large extent, the
flux of inland ice to the ocean, and thus control the wastage
of the entire ice mass of West and East Antarctica. It is
obvious that the flow of inland ice into the ocean is hindered
by their existence. In the context of climate dynamics,
therefore, ice shelves constitute a crucial element in the
interaction between climate and cryosphere. The mathemat-
ical description of ice-shelf dynamics has a long history,
beginning with Weertman’s paper in 1957 (Weertman,
1957) and including the works of Weis and others (1999)
and Baral (1999). Perturbation techniques are used to
develop a hierarchy of classes of theories of ice-sheet
equations, which are dominated by shearing processes, and
ice-shelf equations, which are chiefly governed by exten-
sional and compacting flows. To lowest order in the
shallowness parameter of these flows (the ratio between
depth scale and horizontal scale of these ice masses,
" ¼ H=L), two limiting theories have been developed: the
shallow-ice approximation (SIA) for sheets and the shallow-
shelf approximation (SSA) for shelves. We shall call these the
zeroth-order approximations. Recent work has concentrated
on higher-order approximations and proper mathematical
matching procedures between shelves and sheets across the
grounding-line region and, thus, proper transition rules from
ice sheets to ice shelves (e.g. Schoof, 2007; Kirchner and
others, 2011; Sato, 2012; Sato and Greve, 2012; Ahlkrona
and others, 2013a,b); they are not the focus of this paper.

Here we prefer to consider an SSA formulation in
isolation. The great unsolved problem in ice-shelf dynamics
(perhaps in the whole of glaciology) is the treatment of the
shelf front. Weis and others (1999) write:

To date we know of no (even just half way reasonable)
proposal how to deal theoretically with this boundary
condition. No response of an ice-sheet/ice-shelf system
to climate variations can be computationally forecasted,
unless this boundary condition is properly parameter-
ized. Kinematic, as well as dynamic, relations must be
postulated... Dynamically, an equivalent description of
the calving rate – the second condition – is the relevant

climatological statement, describing the mass loss of the
shelf, for which only first estimates exist ... The difficulty
with parameterizations of the calving rate is its inter-
mittent non-smooth occurrence in nature. Such discon-
tinuous behavior of the mass loss by ice shelves is most
likely not adequately parameterizable, but smeared over
long time scales (of decades) a smooth parameterization
may well be possible, and the study by Van der Veen
(1996) gives hints as to how a functional relation might
look like, but validation of the proposed equation may
even be more difficult as long term observations are not
available. So, a proposed set of equations will ... remain
largely conjectural.

The situation now – almost 15 years later – is essentially the
same, but our understanding has advanced. Alley and others
(2008) hypothesize that ‘along-flow ice shelf spreading is the
dominant control on calving’. Their calving flux, c, is written
as a power law of the variable _"wH, where _" is the along-flow
spreading rate,w the half-width of the ice front andH the ice
front thickness. Whereas the proposed power law correlates
reasonably well with inferences from data, the authors’
parameterizations only involve external parameters, which
express no explicit connection with material behavior.

Today’s approach is no longer to necessarily parameterize
the calving rate (i.e. the rate of mass loss along the front
boundary) or related terms. The present understanding is that
the ice in the immediate vicinity of the shelf front is being
weakened due to accumulating fractures (which may be
transported from further inland), which finally leads to
calving events. This calls for the incorporation of some kind
of damage or fracture parameterization into ice-shelf
models, in order to predict/assess their stability and possible
onsetting instabilities, which have been shown to fall apart
on a surprisingly short timescale. Precursory steps to develop
such a view of the calving processes have been undertaken
by Benn and others (2007).

Damage concepts have been introduced in ice-shelf
dynamics only very recently. While we were preparing this
paper, Albrecht and Levermann (2013) published work that
incorporates an evolution equation of a scalar fracture

density variable, �, with _� ¼ f , where f is the fracture
production rate which they parameterize. The variable �
enters into the stress/strain-rate relation of their model via an
additional ‘enhancement factor’ (their eqn (6)), and this
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enhancement factor is treated in the SSA as a function of the
in-plane coordinates, x and y (their eqn (5)).

A similar formulation was used by Borstad and others
(2012). They inferred values of a damage variable from
measured velocity fields, with the goal of finding a critical
upper bound for this damage variable. In the same way as
Albrecht and Levermann (2013), they implicitly assume the
damage variable to be constant over depth.

Interesting work that describes calving has also been
done by Bassis (2011), using methods of statistical physics,
and by Bassis and Jacobs (2013), who introduced a granular
material point of view. However, these methods are not
readily applicable within the SSA framework.

It is known that stresses across the ice-shelf thickness are
strongly z-dependent and, consequently, a fracture criterion
for the stresses, which relates the effective stress to the
‘ordinary’ Cauchy stress, must equally be z-dependent, so
that an effective viscosity for the shelf must be defined by
keeping the temperature and the damage-effect variable as
fields in three dimensions: x, y and z.

