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Abstract

A new minimization principle for the Poisson equation using two variables – the solution
and the gradient of the solution – is introduced. This principle allows us to use any
conforming finite element spaces for both variables, where the finite element spaces do
not need to satisfy the so-called inf–sup condition. A numerical example demonstrates
the superiority of this approach.
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1. Introduction

It is often important to get an accurate approximation of the gradient of the solution
of a Poisson equation. In that case, a mixed formulation of the Poisson equation is
used, where there are two unknowns – the solution and its gradient – in the variational
equation. Discretizing a mixed formulation of a partial differential equation is a
challenging task as the involved finite element spaces should satisfy a compatibility
condition, that is, the so-called inf–sup condition [6]. Although there are many
finite element spaces discovered satisfying the compatibility condition for the Poisson
equation [2, 6–8, 13, 15], it is not so easy for mixed formulations of other partial
differential equations. It is sometimes useful to use a least-squares finite element
method to approximate the solution and its gradient simultaneously [3–5]. A least-
squares formulation allows the use of any conforming finite element spaces avoiding
the compatibility condition.

In this paper, we propose a new minimization principle for the Poisson equation
using the solution and the gradient of the solution as two unknowns. This formulation
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is similar to a least-squares formulation in the sense that it allows the use of any
conforming finite element spaces avoiding the compatibility condition [3–5, 10].
However, compared to a least-squares finite element method, the source term f can be
in the dual of a H1-space, and the gradient can be discretized using a L2-conforming
finite element space. We also give optimal a priori error estimates for the proposed
finite element method.

The structure of the rest of the paper is organized as follows. In the next section,
we introduce our formulation and show its well-posedness. We propose finite element
methods for the given formulation and prove a priori error estimates in Section 3.
A numerical example with discretization errors is presented in Section 4 and a short
conclusion is given in Section 5.

2. A new formulation of the Poisson equation

In this section, we introduce a new minimization principle of the Poisson problem.
Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded convex domain with polygonal or polyhedral
boundary ∂Ω with the outward pointing normal n on ∂Ω. We start with the following
minimization problem for the Poisson problem.

Problem 2.1. Given f ∈ H−1(Ω), we want to find

u = arg min
v∈H1

0 (Ω)
K(v) (2.1)

with

K(v) =
1
2

∫
Ω

|∇v|2 dx − `(v),

where

`(v) =

∫
Ω

f v dx.

We refer to the literature [1, 2, 6–8, 11, 13–15] for different variational formulations
of the Poisson equation.

Let V = H1
0(Ω) and Q = [L2(Ω)]d. For two vector-valued functions α : Ω→ Rd

and β : Ω→ Rd, let the Sobolev inner product on the Sobolev space Hk(Ω) (k ∈ R) be
defined as

〈α,β〉k,Ω =

d∑
i=1

〈αi, βi〉k,Ω,

where (α)i = αi, (β)i = βi with αi, βi ∈ Hk(Ω) for i = 1, . . . , d, and the norm ‖ · ‖Hk(Ω) is
induced by this inner product. We use the standard notation ‖ · ‖k,Ω for the norm in the
Hk(Ω)-space. We now introduce a functional

Jα,γ(v, τ; f ) = 1
2 (‖τ‖20,Ω + ‖τ − α∇v‖20,Ω) − γ`(v),
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where α > 0 and γ are two fixed constants, and consider another minimization problem
for the two variables (v, τ) ∈ [V ×Q],

arg min
(v,τ)∈[V×Q]

Jα,γ(v, τ; f ). (2.2)

This minimization problem is equivalent to finding (u,σ) ∈ [V ×Q] such that

a((u,σ), (v, τ)) = γ`(v), (v, τ) ∈ [V ×Q],

where the bilinear form a(·, ·) is defined as

a((u,σ), (v, τ)) = (σ, τ)0,Ω + (σ − α∇u, τ − α∇v)0,Ω.

Standard arguments can be used to show the continuity of the bilinear form a(·, ·) on
the space V ×Q. Now we show that the bilinear form a(·, ·) is coercive on V ×Q.

