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SOME PROGRESSION-FREE PARTITIONS 
CONSTRUCTED USING FOLKMAN'S METHOD 

BY 

JOHN R. RABUNG* 

Almost from the day that B. L. van der Waerden [10] proved his now 
famous theorem on arithmetic progressions, mathematicians have been work­
ing to find a new or an improved constructive proof of that result, but without 
much success. The theorem, which asserts the existence of an integer N(k, I) 
such that every k-coloring of the integers {1,2, . . . , N(k, /)} yields a mono­
chromatic /-progression, may have far-reaching applications (see [3] or [7] for 
discussions of some of these) if W(k, /), the least N(fc, /), can be determined. It 
is generally felt that the N(fc, /) constructed in van der Waerden's proof is very 
far from being W(k, I). Consequently, much effort has been devoted to finding 
upper and lower bounds for W(k, /). (See, for example, [1], [5], [6], [8]) 

Here we shall concentrate on finding lower bounds for some particular 
W(fc, /). This naturally involves constructing fc-colorings of long segments of 
consecutive integers which avoid monochromatic /-progressions. The best 
general constructions to date are those given by Berlekamp [1] and Moser [6], 
Moser shows 

(1) W(k, / ) > ( / - l)kc log \ c a fixed constant, 

while Berlekamp displays the bound 

(2) W(k, I) > min {(/ - lXk'-1 -1)18} 

where A is the set of all positive integers of the form kd -1 with d a proper 
divisor of / - 1 or of the form D where D is any divisor of k1'1-1 such that 
D < I -1. Inequality (1) gives the better bound for large k and small / while (2) 
is superior when / is large and k is small. It should be noted that the bound 

W(Kl)>kl~1l4l 

which improves on (2) in many cases can be obtained as a consequence of a 
local theorem of Lovâsz which may be found in [4] or [9]. However, Ber-
lekamp's method is still superior in the case where / - 1 is prime and k = 2 in 
which he finds 

(3) W(2,I)>(/-1)21"1. 
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Nonetheless he expresses disappointment that in the case / = 4 the construction 
which gives (3) is inferior to a construction by J. Folkman which yields a 
2-coloring of the integer segment [0,33] free of monochromatic 4-
progressions. Folkman's construction, based on quadratic residues modulo 11, 
thus shows W(2,4)>34. Since it is now known that W(2,4) = 35 (see [2]), 
Folkman's bound is best possible. Berlekamp notes that similar constructions 
of /-progression-free 2-colorings using quadratic residues are possible, but that 
no general means for determining the required modulus for given / is known. 
In this paper we follow Berlekamp's observation by constructing k-colorings 
using power residues and thereby give some improved lower bounds for 
particular W(k, /), but we still cannot make the desired general constructions. 

Let k and J be positive integers and suppose p is a prime of the form kt + 1 
with p > /. We take f to be a primitive kth root of unity and let Gk denote the 
group of k th roots of unity. If Np={ne Z:(n, p) = 1}, then v(n) for neNp will 
represent the index of n modulo p relative to some fixed primitive root. Also, 
an /-progression with common difference one will be called an /-string. 

Define: %:Np-*Gk such that %(n) = fv(n)- We see that the effect of X is to 
partition Np into k classes, and note that âf(nm) = âf(n)âf(m). Also observe 
that 2E has period p so that viewing SE modulo p we have a character defined on 
the reduced residue system modulo p. At times we shall use the character 
properties of 2C in what follows. 

THEOREM. Let %' : [0, (/ - l)p]-> Gk such that %\n) = X(n) if (n, p) = 1 and 
such that <%' is not constant on {0, p, 2 p , . . . , ( / - l)p}. Then the k-partition 
imposed by â?' on [0, ( / - l)p] is free of single-class l-progressions if and only if 
the following hold: 

(a) no single-class l-string occurs in [ l , p - l ] ; and 
(b) if â?(- 1) = 1, the integers 1, 2 , . . . , [ ( / - l)/2] are not in the same class; 

while if 3f( — 1) = — 1 the integers 1, 2 , . . . , ( / - 1 ) are not in the same 
class. 

Proof. If condition (a) does not hold, clearly the partition is not free of 
single-class /-progressions. Suppose condition (b) does not hold, and say 
af'(0) = fc. If * ( - l ) = l , we multiply the elements of { - [ ( / - 1 ) / 2 ] , . . . , - 2 , 
- 1 , 0 ,1 , 2 , . . . , [(/-1)/2]} by m, the least positive integer such that X(m) = £c. 
(Note m<p.) This results in an /-progression contained in class £c. Because of 
the periodicity of $£, we must have under these circumstances a single-class 
/-progression involving any multiple of p in [p, (Z-2)p]. A similar argument 
applies when â?(-1) = - 1. 

