Bull. Austral. Math. Soc. Vol. 57 (1998) [367-376]

PERFECT CODES ON THE TOWERS OF HANOI GRAPH

CHI-KWONG LI AND INGRID NELSON

We characterise all the perfect k-error correcting codes that can be defined on the graph associated with the Towers of Hanoi puzzle. In particular, a short proof for the existence of 1-error correcting code on such a graph is given.

1. INTRODUCTION

In the study of recurrence relations, one common example is the following combinatorial game known as the *Towers of Hanoi puzzle*.

Initially, there are 3 pegs and n circular disks of increasing size on one peg with the largest disk on the bottom. These disks are to be transferred one at a time onto another of the pegs with the provision that one is never allowed to place a larger disk on top of a smaller one. The problem is to determine the number of moves necessary for the transfer.

For convenience, we call the three pegs P_0, P_1 , and P_2 , and label the disk as D_1, \ldots, D_n , where D_1 has the smallest radius. Define a *legal configuration* of the disks on the three pegs to be an arrangement of the disks on the pegs so that no larger disk is on the top of a smaller one. Then one easily checks that there is a one-one correspondence between all legal configurations with the space \mathbb{Z}_3^n of ternary sequences of length n, such that a given $\mathbf{x} = x_1 \cdots x_n \in \mathbb{Z}_3^n$ corresponds to the configuration with D_i lying on P_j if $x_i = j$. For example, 101 corresponds to the configuration that D_1 and D_3 lie on P_1 , and D_2 lies on P_0 (see Figure 1).

We shall call the legal configuration corresponding to $\mathbf{x} \in \mathbb{Z}_3^n$ the x-configuration. The sequences with all entries equal to the same $i \in \{0, 1, 2\}$ are called the *perfect states* corresponding to the configurations with all disks lying on the same peg.

One can construct a graph with all \mathbb{Z}_3^n as the vertex set, where two vertices x and y are connected by an edge if there is a legal move in the Towers of Hanoi puzzle that

Received 26th August, 1997

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

transforms the x-configuration to the y-configuration. This graph is called the Towers of Hanoi graph, denoted by H_n , and first appeared in [6]. We depict H_1 and H_2 in Figure 2.

The Towers of Hanoi puzzle, its graph, and their generalisations have generated much interesting research (for example, see [5]). In fact, the graph H_n can be constructed from H_{n-1} by the following algorithm:

- Step 1. Let \widetilde{H}_{n-1} be the mirror image of H_{n-1} about a vertical line passing through the top perfect state.
- Step 2. Construct $H_{n-1}^{(i)}$ by appending *i* to the end of each vertex of \widetilde{H}_{n-1} to form a sequence of length *n* for i = 0, 1, 2.
- Step 3. Put $H_{n-1}^{(0)}$ in the top, rotate $H_{n-1}^{(1)}$ by 120 degrees clockwise and put it in the left bottom corner, rotate $H_{n-1}^{(2)}$ by 120 degrees counterclockwise and put it in the right bottom corner.
- Step 4. Connect the vertex $0 \cdots 01$ in $H_{n-1}^{(1)}$ with the vertex $0 \cdots 02$ in $H_{n-1}^{(2)}$, connect the vertex $1 \cdots 10$ in $H_{n-1}^{(0)}$ with the vertex $1 \cdots 12$ in $H_{n-1}^{(2)}$, connect the vertex $2 \cdots 20$ in $H_{n-1}^{(0)}$ with the vertex $2 \cdots 21$ in $H_{n-1}^{(1)}$.

One easily sees that this algorithm will generate all $\mathbf{x} \in \mathbb{Z}_3^n$ as vertices, and all the legal moves in the Towers of Hanoi puzzle as edges. We give the graphical representation of the situation in Figure 3.