Lemma 2.2. Let α > 0. For (u,σ) ∈ [V ×Q], the bilinear form a(·, ·) satisfies

a((u,σ), (u,σ)) ≥
α2

α2 + 2C1
(‖u‖21,Ω + ‖σ‖20,Ω),

where C1 is the constant in the Poincaré inequality

‖u‖21,Ω ≤ C1‖∇u‖20,Ω.

Proof. The proof follows from a triangle inequality and Poincaré inequality:

‖u‖21,Ω + ‖σ‖20,Ω ≤
C1

α2 ‖α∇u‖20,Ω + ‖σ‖20,Ω

≤
2C1

α2 [‖σ − α∇u‖20,Ω + ‖σ‖20,Ω] + ‖σ‖20,Ω

≤
2C1 + α2

α2 (‖σ‖20,Ω + ‖σ − α∇u‖20,Ω)

=
2C1 + α2

α2 a((u,σ), (u,σ)). �

Corollary 2.3. Since the bilinear form a(·, ·) is continuous and coercive on V × Q,
and the linear form `(v) is also continuous on V for f ∈ H−1(Ω), the problem of finding
(u,σ) ∈ [V ×Q] such that

a((u,σ), (v, τ)) = γ`(v), (v, τ) ∈ [V ×Q],

has a unique solution from the Lax–Milgram lemma [7].

Remark 2.4. In contrast to the standard least-squares method, where we need f ∈
L2(Ω), we have f ∈ H−1(Ω). Thus, the standard least-squares method cannot handle
the situation if the source function is not in L2, whereas the new approach requires
exactly the same regularity for f as the standard Galerkin approach. Moreover, the
gradient can be discretized just by using L2-conforming finite elements.
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Let (ue,σe) ∈ V × Q be the solution of the minimization problem (2.2). We now
choose α and γ in such a way that the solution (u,σ) of the minimization problem
(2.2) satisfies u = ue and σe = ∇u. Here the natural norm for an element (v, τ) ∈ V ×Q
of the product space V × Q is

√
‖v‖21,Ω + ‖τ‖20,Ω. Thus, (2.2) leads to the problem of

finding (u,σ) ∈ [V ×Q] such that

(σ, τ)0,Ω + (σ − α∇u, τ − α∇v)0,Ω − γ`(v) = 0, (v, τ) ∈ [V ×Q].

Letting the test functions τ = 0 and v = 0 successively in the above equation leads to

−(σ − α∇u, α∇v)0,Ω − γ`(v) = 0, v ∈ V,
(σ, τ)0,Ω + (σ − α∇u, τ)0,Ω = 0, τ ∈ Q. (2.3)

The second equation immediately yields

(2σ − α∇u, τ)0,Ω = 0, τ ∈ Q,

and hence α = 2 ensures that σ = ∇u. Using σ = ∇u in the first equation of (2.3),

−α(1 − α)(∇u,∇v)0,Ω − γ`(v) = 0.

We have the standard variational problem for the Poisson equation if γ = α(α − 1) and,
thus, setting α = 2, we get γ = 2. Now we have the following problem.

Problem 2.5. Given f ∈ H−1(Ω), the variational equation for the minimization problem
is to find (u,σ) ∈ [V ×Q] such that

a((u,σ), (v, τ)) = 2`(v), (v, τ) ∈ [V ×Q],

where the bilinear form a(·, ·) is defined as

a((u,σ), (v, τ)) = (σ, τ)0,Ω + (σ − 2∇u, τ − 2∇v)0,Ω.

From the above discussion we have the following theorem.

Theorem 2.6. Let u and (ũ, σ̃) be the solutions of Problems 2.1 and 2.5, respectively.
Then we have ũ = u and σ̃ = ∇u.