This paper presents this crucial subtlety and demonstrates
the strict conditions that must be observed when deriving a
complete two-dimensional (2-D) model. Section 2 presents
the governing equations of ice-shelf flow. Beyond the
‘classical’ field equations and their approximation for
shallow floating masses, and the constitutive relations for
the stress deviator, heat flux and internal energy, special
attention is devoted to the derivation of the damage-
evolution equation and the parameterization of the damage
production rate. It follows the Hayhurst criterion (as
specified by Pralong and Funk, 2005), but needs to be
altered for ice shelves, because of the flotation in ocean
water. Section 3 is devoted to the SSA, first for damage-free
ice; it demonstrates the strong z-dependence of the
temperature. Subsequently, damaged ice is treated, showing
that both the temperature and damage variable must be
treated as three-dimensional (3-D) fields, while only the
velocities have a plug-flow character. An attempt to derive a
fully 2-D theory demonstrates the limitation of such an
approximation to isothermal shelves. In Section 4, finally, a
failure criterion is formulated, which suggests how the free
fronts and, consequently, the evolution of the calving rates
can be determined. Thus, if damage concepts govern the
calving rate, these concepts also determine the growth and
decline of the ice shelves and, therefore, the increase or
decrease of buttressing of the inland ice and finally the
climate impact.

2. GOVERNING EQUATIONS OF ICE-SHELF FLOW

In the following, we formulate the continuum-mechanical
framework for damaged ice shelves. The thermomechan-
ically coupled initial-boundary-value problem for undam-
aged ice was formulated by Weis and others (1999). We add
to this a damage variable which keeps track of microcrack
accumulation due to tensile stresses. We use a scalar damage
theory, governed by a phenomenological damage-evolution
equation of the Kachanov–Rabotnov type (Kachanov, 1958;
Rabotnov, 1969), as used by Pralong and Funk (2005).

We assume that the ice shelf consists of purely meteoric
ice, so we do not have the complication of distinguishing
between meteoric and marine ice. Thus, the problem we
consider is that of a floating layer of glacier ice of variable
thickness, which is attached to and fed by an ice sheet or a

tidewater glacier. Using the terminology of Weis and others
(1999), the margins of the ice sheet are called

the ‘grounding line’ – the ice-shelf/ice-sheet interface;

the ‘coastline’ – where the ice shelf reaches solid land
and

the ‘calving front’ – the margin towards the ocean,
subject to mass loss by calving.

Additionally, the ice/air interface on top of the ice shelf is
referred to as the ‘ice-shelf surface’ and the ice/ocean
interface as the ‘base’. Boundary conditions have to be
specified on each of these five boundaries.

2.1. Balance equations, free fields

The free fields which we consider are

pressure, p,

ice velocity, v,

absolute temperature, T ,

damage density, Y .

For convenience, we postpone a precise definition of the
damage variable, Y , to Section 2.2. For the moment, we
simply consider this variable as a scalar field which allows
us to keep track of the density of microcracks accumulated
at a certain point in the material. This scalar description of
damage accumulation ignores any anisotropic effect of
damage, giving it the advantage of simplicity. More ad-
equate tensorial formulations of damage could be made in
future analyses.

The governing equations for these quantities are the
balance equations for mass, momentum, energy and
damage effect.

As far as kinematics (and not thermodynamics) are
concerned, glacier ice can be assumed to be a density-
preserving fluid. The balance equations for mass, momen-
tum and energy are thus (Hutter, 1983)

r � v ¼ 0, ð1Þ

�
dv

dt
¼ �rp þr � tD þ �g, ð2Þ

�
du

dt
¼ �r � qþ tr tDð Þ, ð3Þ

where t is the time, � is the mass density of ice, D is the
symmetric strain-rate tensor and g is the gravitational force
density. In these equations, we have used the constitutive

quantities deviatoric Cauchy stress, tD, specific internal
energy, u, and heat flux density, q. These quantities are given
by the constitutive relations in Section 2.2. Furthermore, the
time derivatives on the left-hand sides of Eqns (2) and (3) can
be understood as material derivatives:

d�

dt
¼ @�

@t
þ vi

@�

@xi
, ð4Þ

for any scalar- or vector-valued field, �.
The above relations can be found in any standard

textbook on continuum physics; this is not the case for the
damage balance. We assume the balance law of the damage
variable, Y , to have neither a flux nor a supply term. The
damage balance equation thus reads

dY

dt
¼ FY , ð5Þ
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where FY is the damage production rate density, which we
refer to as the ‘damage-evolution function’.

2.2. Constitutive equations

In the following, constitutive relations will be given for the
heat flux density, the specific internal energy, the deviatoric
Cauchy stress and the damage production rate.