Define the distance $d(\mathbf{x}, \mathbf{y})$ between two vertices \mathbf{x} and \mathbf{y} to be the length of the shortest path joining the two vertices. Clearly, $d(\mathbf{x}, \mathbf{y})$ corresponds to the minimum number of legal moves needed in the Towers of Hanoi puzzle to transform the \mathbf{x} -configuration to the \mathbf{y} -configuration. For example (for example, see [2]), the distance between 2 perfect states in H_n equals $2^n - 1$, which is the maximum distance between any two vertices in H_n . The distance function d defines a metric on \mathbb{Z}_3^n , and for any nonnegative integer k, one may define the radius-k ball centred at $\mathbf{x} \in \mathbb{Z}_3^n$ to be the set

$$B(\mathbf{x},k) = \{\mathbf{y} \in \mathbb{Z}_3^n : d(\mathbf{x},\mathbf{y}) \leq k\}.$$

In the study of coding theory (see [4] for general background), one would like to

369

partition \mathbb{Z}_3^n as a disjoint union of $B(\mathbf{x}_1, k), \ldots, B(\mathbf{x}_M, k)$ for a suitable choice of $\mathbf{C}_n(k) = \{\mathbf{x}_1, \ldots, \mathbf{x}_M\} \subseteq \mathbb{Z}_3^n$. If such a partition exists, the set $\mathbf{C}_n(k)$ will be called a *perfect k-error* correcting ternary code on H_n .

The purpose of this note is to determine those (n, k) pairs for which a perfect k-error correcting code exists on H_n , and characterise $C_n(k)$ if it exists. In particular, we shall give a short proof for the existence of a perfect 1-error correcting code on H_n (see [2] for the original proof).

It is worthwhile to point out that the existence of the k-error correcting codes on \mathbb{Z}_3^n depends heavily on the structure of the radius k-balls. If a different metric is used, then the structure of the radius k-balls will be completely changed, and hence the corresponding coding theory problem will change accordingly. For instance, if the widely used Hamming metric $\tilde{d}(\mathbf{x}, \mathbf{y}) =$ the number of no zero entries in the vector $(\mathbf{x} - \mathbf{y})$, then a perfect 1-error ternary correcting code rarely exists (see [4]).

Note also that other coding theory problems have been studied using the Towers of Hanoi graph [3].

2. Results and Proofs

We begin with a short proof of the fact that perfect 1-error correcting codes always exists on H_n . See [2] for the original proof.

THEOREM 2.1. Let n be a positive integer. Then the collection $C_n(1)$ of ternary sequences of length n with an even number of terms equal to 1 and an even number of terms equal to 2 is a perfect 1-error correcting code on H_n . Moreover, we have

$$\left|\mathbf{C}_{n}(1)\right| = \begin{cases} (3^{n}+3)/4 & \text{if } n \text{ is even,} \\ (3^{n}+1)/4 & \text{if } n \text{ is odd.} \end{cases}$$

PROOF: We need to show that every $\mathbf{y} \in \mathbb{Z}_3^n$ lies in one and only one $B(\mathbf{x}, 1)$ with $\mathbf{x} \in \mathbf{C}_n(1)$. Denote by n_i the number of terms in \mathbf{y} that equal *i* for i = 0, 1, 2.

First, suppose $\mathbf{y} \in \mathbf{C}_n(1)$, that is, n_1 and n_2 are even. Then $\mathbf{y} \in B(\mathbf{y}, 1)$, and it is clear that \mathbf{y} cannot be transformed to another $\mathbf{x} \in \mathbf{C}_n(1)$ by just one legal move. Hence, \mathbf{y} lies in $B(\mathbf{y}, 1)$ but not in $B(\mathbf{x}, 1)$ for any other $\mathbf{x} \in \mathbf{C}_n(1)$. Next, suppose $\mathbf{y} \notin \mathbf{C}_n(1)$. Then either

- (i) both n_1 and n_2 are odd, or
- (ii) exactly one of n_1 or n_2 is odd.

If (i) holds, then one can consider the y-configuration and transfer the smallest disk on P_1 and P_2 from one peg to the other peg. Clearly, the resulting configuration corresponds to a ternary sequence $\mathbf{x} \in \mathbf{C}_n(1)$, and the proposed move is the only single legal move on the y-configuration that will lead to a configuration corresponding to a sequence in $\mathbf{C}_n(1)$. Thus $\mathbf{y} \in B(\mathbf{x}, 1)$, but is not in any other unit ball $B(\mathbf{z}, 1)$ with $\mathbf{z} \in \mathbf{C}_n(1)$.