Remark 2.7. The idea can be easily generalized to a general differential equation,
which can be put in a minimization framework. For example, consider the solution
of the linear elastic problem of finding the displacement field u ∈ V = [H1

0(Ω)]d such
that [6]

u = arg min
v∈V

1
2

∫
Ω

ε(v) : Cε(v) dx − `(v),

where ε(v) = (∇v + [∇v]T )/2 is the symmetric part of the gradient, C is Hooke’s tensor
[12], and `(·) is a linear form

`(v) =

∫
Ω

f · v dx.
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By defining a pseudo-stress σ =
√
Cε(v), with

√
C denoting the square root of the

tensor C, we can put this in the above framework with

a(u,σ, v, τ) = (σ, τ)0,Ω + (σ − 2
√
Cε(u), τ − 2

√
Cε(v))0,Ω.

We note that since C is a symmetric positive definite tensor, its square root is well
defined. Similarly, if the functional K(·) in the minimization problem (2.1) is given as

K(v) =
1
2

∫
Ω

|κ∇v|2 dx − `(v),

where κ : Rd →∈ Rd×d is a positive definite matrix function, the same formulation is
obtained using σ =

√
κ∇u and the bilinear form

a(u,σ, v, τ) = (σ, τ)0,Ω + (σ − 2
√
κ∇u, τ − 2

√
κ∇v)0,Ω,

where
√
κ is the square root of the matrix function κ.

3. Finite element approximation and a priori error estimate

Let Th be a quasi-uniform partition of the domain Ω in simplices, convex
quadrilaterals, or hexahedra having the mesh size h. Let T̂ be a reference simplex,
square, or cube, where the reference simplex is defined as

T̂ =

{
x ∈ Rd

∣∣∣∣∣ xi > 0, i = 1, . . . , d, and
d∑

i=1

xi < 1
}

and the reference square or cube T̂ = (0, 1)d.
The finite element space is defined by affine maps FT from a reference element T̂ to

a physical element T ∈ Th. For k ∈ N, let Qk(T̂ ) be the space of polynomials of degree
less than or equal to k in T̂ in the variables x1, . . . , xd if T̂ is the reference simplex;
the space of polynomials in T̂ of degree less than or equal to k with respect to each
variable x1, . . . , xd if T̂ is the reference square or cube.

Then the finite element space based on the mesh Th is defined as the space of
continuous functions whose restrictions to an element T are obtained by maps of given
polynomial functions of the reference element [6, 7, 9], that is,

S h = {vh ∈ H1(Ω) | vh|T = v̂h ◦ F−1
T , v̂h ∈ Qk(T̂ ),T ∈ Th}.

We now define Vh = S h ∩ H1
0(Ω) and two other finite element spaces

Lh = {vh ∈ L2(Ω)vh|T ∈ Qr(T ),T ∈ Th}, Qh = [Lh]d,

where r ∈ N ∪ {0}. Now a discrete formulation of our problem is to find (uh,σh) ∈
[Vh ×Qh] such that

a((uh,σh), (vh, τh)) = 2`(vh), (vh, τh) ∈ [Vh ×Qh].
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Since [S h]d ⊂Q, we can also use Sh = [S h]d to discretize the gradient of the continuous
problem. This leads to a problem of finding (uh,σh) ∈ [Vh × Sh] such that

a((uh,σh), (vh, τh)) = 2`(vh), (vh, τh) ∈ [Vh × Sh], (3.1)

which utilizes equal order interpolation. However, different order interpolations can
be used for the solution and gradient as before. Since the discrete formulation is
conforming, the bilinear form a(·, ·) and the linear form `(·) are both continuous on
the corresponding spaces. The coercivity also follows from the continuous setting.

Theorem 3.1. The discrete problem of finding (uh,σh) ∈ [Vh ×Qh] or (uh,σh) ∈ [Vh ×

Sh] such that

a((uh,σh), (vh, τh)) = 2`(vh), (vh, τh) ∈ [Vh ×Qh], or (vh, τh) ∈ [Vh × Sh]

has a unique solution, and the solution satisfies

‖u − uh‖1,Ω + ‖σ − σh‖0,Ω ≤ c
(

inf
vh∈Vh
‖u − vh‖1,Ω + inf

τh∈Sh or τh∈Qh

‖σ − τh‖0,Ω

)
,

where u is the exact solution of the problem (2.1) and σ = ∇u.