Conversely, suppose a, a + d , . . . , a + (l- l)d is a single-class /-progression 
under the partition imposed by a?'. First, if (d, p) = 1 and no multiple of p is 
involved in the progression, then ad"1, ad~x + 1 , . . . , ad~1 + (l-1) where 
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dd~x = \ (modp) is a single-class /-string under 2C and, by periodicity, there 
exists a single-class /-string in [0, ( / - l ) p ] which contradicts condition (a). 

Now suppose (d, p) = 1 and a multiple of p is contained in the given 
/-progression. Then we may assume that either this multiple lies in the middle 
or at one of the ends of this progression according as âf(— 1) = 1 or 3£(-l) = 
- 1 , respectively. Then multiplication by d"1 as before shows that condition (2) 
cannot hold. 

Finally if (d, p) f 1, then the progression in question must be 0, p , . . . , ( / -
l)p since this is the only such /-progression contained in [0, ( / - l)p]. But this 
violates the condition that K! is not constant on the multiples of p. Q.E.D. 

Thus a search for a prime p whose kth power character yields a lower bound 
for W(k, /) involves only observing that conditions (a) and (b) are met. If so, 
W(k, / ) > ( / - l)p + l. We have conducted such a search for all primes up to 
20,117. Obtaining primitive roots from [11] and [12] and using an IBM 
370/145 we searched the classes imposed by fcth-power characters (fc = 
2 ,3 ,4 ,5 ,6) of these primes to produce a table listing lengths of longest 
single-class strings as well as lengths of longest single-class strings containing 
the number 1 and the class of - 1 modulo p. Then a scan of the table gave us 
the following results which easily exceed the corresponding bounds given by 
Berlekamp, except in the case W(2, 3). 

2 3 4 5 6 
75 
(37) 

1048 

(349) 
10,437 
(2,609) 
90,306* 
(18,061) 
119,839 
(19,973) 

2,254 

(751) 
24,045 
(6,011) 

93,456* 
(18,691) 
120,307* 
(20,051) 

207 
(103) 
9,778 

(3,259) 
52,637 
(13,159) 
100,566* 
(20,113) 

for particular W(fe, 0- Numbers in 
IOW primes used to achieve the 
i. Asterisks (*) indicate bounds 
to be improvable through further 

7 
(3) 
34 292 
(U) (97) 
149 965 
(37) (241) 
696 8,886 
(139) (1,777) 
3703 43,855 

I | (617) (7,309) 
7484 132,812* 
(1069) (18,973) 

27,113 160,857* 
(3,389) (20,107) 

3 

4 

5 

6 

8 

9 

_ . 103,474 T . , 
10 m ,n-\ Lower bound: 

„ . 196,811* . . . 
11 / ^ ™ ^ bounds show 

(11,497) 
196,811* 
(19,681) 
220,518* 
(20,047) 

parentheses s 
bounds show 
which are fel 

.„ , 220,518* 
12 /onn^Tv computer seai 
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It is interesting to note that the /-progression-free k-partitions constructed in 
this way are laden with single-class (i-l)-progressions. Suppose for some k 
and I we have p and W satisfying the conditions of the theorem. We view % as 
a character modulo p and call a, a + d, . . . , a + (/ - l )d , where operations are 
taken modulo p, an /-progression (modp). Then if there are s single-class 
(J-l)-strings in the reduced residue system modulo p, it can be shown that: 

(a) Every element in the reduced residue system belongs to exactly I - x ( I — 1) 

single-class (J-l)-progressions (modp). (Here [al denotes the smallest 
integer greater than a.) 

(b) There are exactly - (p -1 ) distinct single-class (/ - l)-progressions 

(mod p) contained in the reduced residue system modulo p. 
In the language of combinatorics, the elements of the reduced residue system 

modulo p and the single-class (Z-l)-progressions (modp) form a 1 -

( p - 1 , 1 - 1 , [ | j (l-1)) design. 

Also, we point out that the bounds given here for W(k, I) are not generally 
best possible. Using the computer we have found a 2-partition of [1,176] 
which is 5-progression-free. Although this partition does not arise from the 
method of this paper, it does display quite similar multiplicative properties and 
suggests generalization of the method. 
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