Suppose (ii) holds, and suppose n_i is odd with $i \in \{1, 2\}$. Then one can consider the y-configuration and transfer the smallest disk on P_0 and P_i from one peg to the other peg. Clearly, the resulting configuration corresponds to a ternary sequence $\mathbf{x} \in \mathbf{C}_n(1)$, and the proposed move is the only single legal move on the y-configuration that will lead to a configuration corresponding to a ternary sequence in $\mathbf{C}_n(1)$. Thus $\mathbf{y} \in B(\mathbf{x}, 1)$, but is not in any other unit ball $B(\mathbf{z}, 1)$ with $\mathbf{z} \in \mathbf{C}_n(1)$.

Note that if $\mathbf{x} \in \mathbb{Z}_3^n$ is a perfect state, then applying one legal move to the xconfiguration may lead to two possible outcomes depending on where the smallest disk is transferred. Thus $B(\mathbf{x}, 1)$ has three elements. If $\mathbf{x} \in \mathbb{Z}_3^n$ is not a perfect state, then there are 3 possible outcomes with a legal move, namely, one may transfer the smallest disk to one of the two other pegs, or one may transfer a disk between the two pegs not containing the smallest disk. In such case, $B(\mathbf{x}, 1)$ has four elements. Now, the collection of $B(\mathbf{x}, 1)$ with $\mathbf{x} \in \mathbf{C}_n(1)$ form a partition of \mathbb{Z}_3^n . If n is even, then all 3 perfect states belong to $\mathbf{C}_n(1)$. Hence 3 of the $B(\mathbf{x}, 1)$ will have 3 elements, and the rest will have 4 elements. Thus

$$3^{n} = |\mathbb{Z}_{3}^{n}| = \sum_{\mathbf{x} \in \mathbf{C}_{n}(1)} |B(\mathbf{x}, 1)| = 3 \times 3 + 4 \times (|\mathbf{C}_{n}(1)| - 3),$$

and thus $|\mathbf{C}_n(1)| = (3^n + 3)/4$. If *n* is odd, there is only one perfect state in $\mathbf{C}_n(1)$. By a similar argument, one sees that $|\mathbf{C}_n(1)| = (3^n + 1)/4$.

We have several remarks in connection with the above theorem. Details and proofs can be found in [2].

- 1. The above proof actually suggests an easy decoding algorithm for $C_n(1)$.
- 2. It is not difficult to show that one of the perfect states must be a codeword for any 1-error correcting code on H_n . If one assumes that the top corner vertex $0 \cdots 0$ is a codeword, then the code must be $C_n(1)$.
- 3. By the general theory of coding theorem (for example, [4, Theorem 1.9]), we see that $d(\mathbf{x}, \mathbf{y}) \ge 3$ for any $\mathbf{x}, \mathbf{y} \in \mathbf{C}_n(1)$. This fact can also be proved independently using arguments similar to those in our proof of the theorem.

Next, we turn to the case when k > 1. We have the following result.

THEOREM 2.2. Suppose n, k > 1 are integers. There exists a perfect k-error correcting code $C_n(k)$ on H_n if and only if

- (a) $k \ge 2^{n-2} \cdot 3$, or
- (b) $k = 2^{n-1} 1$.

Furthermore, if (a) holds, then a perfect k-error correcting code must consist of a single vertex c of H_n such that B(c, k) contains all perfect states; if (b) holds, the only perfect k-error correcting code is the set of the three perfect states.

371

As we shall see in the following proofs, it is rather easy to check that if n and k satisfy the condition (a) or (b), then there are perfect k-error-correcting codes $C_n(k)$ as described in the theorem. The non-trivial part is the necessity part of the theorem, that is, the non-existence of any other perfect codes for k > 1.

If n > 1, we always assume that H_n can be decomposed into $H_{n-1}^{(i)}$ for i = 0, 1, 2, as described in the introduction.

We first establish several lemmas concerning the vertices of H_n .