These constitutive quantities will be assumed to be
functions of the set

S ¼ D, T , k,Y , p,pwf g, ð6Þ
where k ¼ rT is the temperature gradient and pw is the
water pressure of the surrounding ocean at a certain depth.
Thus, we consider a viscous heat-conducting fluid subject to
damage accumulation.

2.2.1. Heat flux and internal energy
Although heat flux and internal energy could depend on
certain isotropic representations of the state space, S, we
restrict our consideration to Fourier’s law for the heat flow
density:

q ¼ ��ðT Þk, ð7Þ
where �ðT Þ > 0 is the thermal conductivity, and a tempera-
ture-dependent heat capacity, cðT Þ > 0, so the differential of
specific internal energy reads

du ¼ cðT Þ dT : ð8Þ

2.2.2. Deviatoric stress
Polycrystalline glacier ice behaves on geophysical time-
scales like a strain-softening viscous fluid (Glen, 1952,
1958; Steinemann, 1958). The presence of an accumulation
of microcracks (i.e. damage) manifests itself in further
softening of the material as it becomes increasingly dam-
aged. We express this in the constitutive relation

tD ¼ Y2BðT Þf ðDÞD, ð9Þ
where BðT Þ is the temperature-dependent rate factor, f ðDÞ is
a function describing the nonlinear rheology and 0 < Y � 1
is the scalar damage variable. Equation (9) defines the
constitutive meaning of the damage variable, Y : at Y ¼ 1 the
material behaves as it does in the absence of damage; as the
material becomes increasingly damaged Y approaches 0. In
the language of a mean-field approach, the damage
variable, Y , can be seen as the ratio of the intact and the
total area in a certain cross section of a reference volume of
the material. (Y relates to the damage variables used by

Pralong and Funk (2005) by Y ¼ 1�D ¼ Z�1. Our choice
of the damage variable is due to the convenient interpret-
ation of Y as effective ice thickness, which will emerge
below.)

For the rate factor, BðT Þ, we adapt the usually assumed
Arrhenius-type parameterization, and for the rheological
function, f ðDÞ, we use the regularized isotropic general-
ization of Glen’s and Steinemann’s power law (Nye, 1959),

f ðDÞ ¼ IIn�1D þ �, ð10Þ
where n is a phenomenological constant, � is a small

regularization constant and IIA ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trA

2
q

is the second

isotropic invariant of a rank-2 tensor.

2.2.3. Damage evolution
The damage-evolution function parameterizes how damage
accumulates in reaction to a certain level of tensile stress.

Pralong and Funk (2005) formulated a Kachanov–Rabatonov
damage-evolution law for glacier ice. Rewriting their result
in terms of Y yields

FY ¼ �b � Y , t, pwð Þ � �thh ih irY�k , ð11Þ
where b, r, k and �th are positive phenomenological
constants, � is called the ‘damage yield measure’ and

xh ih i ¼ x, x > 0,
0, x � 0:

�
ð12Þ

With positive b, non-trivial FY is negative, so with damage
evolution the value of Y decreases.

Damage accumulation starts as soon as the damage yield
measure, �, (Eqn (11)) exceeds a certain threshold value, �th.
This stress function is a scalar function of the Cauchy stress
tensor, giving a certain weight to its invariants. It is a non-
trivial problem to find a suitable stress function that reflects
the reaction of the material to multiaxial stress states. In
order to find one, Pralong and Funk (2005) considered the
experimental results of Hayhurst (1972), who found the time
to creep rupture in different alloys at high homologous
temperatures was proportional to some negative power of
the expression

�t1 þ �tr tð Þ þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
tr tD
� �2h ir

, ð13Þ

where �, � and  are positive constants normalized to unity,
�þ � þ  ¼ 1, and t1 is the maximum principal stress. (Note
that the definitions of these constants that are used by
Pralong and Funk (2005) are different from those used by
Hayhurst (1972), whose nomenclature we adopt here.)
Pralong and Funk (2005) set the stress function, �, equal to
the expression in Eqn (13), with the Cauchy stress tensor
replaced by the ‘effective Cauchy stress tensor’,

et ¼ Y�1t: ð14Þ
Equation (13) assigns three causes of damage inception and
evolution to the scalar damage yield measure, � > �th:
(1) principal tensile stress, (2) mean isotropic stress and
(3) shearing. These correspond to experiments under simple
tension, volumetric extension and pure or simple shearing,
respectively. The coefficients �, � and  ¼ 1� �� �
distribute these contributions to the three typical stress

measures, et1, trðtÞ and IIetD, such that for � ¼  ¼ 0

volumetric extension makes mean stress the critical failure
mode. Similarly, for � ¼ 1,  ¼ 0 (and thus � ¼ 0), the
principal tensile stress is the critical failure mode, and for
� ¼ 0,  ¼ 1 (! � ¼ 0) failure occurs due to octahedral
shear stress.

