Alwyn Wootten Owens Valley Radio Observatory, Caltech Dept. of Astronomy, University of Texas G.P. Bozyan, D.B. Garrett, R.B. Loren, R.L. Snell, P. Vanden Bout Dept. of Astronomy, University of Texas

A survey for the molecules C_2H and HC_3N in a variety of interstellar clouds has been completed. Both molecules are very widespread, in cold dark clouds as well as in hot clouds. C_2H emission has been mapped in L1534. In cold clouds the fractional abundance $X(C_2H)$ is found to be 2-6x10⁻⁹. The ratio of abundances $X(C_2H)/X(HC_3N)$ falls in the range 6-10, consistent with some gas-phase reaction schemes for these molecules.

C₂H has not previously been detected in cold dark clouds. Since HC_3N has been detected in abundance in a number of clouds, and since both molecules are thought to derive from the same precursor molecule $C_2H_2^+$ in gas-phase chemistry, we have surveyed a number of clouds for C_2H and HC_3N emission. As a result, both molecules have been found in a variety of clouds: cold dark clouds, clouds near Herbig-Haro objects, and in complexes near HII regions.

The C₂H line was sufficiently strong to permit detailed mapping in L1534, L43, and M17SW. These maps show that C₂H emission is strongly correlated with emission from other molecules excited in dense regions.

In L1534 the C₂H map displays a distinct maximum near the peak HC_5N emission found by Little et al. (1978). An additional peak which does not correspond to an HC_5N emission peak has been found to the northwest. This additional peak has also been found in absorption at 2 cm by formaldehyde.

The column density of C_2H is in general similar to that of HCO^+ or H_2CO . The ratio of collisional to radiative timescales is also similar for these molecules. Therefore C_2H emission probably arises in regions similar to those producing HCO^+ and H_2CO emission. This conclusion is strengthened by the similarity of the maps of these species. We have therefore used a large velocity gradient (LVG) code to determine the abundance of C_2H , $X(C_2H)$, following the procedure detailed in Wootten et al. (1978). We find $X(C_2H) \sim 2-6x10^{-9}$ in cold dark clouds, (L63, L134N, L1534, L1529) but is probably much lower, $X(C_2H) \sim 10^{-10}$, in

81

B. H. Andrew (ed.), Interstellar Molecules, 81-82. Copyright © 1980 by the IAU. denser, warmer clouds (M17SW, ρ Oph, NGC2264). Using a similar analysis for the J=5-4 line of HC₃N allows us to estimate the abundance ratio X(C₂H)/X(HC₃N) \sim 6-10 for most clouds. In M17SW the ratio appears to be 37.

In a simple chemical reaction scheme, C₂H is created by electron recombination on C₂H₂⁺ and destroyed by reaction with oxygen. HC₃N is created by reaction of C₂H₂⁺ and HCN, followed by electron recombination; it is destroyed by reactions with C⁺ or He⁺. The abundance ratio $X(C_2H)/X(HC_3N) \sim 10$ is consistent with this scheme.

The abundance of C_2H appears to be somewhat higher in the Taurus cloud L1534 than in two otherwise similar clouds L134N and L63. Langer (1976) demonstrated that the CO abundance in a chemically evolving cloud reaches equilibrium only after fairly lengthy timescales; and that before it attains equilibrium the excess of free carbon in the cloud can lead to elevated C_2H abundances. Perhaps equilibrium in carbon chemistry has not yet been reached in the clouds with highest abundances of C_2H .

REFERENCES

Langer, W.D.: 1976, Astrophys. J. 206, 699. Little, L.T., Riley, P.W., MacDonald, G.H., and Matheson, D.N.: 1978, M.N.R.A.S. <u>183</u>, 805. Wootten, A., Evans, N.J., Snell, R., and Vanden Bout, P.: 1978,

Astrophys. J. (Letters) 225, L143.