[5]

LEMMA 2.3. Let w be a vertex in H_n , and let d_0, d_1, d_2 be the distance between w and the top, left bottom, and right bottom perfect states of H_n , respectively. Then

- (a) d_0, d_1, d_2 cannot have the same (even or odd) parity.
- (b) $d_i = d_j$ for some $i \neq j$ if and only if $d_{3-i-j} = 0$, that is, w is a perfect state.

PROOF: The proof can be done by induction. If n = 1, the conclusions (a) and (b) clearly hold. Suppose $n \ge 2$, and the conclusions hold for H_{n-1} . Let w be a vertex of H_n . We may assume that w lies in the subgraph $H_{n-1}^{(0)}$ of H_n by a suitable 120 degrees rotation of H_n . Suppose x, y, z are the top, left bottom, and right bottom perfect states of H_n , and let \tilde{y}, \tilde{z} be the left and right bottom perfect states of $H_{n-1}^{(0)}$ (see Figure 4). Then $d_0 = d(\mathbf{w}, \mathbf{x})$,

$$d_{1} = d(\mathbf{w}, \mathbf{y}) = d(\mathbf{w}, \tilde{\mathbf{y}}) + d(\tilde{\mathbf{y}}, \mathbf{y}) = d(\mathbf{w}, \tilde{\mathbf{y}}) + 2^{n-1}$$

$$d_{2} = d(\mathbf{w}, \mathbf{z}) = d(\mathbf{w}, \tilde{\mathbf{z}}) + d(\tilde{\mathbf{z}}, \mathbf{z}) = d(\mathbf{w}, \tilde{\mathbf{z}}) + 2^{n-1}.$$

$$\mathbf{x}$$

$$\mathbf{y}$$

$$\mathbf{H}_{n-1}^{(0)}$$

$$\mathbf{y}$$

$$\mathbf{H}_{n-1}^{(2)}$$

$$\mathbf{z}$$

Figure 4

One can then apply the induction assumption on $d(\mathbf{w}, \mathbf{x})$, $d(\mathbf{w}, \tilde{\mathbf{y}})$ and $d(\mathbf{w}, \tilde{\mathbf{z}})$ to get the conclusions on d_0, d_1 and d_2 .

LEMMA 2.4. Let n, k be positive integers. Suppose \mathbf{w} is a vertex in H_n such that $B(\mathbf{w}, k)$ does not contain any of the three perfect states. Then there is a subgraph R of H_n which is isomorphic to H_1 such that $B(\mathbf{w}, k)$ contains exactly one vertex of R.

PROOF: Consider subgraphs in H_n of the form H_m so that the vertex set V of the subgraph satisfies $\mathbf{w} \in V \subseteq B(\mathbf{w}, k)$. Let S be such a subgraph with the maximum number of vertices, that is, largest possible m, and let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be the perfect states of S. Since $B(\mathbf{w}, k)$ does not contain any perfect state of H_n , we see that each of \mathbf{x}, \mathbf{y} and \mathbf{z} is connected to some vertices that are not in S (see Figure 5). By Lemma 2.3 (a), we

[6]

see that $n_0 = k - d(\mathbf{w}, \mathbf{x})$, $n_1 = k - d(\mathbf{w}, \mathbf{y})$ and $n_2 = k - d(\mathbf{w}, \mathbf{z})$ cannot all have the same parity. In particular, we may assume that n_0 is odd. (Otherwise, apply 120 degrees rotations to H_n to make n_0 odd.) Let v be a vertex in H_n satisfying $d(\mathbf{w}, \mathbf{v}) = k$ and $d(\mathbf{x}, \mathbf{v}) = n_0$, and let R be the subgraph of H_n , which is isomorphic to H_1 and has v as a vertex. If one follows a path in H_n from w to v, one sees that the two other vertices of the subgraph R will have a distance k + 1 from w. Hence $B(\mathbf{w}, k)$ contains only the vertex v of R.

We are now ready to prove our theorem. While the theorem is stated in terms of the conditions on n and k, we divide the proof into different cases according to the size of $\mathbf{C}_n(k)$. In particular, we shall show that $|\mathbf{C}_n(k)|$ can only be 1 or 3. We begin with the case when $|\mathbf{C}_n(k)| = 1$.

