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QUANTUM DEFORMATIONS
OF SIMPLE LIE ALGEBRAS

MURRAY BREMNER

ABSTRACT. It is shown that every simple complex Lie algebra ¢ admits a 1-para-
meter family gq of deformations outside the category of Lie algebras. These deforma-
tions are derived from a tensor product decomposition for Ug(q)-modules; here Uq(g)
is the quantized enveloping algebra of g. From this it follows that the multiplication
on qq is Ug(g)-invariant. In the special case ¢ = $[(2), the structure constants for the
deformation 3[(2)q are obtained from the quantum Clebsch-Gordan formula applied to
V(2)q ® V(2)q; here V(2)q is the smple 3-dimensional Ugy($1(2))-module of highest
weight g2.

1. Introduction. Lyubashenkoand Sudbery [LS] have suggested that the quantized
enveloping algebra Uy(g) of asimple complex (finite dimensional) Lie algebra g ought
to be regarded as the universal associative enveloping algebra of some (as yet undeter-
mined) non-associative algebra gq. The relation between g4 and g should be analogous
to that between Uq(g) and U(g), and there should be a PBW-type theorem relating Uq(g)
and gq. For other work along these lines, see [DH] and [DHGZ].

The purpose of this noteis to show that a natural candidate for the“ quantum Lie alge-
bra’ g4 can be obtained from the decomposition of the tensor square of the Uq(g)-module
Vq corresponding to the adjoint representation V of g. Thus in every case dim(gq) =
dim(g); deformations of g satisfying this condition appear to be new except when g =
3[(n). The structure constants of ¢[(2)q are worked out in detail using the quantum
Clebsch-Gordan formula (§V11.7 of [K]).

The algebras gq defined in this note are not Lie algebras (except for a few special
values of q): thisis clear since every simple complex Lie algebra g has only trivial de-
formationsin the category of Lie algebras (Chapter XVII of [K]). However the algebras
aq are structurally very closely related to Lie agebras, and so Lie-theoretic techniques
should be applicableto this larger class of non-associative algebras.

General references on quantum groups are [K], [CP], [J] and [Lu]. We assume
throughout that g is a complex number with g # 0 and q not aroot of unity.

THEOREM. Let g beasimple complex Lie algebra, and let Uqy(g) be the correspond-
ing quantized enveloping algebra. There exists a deformation g of g such that
(1) gqisaUg(g)-modulewith dim(gq) = dim(g),
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(2) the multiplication gq ® gq — gq isa morphismof Ug(q)-modules,
(3) gq possessesa Uqy(g)-invariant bilinear form.

PrROCF. LetV denotethe adjoint representation of g. ThenV isalso a U(g)-module,
S0 let Vg denote the corresponding Uq(g)-module. We need two properties of Ug(q)-
modules:

o Every finite dimensional Uq(g)-module is semisimple. See Theorem 10.1.14 of
[CP], Theorem 5.17 of [J], or Theorem 6.2.2 of [LU].

e The Uq(g)-module Vq has the same formal character as the U(g)-module V (as
given by the classical Weyl character formula). See Corollary 10.1.15 of [CP],
Theorem 5.15 of [J], or Theorem 33.1.3 of [Lu].

These results imply that the decomposition of any tensor product of Uq(g)-modules is
the same as the decomposition of the corresponding tensor product of U(g)-modules. In
particular, the Lie bracket and the Killing form on g show that V ® V contains a copy of
V and acopy of C, and so V, ® Vq containsacopy of Vg and acopy of C. The projections
Vq ® Vg — Vg and Vq ® Vq — C give amultiplication and a bilinear form on gq = Vq
satisfying the given conditions. ]

Thecaseg = 31(2) Let Uy denote the quantized universal enveloping algebra of $1(2)
as defined in Chapters VI-VII of [K]. As an algebra U has generators E, F, K, K~* and

relations
-1 -1 1_ 2 “1_ 2 K-K!
KK =K =1, KK =8, KFK'=q7F, [EF]= =

The coalgebra structure is given by

AK) =K@ K
AKH=KloK?
eK)y=e(KH=1
AE)=1®E+E®K
AF)=K'oF+Fo1
€(E) =¢(F) = 1L

The bialgebra Uy becomes a Hopf algebraif we define the antipode by
SK)=K, gKH=K, SE)=-EK?' SF)=—KF.

Let V(n)q for n > 0 denote the unique simple Us-module with highest weight g"; then
dimV(n)q = n+ 1. If v isa highest weight vector in V(l_’n)q ther_l thevectorsv; = ﬁF‘vo
for 0 < i < nform abasis of V(n)q. Here[i] = (d —q™)/(@—q) and [i]! =
[iI1[i — 1] - - - [1]. The quantum Clebsch-Gordan formula (Theorem V11.7.1 of [K]) states
that for n > m > 0 thereis a Ug-module isomorphism

V(n)g ® V(Mg = V(n+m)q & V(n+m—2)q & -+ & V(n— mg.
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In the special casen = m = 2 weobtain
(%) V(2)qg @ V(2)q = V(4)q ® V(2)q ® V(0)g.