The coefficients b, k, r , �, �,  and �th are material
constants, and for glacier ice they take the values given in
Table 1 (Pralong and Funk, 2005). They are determined by
least-square procedures from laboratory tension experi-
ments. (Note that we do not cite a value for parameter k.
This is due to the fact that Pralong and Funk used a stress-
dependent parameterization for this parameter, which is
probably not appropriate for the case we consider here.
Effectively, these authors mostly used a value of 3.5–4,
which could perhaps be adopted for our purposes.)

For an ice mass subject to the conditions of the shallow-
shelf approximation, we have to make some modifications
to this theory. First, we have to take into account the
influence of water penetrating into any crack which opens at
the base of the ice shelf. This water, being at a pressure close
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to the ice overburden pressure, tends to counterbalance the
action of the latter as an effect opposing crack opening. We
thus propose to replace the pressure, p, in the Cauchy stress
tensor by the effective pressure

peff ¼ p � pw, ð15Þ
where pw is the water pressure at a given depth (Fig. 1). This
change accounts for the fact that the water pressure reduces
the contribution to failure of the local mean pressure in ice
near the base of the ice shelf that is exposed to crevasses. It
assures that damage evolution in an ice shelf always starts at
the top or base, not somewhere in between.

Furthermore, we have to carefully re-evaluate Pralong
and Funk’s (2005) idea of rescaling the entire Cauchy stress

tensor by a factor Y�1. In the SSA limit, the hydrostatic stress
is dominated by the ice overburden contribution, and,
therefore, is mostly compressive. Assuming that volumetric
effects act thus mainly in opposition to crack formation, we
propose to apply Pralong and Funk’s (2005) rescaling

principle only to the deviatoric stresses, tD. The resulting
parameterization for the damage yield measure reads

� ¼ �
�
et D1 � peff

�
þ � �3peffð Þ þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
tr et D
� �2� �s

: ð16Þ

However, close to the surface, there may also arise tensile
hydrostatic stresses in the SSA. The damage evolution due to
these may be underestimated by the parameterization
(Eqn (16)). We estimate that this effect is fairly small.
Nevertheless, future research should bear in mind that
Eqn (16) is only a parameterization and nothing more.
Different parameterizations, eventually applying a rescaling
also to p, or even to pw or the contribution proportional to �,
may be justified just as well.

The changes of the parameterization of � motivated
above likely imply that numerical values for �,�,  and �th
may be slightly different than those given in Table 1. In an
inverse approach, the values of Table 1 may be used as a
starting set, possibly to be improved.

Considering the limit of FY as Y ! 0, it is clear that the
behavior of the proposed model is non-physical. This may be
striking at first glance; however, any damage mechanics
theory is only strictly valid for comparably low damage
accumulations. Therefore, as Y ! 0, the damage-evolution
theory becomes meaningless at some point. This is a
conceptual problem of continuum damage mechanics;
however, in practice, this deficiency is simply ‘solved’ by
freezing the evolution of Y at some small threshold value,
Ymin > 0. At Y ¼ Ymin, FY is consequently set to 0.

2.3. Boundary conditions

The boundary conditions are:

vanishing shear stress at the free and basal surfaces,
vanishing pressure at the free surface and given ocean
water pressure at the basal surface according to

pjb ¼ pwjb ¼ �wg hw � zð Þ, ð17Þ
where hw is the level of the ocean surface;

prescribed surface temperature, Ts ¼ Tatm, and Tbase ¼
Tocean, where Tocean is the upper-ocean water
temperature;

prescribed depth-averaged incoming horizontal velocity
field at the grounding line and prescribed vertical
temperature profile along the grounding line;

no-slip boundary condition and prescribed temperature
distribution along solid boundaries;

kinematic boundary conditions for the motion of the free
and basal surfaces, the ice-shelf front line and the
grounding line.

Note there are no boundary conditions for the damage
variable, Y , because its evolution equation is simply a
transport equation with no flux term, for which Eqn (5) is
only an initial-value problem. Y is nevertheless expected to
influence the calving-front boundary condition. This is a
difficult problem, which will eventually determine the mass
loss rate along the ice-shelf front. The principal idea of this
will be sketched below.

3. SHALLOW-SHELF APPROXIMATION

Polar ice shelves typically have a horizontal extent, L, of
several hundred kilometers, but a vertical extent, H, of only
several hundred meters. This extremely shallow geometry,
together with the fact that the ice thickness varies only very
slowly horizontally, motivates a scaling of the governing
equations of ice flow in powers of

" ¼ H

L
� 10�3 � 10�2: ð18Þ

This scaling suggests a regular perturbation scheme (Baral,
1999); the zeroth order of this perturbation scheme is the
SSA. This scaling is rigorously discussed by Weis and others
(1999); here, in Section 3.1, we outline only the most

Fig. 1. Illustration of water and ice pressure on the ice shelf close to
the calving front.