LEMMA 2.5. Suppose n, k > 1 are positive integers. Then there exists a perfect k-error correcting code on H_n consisting of one codeword if and only if $k \ge 2^{n-2} \cdot 3$.

PROOF: Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be the top, left and right bottom perfect states of H_n , and let $\tilde{\mathbf{y}}, \tilde{\mathbf{z}}$ be the left and right bottom perfect states of $H_{n-1}^{(0)}$ (see Figure 4).

If $k \ge 2^{n-2} \cdot 3$, then one can choose **c** so that $d(\mathbf{c}, \tilde{\mathbf{y}}) = 2^{n-2}$ and $d(\mathbf{c}, \tilde{\mathbf{z}}) = 2^{n-2} - 1$. One easily checks that all vertices of H_n lie in $B(\mathbf{c}, k)$.

Conversely, suppose there is a perfect k-error correcting code consisting of the single codeword c. Then all perfect states belong to $B(\mathbf{c}, k)$. To show that $k \ge 2^{n-2} \cdot 3$, suppose c lies in $H_{n-1}^{(0)}$, otherwise apply a suitable 120 degrees rotation to H_n . Then

$$2^{n-1} - 1 = d(\tilde{\mathbf{z}}, \tilde{\mathbf{y}}) \leq d(\tilde{\mathbf{z}}, \mathbf{c}) + d(\mathbf{c}, \tilde{\mathbf{y}}).$$

It follows that

$$k = \max\{d(\mathbf{c}, \mathbf{z}), d(\mathbf{c}, \mathbf{y})\}$$

=
$$\max\{d(\mathbf{c}, \tilde{\mathbf{z}}) + d(\mathbf{z}, \tilde{\mathbf{z}}), d(\mathbf{c}, \tilde{\mathbf{y}}) + d(\mathbf{y}, \tilde{\mathbf{y}})\}$$

=
$$\max\{d(\mathbf{c}, \tilde{\mathbf{z}}), d(\mathbf{c}, \tilde{\mathbf{y}})\} + 2^{n-1}$$

$$\geq [2^{n-1} \cdot 3 - 1]/2.$$

Since k is an integer, we have $k \ge 2^{n-2} \cdot 3$.

Next, we consider the case when $1 < |\mathbf{C}_n(k)| \leq 3$.

LEMMA 2.6. Suppose n, k > 1 are positive integers. The following conditions are equivalent.

- (a) There exists a perfect k-error correcting code $C_n(k)$ on H_n with $1 < |C_n(k)| \leq 3$.
- (b) There is a unique perfect k-error correcting code on H_n consisting of the 3 perfect states.
- (c) $k = 2^{n-1} 1$.

PROOF: It is clear that (b) implies (a). If (c) holds, then the perfect states will form a perfect k-error correcting code, and thus (a) is true. It remains to prove that both (b) and (c) follow from (a).

Now, suppose (a) holds. Let $\mathbf{x}, \tilde{\mathbf{y}}, \tilde{\mathbf{z}}$ be the top, left and right bottom perfect states of $H_{n-1}^{(0)}$ (see Figure 4).

We first show that it is impossible to have $|\mathbf{C}_n(k)| = 2$. Suppose there is such a perfect code, and $\mathbf{C}_n(k)$ consists of \mathbf{c}_1 and \mathbf{c}_2 . We may assume that they are not vertices of $H_{n-1}^{(0)}$ by a suitable 120 degrees rotation of H_n . Then \mathbf{x} lies in one of two radius k balls centred at the codewords. Without loss of generality, we may assume that \mathbf{x} lies in $B(\mathbf{c}_1, k)$ and \mathbf{c}_1 is a vertex of $H_{n-1}^{(1)}$. Then $k \ge d(\mathbf{c}_1, \mathbf{x}) > d(\tilde{\mathbf{y}}, \mathbf{x})$, or in other words, $k \ge 2^{n-1}$ Clearly, \mathbf{c}_2 cannot lie in $H_{n-1}^{(1)}$; otherwise, $\tilde{\mathbf{y}} \in B(\mathbf{c}_1, k) \cap B(\mathbf{c}_2, k)$ by the above condition on k. Also, \mathbf{c}_2 cannot lie in $H_{n-1}^{(2)}$, otherwise, $\tilde{\mathbf{z}} \in B(\mathbf{c}_1, k) \cap B(\mathbf{c}_2, k)$. Thus $\mathbf{C}_n(k)$ cannot have exactly 2 elements.