Proof. The proof follows from Galerkin orthogonality [7] and standard arguments. �

We now consider the algebraic formulation of the finite element problem, using
the same notation for the vector representation of the solution and the solution as an
element in Vh, Sh, and Qh. Let A, B, and M be the matrices corresponding to the
bilinear forms

∫
Ω
∇uh · ∇vh dx,

∫
Ω
σh · ∇vh dx, and

∫
Ω
σh · τh dx, respectively. Let ~f be

the vector arising form the discretization of the linear functional `(·). Then the linear
system associated with the problem (3.1) is written as[

−2B 4A
2M −2BT

] [
σh

uh

]
=

[
2 ~f
0

]
.

Remark 3.2. Note that if we use an H1-conforming Lagrange finite element space of
order k to discretize the solution u, and a piecewise polynomial space of order k − 1 to
discretize the gradient σ ( just L2-conforming space for the gradient), we arrive at the
standard Galerkin formulation [7] in the discrete form. Therefore, the real power of
the new approach lies in the fact that we can use equal order interpolation leading to a
smooth approximation of the gradient.

Remark 3.3. The solution u is assumed to be in H1
0(Ω) only for the purpose of

simplicity. In fact, any nonzero Dirichlet condition or mixture of Dirichlet and
Neumann boundary conditions are all fine as in the case of the standard Galerkin finite
element method.
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Table 1. Discretization errors for the solution and gradient.

l ‖u − uh‖1,Ω ‖u − uh‖0,Ω ‖σ1 − σ1
h‖0,Ω ‖σ2 − σ2

h‖0,Ω

1 3.41208e-01 3.71839e-02 1.72948e-01 1.72948e-01
2 1.70261e-01 1.00 1.15857e-02 1.68 5.39510e-02 1.68 5.39510e-02 1.68
3 8.40661e-02 1.02 3.09011e-03 1.91 1.45061e-02 1.89 1.45061e-02 1.89
4 4.18485e-02 1.01 7.86293e-04 1.97 3.74056e-03 1.96 3.74056e-03 1.96
5 2.08998e-02 1.00 1.97503e-04 1.99 9.62306e-04 1.96 9.62306e-04 1.96
6 1.04469e-02 1.00 4.94393e-05 2.00 2.51753e-04 1.93 2.51753e-04 1.93

4. Numerical example

In this section, we consider a numerical example to demonstrate the performance
of this new minimization scheme. In fact, we show the discretization errors for the
solution u in the L2- and H1-norms, and discretization errors for the gradient in the
L2-norm. For this example, we consider the domain of the square Ω = [−1, 1]2 with
the exact solution

u(x, y) = (x − y) exp{−5.0(x − 0.5)(x − 0.5) − 5.0(y − 0.5)(y − 0.5)},

where the right-hand-side function f of Problem 2.1 and the Dirichlet boundary
condition on ∂Ω are obtained by using this exact solution. The two components of the
gradient are denoted by σ1 and σ2, and their numerical approximations are denoted
by σ1

h and σ2
h, respectively. We start with the initial uniform triangulation of 32

triangles in the first level and then refine uniformly in each level. We have tabulated the
discretization errors in Table 1 using the C0-linear finite element space for the solution
and each component of the gradient. Here l denotes the level of refinement. We see
that the numerical results are the same as those predicted by the theory. Moreover, the
discretization errors show the superiority of the scheme as the discretization errors for
the gradient of the solution converge quadratically to the exact solution. This is not
normally achieved in any mixed finite element method.

5. Conclusion

We have proposed a new minimization principle for the Poisson equation based
on the solution and its gradient. One major advantage of this formulation is that a
finite element approximation can be performed as in a least-squares finite element
method without fulfilling the compatibility condition between two finite element
spaces. However, the finite element approach is much easier than a least-squares
approach. An optimal a priori error estimate is given for the proposed formulation.
Also, a numerical example is presented to demonstrate the optimality of the scheme.
An interesting future work will be to develop an iterative solution method for the linear
system of equations of the above finite element method.
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