Table 1. Parameter values as given by Pralong and Funk (2005). The
value Lg is the characteristic size of the glacier fracture zone in the

direction of the crevasse

Parameter Value

� 0.21
� 0.16
 0.63
b 1:7� 10�9 Pa�r s�1

r 0.43

�th �Rth
LgL

2
f

L3R

� ��1m

�Rth 3:3� 105 Pa
LR 0.1m
Lf �10m
m 8
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important points of ice-shelf dynamics in the SSA and in the
absence of damage. We then discuss how a damage-
evolution theory can be implemented into this framework.

3.1. Shallow-shelf ice mechanics in the absence of
damage

The starting point of the SSA is the momentum balance with
neglected acceleration terms (Stokes approximation), sub-
ject to the hydrostatic approximation. The latter assumes
(Greve and Blatter, 2009) that the z-component of the
momentum balance (where the z-axis is collinear with
gravity) reduces to a balance between the vertical gradient
of the vertical diagonal stress and the gravity force:

@tzz
@z

¼ �g, ð19Þ

where g ¼ jjgjj. The momentum balance (Eqn (2)) in this
approximation reads

2
@tDx
@x

þ
@tDy
@x

þ @txy
@y

þ @txz
@z

¼ �g
@h

@x
, ð20Þ

2
@tDy
@y

þ @tDx
@y

þ @txy
@x

þ @tyz
@z

¼ �g
@h

@y
, ð21Þ

tzz ¼ ��gðh � zÞ, ð22Þ
where h is the level of the ice surface. Notice that the
occurrence of txz and tyz in Eqns (20) and (21) is crucial.

These stress components can only be eliminated via
z-integration and the imposition of stress boundary condi-
tions at the free and basal surfaces.

A shallow ice shelf is always floating. Its flow regime is
characterized mainly by plug flow, i.e.

@vx
@z

¼ @vy
@z

¼ Oð"Þ, ð23Þ

where x and y are the horizontal coordinates and z is
perpendicular to the ocean surface. The strain-rate tensor
thus has the structure

D ¼

@vx
@x

1
2

@vx
@y þ @vy

@x

� �
0

1
2

@vx
@y þ @vy

@x

� �
@vy
@y 0

0 0 @vz
@z

0
BB@

1
CCAþOð"Þ, ð24Þ

and depends to lowest order only on the x and y
coordinates. In addition, the zeroth-order Cauchy stress
deviator reads

tD ¼
tDx txy 0
txy tDy 0

0 0 tDz

0
@

1
AþOð"Þ: ð25Þ

This structure of the deviatoric stresses in SSA, together with
the zero-shear stress boundary conditions at the top and the
base of the ice shelf motivate a vertical integration of the
zeroth order of the momentum balance in the hydrostatic
approximation (Eqns (20) and (21)). This yields

2
@Nxx

@x
þ @Nxy

@y
þ @Nyy

@y
¼ �gH

@h

@x
, ð26Þ

@Nxx

@x
þ @Nxy

@x
þ 2

@Nyy

@y
¼ �gH

@h

@y
, ð27Þ

where H is the thickness of the ice shelf, and

Nij ¼
Z h

b

tDij dz, i, j 2 x, yf g ð28Þ

are the membrane stresses. (Membrane stresses are the 2-D

equivalent of forces. They describe the force acting on a
length increment within a plane membrane.)

In its vertically integrated form (ignoring the damage
effect), the stress/strain-rate relation (Eqn (9)) reads

Nij ¼ 2

Z h

b

BðT Þf ðDÞDij dz: ð29Þ

As the strain-rate tensor in the SSA limit is constant along z,
this relation can be written as

Nij ¼ 2�Dij ¼ 2Bf ðdeÞDij, ð30Þ

where the quantities ‘effective viscosity’,

� ¼
Z h

b

B Tð Þf ðDÞdz ¼ f ðDÞ
Z h

b

B T �, zð Þ½ � dz ð31Þ

and ‘effective rate factor’

B ¼
Z h

b

B Tð Þ dz ð32Þ

have been defined, as well as the ‘effective strain rate’

de ¼
"

@vx
@x

� �2

þ @vy
@y

� �2

þ 1

4

@vx
@y

þ @vx
@y

� �2

þ @vx
@x

@vy
@y

# 1
2

¼ IID þOð"Þ:

ð33Þ

Ice mechanics for an isothermal ice shelf in the SSA limit is
thus essentially a 2-D model. However, as soon as the
thermomechanically coupled problem is considered, we
have to treat the temperature, T ¼ T ðx, y, z, tÞ, as a field of
three space dimensions evolving according to the boundary-
value problem

d

dt
T ¼ @z �ðT Þ@zTð Þ þ tr tDð Þ, ð34Þ

T jb ¼ Tocean, ð35Þ
T jh ¼ Tair, ð36Þ

T jgrounding line ¼ TinflowðzÞ, ð37Þ

T jcalving front ¼
Tair, z > hw,

Tocean, z � hw.