Next, suppose $C_n(k)$ consists of 3 elements: c_0, c_1, c_2 . Notice that each of $H_{n-1}^{(i)}$ for i = 0, 1, 2, has a codeword; that is, c_i is a vertex of $H_{n-1}^{(i)}$. If this is not the case, one can use the arguments in the preceding paragraph to show that two of the $B(c_i, k)$ will have non-empty intersection. If $B(c_i, k)$ only contains those vertices in $H_{n-1}^{(i)}$ for i = 0, 1, 2, then we have $d(c_0, \tilde{y}) = d(c_0, \tilde{z})$. By Lemma 2.3 (b), we see that $c_0 = x$ and $k = 2^{n-1} - 1$. Similarly, one can show that $c_1 = y$ and $c_2 = z$. Hence condition (b) and (c) of the lemma hold.

In the following, we show that any other construction of $\mathbf{C}_n(k)$ is impossible. Suppose it is not the case, and suppose one of the $B(\mathbf{c}_i, k)$ contains some vertices in $H_{n-1}^{(j)}$ for some $i \neq j$. We may assume that (i, j) = (0, 2) by applying some suitable rotation and reflection about the vertical line passing through x. Furthermore, decompose $H_{n-1}^{(2)}$ into $H_{n-2}^{(0)}, H_{n-2}^{(1)}$, and $H_{n-2}^{(2)}$ as shown in Figure 6.

[7]

0

Figure 6

Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are the top, left and right bottom perfect states of $H_{n-2}^{(0)}$. Then $\mathbf{u} \in B(\mathbf{c}_0, k)$ by our assumption. Note that

$$d(\mathbf{c}_0,\mathbf{v}) = d(\mathbf{c}_0,\widetilde{\mathbf{z}}) + d(\widetilde{\mathbf{z}},\mathbf{v}) = d(\mathbf{c}_0,\widetilde{\mathbf{z}}) + d(\widetilde{\mathbf{z}},\mathbf{w}) = d(\mathbf{c}_0,\mathbf{w}).$$

Thus either

(i)
$$\mathbf{v}, \mathbf{w} \in B(\mathbf{c}_0, k)$$
, or
(ii) $\{\mathbf{v}, \mathbf{w}\} \cap B(\mathbf{c}_0, k) = \emptyset$.

We first show that (i) cannot happen. If $\mathbf{v}, \mathbf{w} \in B(\mathbf{c}_0, k)$, then $k \ge d(\mathbf{c}_0, \mathbf{w})$ $\ge d(\tilde{\mathbf{z}}, \mathbf{w}) = 2^{n-2}$, and we must have \mathbf{c}_2 lying in $H_{n-2}^{(1)}$ or $H_{n-2}^{(2)}$. If \mathbf{c}_2 is a vertex of $H_{n-2}^{(1)}$, then $\mathbf{v} \in B(\mathbf{c}_2, k)$ as $k \ge 2^{n-2}$. If \mathbf{c}_2 is a vertex of $H_{n-2}^{(2)}$, then $\mathbf{w} \in B(\mathbf{c}_2, k)$ as $k \ge 2^{n-2}$. If \mathbf{c}_2 is a vertex of $H_{n-2}^{(2)}$, then $\mathbf{w} \in B(\mathbf{c}_2, k)$ as $k \ge 2^{n-2}$. In both cases, we have $B(\mathbf{c}_0, k) \cap B(\mathbf{c}_2, k) \ne \emptyset$, which is a contradiction.