Let vo denote a highest weight vector for the copies of V(2)q on the left side of (x).
LemmaV11.7.2 of [K] giveshighest weight vectorsxo, Yo and zy for the summandsV(4),
V(2)q and V(0)q on the right side of (x). Let s; denote the i-th vector in the ordered basis
{Xo0, X1, X2, X3, Xa, Yo, Y1, Y2, Zo} and let t; be the j-th vector in the ordered basis

{Vo @ Vo, Vo @ V1, Vo @ V2, V1 @ Vg, V1 @ V1, V1 @ Vo, V2 @ Vo, V2 @ Vi, V2 @ V2 }.

Thens = ZJ—9:1 c;t; where C = (c;j) is the matrix of quantum Clebsch-Gordan coeffi-

cients:
1 0 0 0 0 0 0 0 o
0 1/¢? 0 1 0 0 0 0 o
0 o 1/q 0 1/q 0 1 0 o0
0 0 0 0 0 1/ 0 1 0
0 0 0 0 0 0 0 0 1
0o 1 0 —1/p 0 0 0 0 o
0 0 (+Y/g® 0 (F-1/F¥ O —(F+1/g® 0 0
0 0 0 0 0 1 0 ~1/ 0
0 0 1 0  —q/(@+1) O 1/q? 0 o

Rows 1, 6 and 9 give, respectively, the highest weight vectors of V(4)q, V(2)q and V(0)q:

_ _ 1 _ __9 1
Xo=Vo®@Vo, Yo=Vo®V1 qzV1®Vo, Zn=Vo®W2 q2+:LV1®V1+qzV2®V0-

Columns 1-5,6-8and 9 of C1 are

1 0 0
@?/(o* +1) 0
0 o*/(@®+qP+20" + 2 +1)
a*/(@*+1) 0
@ +20°+®) /(P +a°+2q" + 7 +1) 0
0 o?/(o* +1)
/(0 +qf+20* + o2 +1) 0
0 a*/(a* +1)
0 0

0 0
o*/(@*+1) 0
0 /(@ +ot+g?+1)
0

—?/(q*+1)
@ - /(@ +1)
0 a*/(g*+1)
—0° /(P +0* +0? +1) 0
0 —?/(g* +1)
0

[cNeoNeoNe)

P OOOOO0OO0OO0OOo

0
0
0
0
0
0
0
0

[oNeoloNeNe]

[oNeoNeoNeoNe]

o

[oNeoNoNo)

0
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0
0
o*/(q* + P +1)

0
—(P+0)/(q* +?+1)
0

/(g + o2 +1)
0
0

Now identify the copies of V(2), on the left and right sides of (x). Let X’ denote a high-
est weight vector in V(2)q, and set H' = FX' and Y/ = ﬁsz/. Columns 6-8 give
the structure constants of 3[(2)q (written with brackets athough the composition is not
anticommutative in general):

[X'X]=0
[X/H/] — q4 x/
g+l
[X/Y/] — q5 H/
@+ +1)
[H/X/] _ _q2 X'
gr+1
2(2
g q (q _1) /
[HH] = =g H
AV q4 /
HY1 = oY
[Y/x/] — _q5 H/
@+ (@ +1)
[Y/H/] — _q2 Yl
g+l
[Y'Y'] = 0.

Column 9 givesthe Ug-invariant bilinear form on $((2)q:

S q
(X’Y)_'m4+q2+D

/ n _ _q(q2+1)
(H'H)_(¢+qz+n

SN o
W’X)_(¢+qz+n

and all other pairings are 0. Now defineH = aH’, X = bX’, Y = cY’ where

a=b=—-q*f+a*+?+1), c=q(C+q"+g?+1).
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Then we obtain

[XX] =0
[XH] = —(1+ qZ)X
[XY] = H
[HX] = @A+ q*Z)X
() [HH] = (g2 — A)H
[HY] = —(L+ )Y
[YX] = —H
[YH] = (1+q )Y
[YY] =0.

(In the limit case q = 1 we obtain the 3[(2) relations [HX] = 2X, [HY] = —2Y, [XY] =
H.) The bilinear form becomes

3(q? + 1)*(q* + 1)
O = a2+ 1)

3(? + 1)%(g* + 1)
R = i@+

3(q + 1)*(g* + 1)
0= it + 2+ 1)

where we now take —4z,/3 as basis for V(0)q. (In the limit case g = 1 we obtain the
Killing form (X,Y) = 4, (H,H) = 8, (Y, X) = 4

FINAL REMARK. The algebra $[(2)q is not a quantum Lie algebrain the sense of
[Li] since by definition such an algebra A is anticommutative. The algebras of [Li] also
satisfy the quantum Jacobi identity Jq(X, Y, 2) = (xy)o(2) + (y2)o(X) + (29 (y) = 0, where
A = ®nez AvisZ-graded and o = (3 +J371)/2, J(an) = g"a, for any a, € A,. The
agebra 3((2) fails to satisfy the quantum Jacobi identity, since any Z-grading of 3[(2)q
must have deg(H) = 0 and then Jq(H,H,H) = 3(q~2 — g)?H, which is non-zero for
q ¢ {0,£1,+i}.

NOTE ADDED IN PROOF. The main theorem of this paper has also been proven by
G. W. Delius and M. D. Gould in Quantum Lie algebras, their existence, uniqueness
and g-antisymmetry, King's College London preprint KCL-TH-96-05, g-alg/9605025,
Commun. Math. Phys., to appear.
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