�
ð38Þ

Computationally the non-isothermal shelf equations are no
more complicated than the corresponding equations in the
SIA. In a forward-integration procedure with determined
mechanical fields and temperature at time t, the temperature
distribution at time t þ�t can be computed by forward-in-
time integration of the spatially 3-D boundary-value prob-
lem (Eqns (34–38)) with given mechanical fields at time t.

In order to consider a simple, exclusively 2-D theory, we
have to use the gross approximation of an isothermal ice
shelf. As we will see in Section 3.2, the inclusion of a
damage variable gives rise to a similar trade-off; we can
consider a completely 2-D theory but only at the cost of
making certain, sometimes drastic, approximations.

3.2. Damage mechanics in the SSA

In order to include a damage variable in the SSA equations,
we have to modify the constitutive equation for the
deviatoric stresses, and include Eqn (11) as damage balance
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equation. We thus start from Eqn (9) and scale it:

tD ¼2YBðT Þf ðDÞ

�

@vx
@x

1
2

@vx
@y þ @vy

@x

� �
0

1
2

@vx
@y þ @vy

@x

� �
@vy
@y 0

0 0 @vz
@z

0
BBB@

1
CCCA

þOð"Þ:

ð39Þ

This shows that tD is strongly z-dependent, because BðT Þ
and Y vary in general with z. The corresponding vertically
integrated constitutive equation is (up to higher-order
contributions)

Nij ¼ 2

Z h

b

YBðT Þ dz f ðdeÞDij ¼ 2eB f ðdeÞDij, ð40Þ

where

eB ¼
Z h

b

YB T ðzÞ½ � dz ð41Þ

is again an effective rate factor. This quantity obviously
contains the softening effect of both damage and tempera-
ture. These two cannot be separated, as the integral in
Eqn (40) cannot be written as two separate integrals.

The evolution of the damage variable, Y , is governed by
Eqns (5), (11) and (16). It is a non-trivial task to write an SSA
version of this equation, as it contains the Cauchy stresses,
which in the SSA limits have been replaced by the
membrane stresses. Equation (5) can be written as

dY

dt
¼ FY

tD

Y
, p,pw,Y

� �
: ð42Þ

From Eqns (39) and (40), we can see that the effective stress,
etD ¼ tD=Y , arising in the argument of FY may be expressed
as

etDij ¼
tDij

Yð�, zÞ ¼ 2BðT Þf ðdeÞDij ¼ BðT Þ Nij

eB
, ð43Þ

where fi, jg � fx, yg. Using the deviatoric propery ofet D, we
can also calculate the z-component, and finally obtain

etD ¼ B T ð�, zÞ½ �
eB

Nxx Nxy 0
Nxy Nyy 0
0 0 �Nxx �Nyy

0
@

1
A: ð44Þ

Equation (44) can be used to evaluate the largest principal

effective stress, et1, and the second invariant, IIetD , for use in

the evaluation of � in Eqn (16) and FY in Eqn (11). To this end

we also use pðzÞ ¼ �gðh � zÞ � tDxx � tDyy , which is a con-

sequence of the hydrostatic approximation.
Obviously, it is possible to express the effective stress

governing the evolution of Y in terms of the shallow-shelf

quantities, N and eB. This reflects the fact that the shallow-
shelf velocity profile is constant over depth. As an effect, the
effective stress is obtained by simply distributing the total
membrane force, N, equally (up to temperature effects in B,
which are absent for an isothermal theory) over the
remaining depth profile. We conclude that, interestingly, a
shallow-shelf damage theory is automatically a mean-field
approximation.

It is equally possible to maintain the three-dimensionality
for the determination of the damage-effect variable, Y , and
the temperature field, T , while describing the mechanical
membrane problem using Eqns (26), (27), (40) and (41) and

computing Y from Eqns (42) and (44). To see this, assume
that at time t the membrane forces, N, the velocity field, v,
the temperature field, T , and the damage-effect field, Y , are
known. With a forward-in-time integration the temperature
distribution, T , and the damage-effect field, Y , at time
t þ�t can then be computed using Eqns (5), (11), (16), (42),
(44) and (3), (7), (8), as well as the velocity field and
membrane forces at t þ�t. This shows that, once the fields
are initialized, forward integration is possible also when T
and Y are z-dependent.

This will most likely be the integration procedure that will
be used in realistic ice-shelf developments, when damage
evolution is accounted for. In fact, the descriptions of the z-
dependence of the temperature field, T , and the effective

shear stress, etD , are important ingredients of a quantitatively
correct evolution of damage.