Next, we show that (ii) is also impossible. Note that by an argument similar to that in the preceding paragraph, one can show that even if $B(\mathbf{c}_1, k)$ contains some vertices in $H_{n-1}^{(2)}$, it cannot include all the vertices in $H_{n-2}^{(1)}$. Thus $B(\mathbf{c}_1, k)$ cannot contain \mathbf{v} or \mathbf{w} , and so we must have $\mathbf{v}, \mathbf{w} \in B(\mathbf{c}_2, k)$. If \mathbf{c}_2 is a vertex in $H_{n-2}^{(0)}$, then $k < 2^{n-2}$. Otherwise, we have $d(\mathbf{c}_2, \mathbf{u}) \leq 2^{n-2} \leq k$ and thus $\mathbf{u} \in B(\mathbf{c}_2, k) \cap B(\mathbf{c}_0, k)$. But then $k < 2^{n-2} \leq d(\mathbf{c}_i, \mathbf{z})$ for any *i*, contradicting the fact that $\mathbb{Z}_3^n = \bigcup_{i=0}^2 B(\mathbf{c}_i, k)$. Thus, \mathbf{c}_2 must be in either $H_{n-2}^{(1)}$ or $H_{n-2}^{(2)}$. Now consider the vertex $\tilde{\mathbf{w}}$ on the shortest path from \mathbf{u} to \mathbf{w} such that $d(\mathbf{c}_0, \tilde{\mathbf{w}}) = k + 1$. Clearly, we have

$$k = d(\mathbf{c}_2, \widetilde{\mathbf{w}}) = d(\mathbf{c}_2, \mathbf{w}) + d(\mathbf{w}, \widetilde{\mathbf{w}}).$$

Similarly, if $\tilde{\mathbf{v}}$ is the vertex on the shortest path from **u** to **v** such that $d(\mathbf{c}_0, \tilde{\mathbf{v}}) = k + 1$, then

$$k = d(\mathbf{c}_2, \widetilde{\mathbf{v}}) = d(\mathbf{c}_2, \mathbf{v}) + d(\mathbf{v}, \widetilde{\mathbf{v}}).$$

Evidently, $d(\mathbf{u}, \tilde{\mathbf{w}}) = d(\mathbf{u}, \tilde{\mathbf{v}}) = (k+1) - d(\mathbf{c}_0, \mathbf{u})$. It follows that $d(\mathbf{w}, \tilde{\mathbf{w}}) = d(\mathbf{v}, \tilde{\mathbf{v}})$ and $d(\mathbf{c}_2, \mathbf{v}) = d(\mathbf{c}_2, \mathbf{w})$. However, this is impossible because $d(\mathbf{c}_2, \mathbf{v}) \leq 2^{n-2} < d(\mathbf{c}_2, \mathbf{w})$ if $\mathbf{c}_2 \in H_{n-2}^{(1)}$, and $d(\mathbf{c}_2, \mathbf{w}) \leq 2^{n-2} < d(\mathbf{c}_2, \mathbf{v})$ if $\mathbf{c}_2 \in H_{n-2}^{(2)}$.

Finally, we consider the case when $3 < |\mathbf{C}_n(k)|$.

LEMMA 2.7. Suppose n, k > 1 are positive integers. Then there is no perfect k-error correcting code $C_n(k)$ on H_n with $3 < |C_n(k)|$.

PROOF: Suppose there is a perfect k-error correcting code $C_n(k)$ on H_n with $3 < |C_n(k)|$. Then there is a codeword **c** such that $B(\mathbf{c}, k)$ does not contain any of the three perfect states of H_n . By Lemma 2.4, there exists a subgraph U of H_n with vertices $\mathbf{u}_0, \mathbf{u}_1$ and \mathbf{u}_2 isomorphic to H_1 such that $B(\mathbf{c}, k) \cap U = \mathbf{u}_0$. Furthermore, we assume that \mathbf{u}_1 is connected to a subgraph V with vertices $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2$, which is also isomorphic to H_1 . Similarly, \mathbf{u}_2 is connected to a subgraph W with vertices $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2$, which is also isomorphic to H_1 . We depict the situation in Figure 7.