3.3. Effective-thickness approximation

It would obviously be desirable to have a theory which only
involves vertically integrated quantities. Even in the absence
of damage, this can only be achieved for an isothermal ice
shelf. Therefore, in the following we discuss how a 2-D
damage-evolution theory can be implemented into the SSA
for an isothermal ice shelf. It turns out that further
approximations have to be made to accomplish this task.

3.3.1. Integrated damage as effective ice thickness
We assume the ice shelf to be isothermal, at a constant
temperature, T . In this case, the vertically integrated stress/
strain-rate relation reads

Nij ¼ 2BðT Þ
Z h

b

Y dz f ðdeÞDij ¼ 2YBðT Þf ðdeÞDij: ð45Þ

The quantity Y is the vertical integral of the damage variable,
Y . As the latter equals 1 if stress can be transmitted, and 0 if
no stress can be transmitted due to damage, one can think of

Y as the effective vertical profile, over which the membrane

forces, N, are transmitted. We consequently call Y the
‘effective ice thickness’. It is the goal now to establish a

damage-evolution theory with Y as the only dynamic
variable.

In order to study the time evolution of Y , we consider it at
a Lagrangian point, X, which is thus moving along with the
material (a Eulerian description works in basically the same
way, but adds more complicated boundary terms). Using

Eqn (42), we can write the exact time evolution of Y as

@Y

@t
¼ @t

Z h

b

Y dz ¼
Z h

b

FY dz þ Y jh@t h � Y jb@tb, ð46Þ

where the Leibniz rule has been applied. From Eqn (42), it is
clear that we cannot evaluate Eqn (46) when we only know

Y : The damage-evolution function, FY , explicitly depends
on the local value of Y as a function of z, which cannot be

determined from its depth integral, Y . Consequently, the
only way to estimate the time evolution of the effective
thickness is to make a reasonable assumption for the spatial

distribution of Y over depth for a given value of Y .
By construction of FY as a function of pw, it is clear that

damage nucleates at the surface and the base of the ice
shelf. Furthermore, once damage evolution has started, the

dependency on Y�k , k > 0, has Y evolving rather quickly
towards 0 (strictly speaking, towards the lower boundary
value Ymin > 0, where we interrupt the damage evolution).
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Further evolution of the ‘crack’ towards the center of the ice
profile is governed by the redistribution of the load, N, to the
remaining profile.

With these ideas in mind, it seems straightforward to
approximate Y ðzÞ by a step function:

YeffðzÞ ¼ 1, hw� �
�w

Y � z � hwþ 1� �
�w

� �
Y

Ymin elsewhere

(
, ð47Þ

where hw is the level of the ocean surface. This model for the
spatial distribution of Y allows explicit evaluation of
Eqn (46), and therefore allows us to estimate the evolution

of Y by merely knowing vertically integrated quantities.
Of course, this approximation needs to be justified. While

this is hard to argue analytically, we will nevertheless
provide a numerical example, showing that to a reasonable
approximation, this very simple model for YðzÞ approxi-
mately reflects the behavior of the ‘exact’ z-dependent
theory. Such an example is shown in Figure 2. In this
example, a one-dimensional situation has been considered,
where a membrane stress, N, is equally redistributed over
the intact part of the ice. The evolution of the damage
variable is governed by a stress function:

� ¼ N

Y
� peffðzÞ � �th: ð48Þ

Figure 2 shows the time evolution of the integrated damage

variable (or effective thickness), Y ¼
R h
b Y ðzÞ dz. This has

been calculated either using a depth-dependent theory (i.e.
YðzÞ evolves as governed by Eqns (42) and (44)), or using the

effective-thickness approximation (i.e. Y is treated as a free
variable evolving according to Eqns (46) and (47), without
allowing for a freely evolving field, Y ðzÞ). It turns out that

the two results for Y are largely comparable for stresses close
to the threshold stress; for larger stresses the approximation
becomes less exact, and may even yield qualitatively
different results (Fig. 2b). This should be seen as an argument
that a 2-D membrane theory may be used as a computa-
tionally simple toy model, which may at best yield qualita-
tive results. However, the exact z-dependent theory should
always be preferred. This is particularly the case for a non-
isothermal ice shelf, where any membrane approximation

with 2-D temperature, T , and damage variable, Y , is
physically doubtful.

4. WHERE TO CUT OFF THE ICE SHELF?

The above models allow the evolution of ice shelves
including damage evolution to be computed, but do not
yield information on the calving mechanism at, or close to,
the ice front. In earlier theoretical and practical attempts,
calving of ice at the ice-shelf front was introduced, for
example, by stating that ice chunks thinner than 200mwould
break off. The approach using continuum damage mechanics
has the advantage that a rational criterion is applied to
describe the deterioration of the ice in ice sheets; this is
certainly closer to material physics. However, in the present
description we still need a criterion to determine the break-
off of ice from the shelf close to the ice front of the barrier.