Let d be a codeword such that $\mathbf{u}_1 \in B(\mathbf{d}, k)$. Since $k \ge 2$, we can move at least 2 steps from \mathbf{u}_1 along the shortest path from \mathbf{u}_1 to d in H_n . Clearly, $d(\mathbf{d}, \mathbf{u}_1) = k$ and hence $d(\mathbf{d}, \mathbf{v}_0) = k - 1$ so that $B(\mathbf{c}, k) \cap B(\mathbf{d}, k) = \emptyset$. As a result, $d(\mathbf{d}, \mathbf{v}_i) = k - 2$ for i = 1 or 2. Similarly, let e be a codeword such that $\mathbf{u}_2 \in B(\mathbf{e}, k)$. One then sees that $d(\mathbf{e}, \mathbf{w}_0) = k - 1$, and $d(\mathbf{e}, \mathbf{w}_i) = k - 2$ for i = 1 or 2.

We consider 2 cases. First, suppose \mathbf{v}_2 and \mathbf{w}_1 are adjacent. Since $d(\mathbf{v}_1, \mathbf{w}_1) = 2$ and $d(\mathbf{v}_2, \mathbf{w}_1) = 1$, we see that

$$d(\mathbf{w}_1, \mathbf{d}) \leq \min \left\{ d(\mathbf{w}_1, \mathbf{v}_i) + d(\mathbf{v}_i, \mathbf{d}) : i = 1, 2 \right\} \leq k.$$

Thus $\mathbf{w}_1 \in B(\mathbf{d}, k) \cap B(\mathbf{e}, k)$, which is a contradiction unless $\mathbf{d} = \mathbf{e}$. However, this is impossible as shown in the following. If k = 2, then **d** must be chosen from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}_1, \mathbf{w}_2\}$. But none of the choices will lead to $d(\mathbf{d}, \mathbf{v}_0) = k - 1 = d(\mathbf{d}, \mathbf{w}_0)$. Thus we may assume that k > 2, and $d(\mathbf{d}, \mathbf{v}_1) = k - 2 = d(\mathbf{d}, \mathbf{w}_2)$. But then **d** must lie in some subgraph R isomorphic to H_r so that the vertex set of R is contained in $B(\mathbf{d}, k - 3)$. If one moves k steps along a path from **d** to the subgraph U, either one can reach exactly one vertex of U or all the three vertices of U (see Proof of Lemma 2.4). Thus, it is impossible to have $\mathbf{u}_1, \mathbf{u}_2 \in B(\mathbf{d}, k)$.

Next, suppose v_2 and w_1 are not adjacent. Then U must be lying at the bottom of a certain subgraph S of H_n which is isomorphic to some H_m with m > 1, and either

(i) both V and W are in the same H_m , or

[10]

(ii) only one of V or W is also in H_m .

In both cases, there will be a subgraph \tilde{S} of S isomorphic to H_2 containing U and one of V or W, say W (see Figure 8). Since both \mathbf{u}_0 and \mathbf{w}_2 have a distance 2 from the top perfect state of \tilde{S} , which has a distance k-2 from \mathbf{c} , we see that $\mathbf{w}_2 \in B(\mathbf{c}, k)$. However, $d(\mathbf{e}, \mathbf{w}_0) = k - 1$ implies that \mathbf{w}_2 also belongs to $B(\mathbf{e}, k)$, which is a contradiction.

One can easily combine Lemmas 2.5 - 2.7 to get the conclusion of Theorem 2.2.

Figure 8

References

- [1] R.A. Brualdi, Introductory combinatorics (North-Holland, New York, 1992).
- [2] P. Cull and I. Nelson, 'Error-correcting codes on the Towers of Hanoi graphs', (preprint).
- [3] M.C. Er, 'The cyclic towers of Hanoi and pseudo ternary codes', J. Inform. Optim. Sci. 6 (1986), 271-277.
- [4] R. Hill, A first course in coding theory (Oxford University Press, Oxford, 1986).
- [5] A.M. Hinz, 'The Tower of Hanoi', Enseign. Math. 35 (1989), 289-321.
- [6] R.S. Scorer, P.M. Grundy and C.A.B. Smith, 'Some binary games', Math. Gaz. 280 (1944), 96-103.

Department of Mathematics The College of William and Mary Williamsburg, VA 23187 United States of America e-mail: ckli@math.wm.edu Lockheed Martin Federal Systems 6304 Spine Road Boulder CO 80302 United States of America e-mail: ingrid.nelson@lmco.com

376