A rather obvious criterion may be to use a lower bound of

the effective ice thickness, Y , as the limit value, Ymin, at
which calving of the frontal shelf ice may occur. However,
such a threshold would likely depend on the actual ice
thickness, Hðx, y, tÞ, so we instead impose a threshold

condition on the dimensionless variable,

eYðx, y, tÞ ¼ Y ðx, y, tÞ
Hðx, y, tÞ : ð49Þ

Thus, the curve in x-y space where eY reaches a certain

threshold value, eYmin,

CY ðtÞ ¼ ðx, yÞ : eY ðx, y, tÞ ¼ eYmin

n o
, ð50Þ

determines the calving front at time t. When temperature, T ,
and damage variable, Y , evolve as 3-D functions,

Y ¼
R h
b Yð�, zÞ dz. Otherwise, Y evolves according to

Eqns (46) and (47). The ice volume between CY ðt �� tÞ
and CY ðtÞ then determines the calving rate between t ��t
and t, and CY ðtÞ defines the new ice front. The innovative

step is to now introduce numerical values for eYmin 2 ð0, 1�.
Superficially, one might think that Eqn (50) brings us nothing

new, as eYmin is again a depth scale. This, however, ignores

the fact that eYmin is a depth-integrated damage-effect
variable, which encapsulates the severity of the damage.

More explicitly, small values of eY 2 ð0, 1� indicate that the

material deterioration is large. Or eY ¼ 0:2 indicates that

damage has progressed more than with eY ¼ 0:25. These

Fig. 2. Temporal evolution of the effective ice thickness,

Y ¼
R h
b Y ð�, zÞ dz, (1) according to Eqns (42) and (44) (dotted curves),

and (2) in the effective-thickness approximation according to
Eqns (46) and (47) (solid curves). The total ice thickness
H ¼ 200m, and the parameters have been set to k ¼ 3:5, r ¼ 0:43,

�th ¼ 3� 104 Pa, b ¼ 1:7� 10�9 Pa�r s�1. Values of the total mem-
brane stress, N, in units of H�th, are (a) 1.2 and 1.8, and (b) 2.1.
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properties are expressions for damage with a degree of
scale invariance.

Of course, expressions for the breaking-off of ice that are
more complex and more flexible than Eqn (50) are
possible, but, for the present, we refrain from proposing
such variants.

5. CONCLUSION

In this paper, we have indicated how the problem of an ice
shelf subject to deterioration due to the accumulation of
microcracks can be addressed by implementing a con-
tinuum damage theory into the field equations of the
shallow-shelf theory. In order to consider the simplest
possible example, we have used a scalar damage variable,
subject to a Kachanov–Rabotnov evolution equation, as
proposed by Pralong and Funk (2005). Although the scaling
of the SSA does not alter the damage-evolution equation as
such, its functional structure still breaks down to a mean-
field approximation in the SSA limit.

We have demonstrated that an exact upscaling of the
mesoscale damage evolution requires the field, Y , to be 3-D;
i.e. in addition to the temperature, T , there is another scalar
field which cannot be considered in terms of a purely 2-D
membrane theory. Nevertheless, an approximation could be
found which allows us to construct a damage-dependent
membrane theory.

It would be desirable to implement these damage theories
into a numerical ice-shelf model, in order to see whether it
can be used to formulate a reasonable model of the decay of
polar ice shelves.

Finally, a word of warning to potential SSA modelers.
First, our model is a proposal for calving which is based on a
criterion that involves the resistance property of shelves,
based on their toughness against breaking. We regard it as a
first step towards an alternative to most existing calving
models (Alley and others, 2008), but we are certainly aware
of its restrictions. Our model does not involve concepts
which explicitly make use of boundary-layer effects at the
shelf front. Such effects are observable as a very thin region
close to the front where increased crevassing is evident. One
might therefore be tempted to introduce, instead of Eqn (5),
a balance law with a flux term, �Y . However, such an
alternative model formulation suffers from several disadvan-
tages. It requires boundary conditions on Y or @Y=@n or
combinations thereof, which are not physically transparent,
and it requires a constitutive relation for �Y. This latter point
implies that the thermodynamic theory and the compatibility
of the SSA with damage evolution must be developed. We
suggest that applying our simpler model to realistic ice
shelves and studying the outcome of such computations is
more promising.

There remains, however, a further complication. It is
known that the thermomechanics of ice shelves using the
second-order SSA (SOSSA) is structurally a prestressed plate
with strong membrane and weak bending effects (Baral,
1999), and these bending effects manifest themselves
primarily at boundaries. It is physically obvious that the
shelf front is exposed to ocean surface waves, which are
likely to drive bending oscillations close to the shelf front.
In the event that treating our above ideas on weakening of
ice shelves with the SSA fails, then it would be inescapable
that the calving processes need to be treated as a SOSSA.
For simplicity we hope that this will not be the case.
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