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Abstract

‘Deep-syntactic’ dependency structures that capture the argumentative, attributive and co-

ordinative relations between full words of a sentence have a great potential for a number

of NLP-applications. The abstraction degree of these structures is in between the output

of a syntactic dependency parser (connected trees defined over all words of a sentence and

language-specific grammatical functions) and the output of a semantic parser (forests of trees

defined over individual lexemes or phrasal chunks and abstract semantic role labels which

capture the frame structures of predicative elements and drop all attributive and coordinative

dependencies). We propose a parser that provides deep-syntactic structures. The parser has

been tested on Spanish, English and Chinese.

1 Introduction

State-of-the-art syntactic dependency parsing delivers surface-syntactic structures

(SSyntSs), which are per force idiosyncratic in that they are defined over the entire

vocabulary of a language (including governed prepositions, determiners, support

verb constructions, etc.) and language-specific grammatical functions such as, e.g.,

SBJ, OBJ, PRD, PMOD, etc.; see, among others (McDonald et al. 2005; Nivre et al.

2007b; Kübler, McDonald and Nivre 2009; Bohnet and Kuhn 2012; Bohnet and

Nivre 2012; Dyer et al. 2015). On the other hand, semantic (or deep) parsing delivers

logical forms (LFs) or semantic structures (SemSs) equivalent to LFs,1 PropBank

† We would like to thank the reviewers for their insightful comments and Alicia Burga
for her help with the revision of the paper. The work reported on in this paper has
been partially funded by the European Commission under the contract numbers FP7-ICT-
610411 (MULTISENSOR) and H2020-645012-RIA (KRISTINA).

1 The first language understanding approaches dealt with abstract conceptual meaning
representations that could be mapped onto LFs; see, among others, Bobrow and Webber
(1981), Dahlgren (1988), Kasper and Hovy (1990).
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(Palmer, Gildea and Kingsbury 2005) or FrameNet (Fillmore, Baker and Sato 2002)

structures (SemSs). See, for instance, Miyao (2006), Oepen and Lønning (2006),

Allen et al. (2007), Bos (2008) and the DM- and PAS-parsers of the SemEval 2014

shared task (Oepen et al. 2014) for LF outputs. Some approaches deliver PropBank

structure output (Johansson and Nugues 2008a; Zhao et al. 2009; Gesmundo et al.

2009; Henderson et al. 2013), and FrameNet structure output (Das et al. 2014).

Parsers working with LFs tend to abstract not only over surface-oriented linguistic

information (such as determination, tense, etc.) but also over distinctive (shallow)

semantic relations. Thus, in Boxer (Bos 2008) and in other parsers that produce LFs,

the phrases the dancing girl and the girl dances will result in the same relation between

‘dance’ and ‘girl’. PropBank and FrameNet structures are forests of trees, defined over

disambiguated lexemes or phrasal chunks and thematic roles (A0, A1, . . . , ARGM-

DIR, ARGM-LOC, etc., in the case of PropBank structures and Agent, Object,

Patient, Value, Time, Beneficiary, etc., in the case of Frame structures), with usually

omitted attributive and coordinative relations (be they within chunks or sentential).

For many NLP-applications, including machine translation, paraphrasing, text

simplification, etc., neither SSyntSs nor LFs or SemSs are adequate: the high

idiosyncrasy of SSyntSs is obstructive because of the recurrent divergence between

the source and the target structures, while the high abstraction of LFs and SemSs

is problematic because of the loss of linguistic structure information in the case of

LFs and dependencies between chunks and the loss of meaningful content elements

in the case of SemSs. ‘Syntactico-semantic’ structures in the sense of deep-syntactic

structures (DSyntSs) as defined in the Meaning-Text Theory (Mel’čuk 1988) are

in this sense arguably more appropriate. DSyntSs are situated between SSyntSs

and LFs/SemSs. Compared to SSyntSs, they have the advantage to abstract from

language-specific grammatical idiosyncrasies. Compared to LFs, PropBank and

Frame structures, they have the advantage to be complete, i.e., capture all and

distinguish all argumentative, attributive and coordinative dependencies between the

meaning-bearing lexical items of a sentence, and to be connected. As a consequence,

for instance, in the context of Machine Translation, DSyntSs help reduce the number

and types of divergences between the source language LS and destination language

LD structures to the minimum to make the transfer straightforward (Mel’čuk and

Wanner 2006, 2008),2 but are still syntactic and thus reflect the communicative

intention of the speaker (Steedman 2000). Consider, for instance, a French–English

sentence pair in (1).

(1) Fr. Qu’il soit l’invité de Mary me dérange

lit. ‘That he be the invited of Mary me bothers.’

≡
His being Mary’s invitee bothers me.

In French, the subject has to be a full clause, hence the presence of a subordinating

conjunction que ‘that’, which links the embedded verb and the main verb in the

2 As shown by Mel’čuk and Wanner, the remaining morphological and syntactic mismatches
at the DSyntS-level can be handled in a principled way.
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Fig. 1. (Colour online) SSyntSs, PropBank structure, and DRS of (1).

SSyntS. In addition, invité ‘invited’ has to bear a determiner, and the genitive

construction is realized through the use of the preposition de ‘of’ (which is also

possible although less idiomatic in English). Figure 1 shows the corresponding

SSyntSs, PropBank structure, and Discourse Representation Structure (DRS) (the

Propbank structure and DRS are, in principle, the same for both the French and

the English sentence). As can be observed, the SSyntSs differ considerably, while the

PropBank structure provides only a partial argumental structure, and the DRS blurs

the difference between the main and the embedded clauses.3 None of the variants is

thus optimal for MT.

3 The DRS has been obtained automatically with the Boxer demo version at
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo. In other words, we cannot ensure
that it is the correct DRS; see Kamp and Reyle (1993) for a theoretical presentation of
DRSs. However, since we focus on the type of information stored in a DRS, this does not
invalidate our argumentation.
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Fig. 2. DSyntSs of (1).

The respective DSyntSs in Figure 2 avoid the idiosyncrasies of SSyntSs and the

over-generalizations of PropBank/DRS. They are isomorphic and facilitate thus a

straightforward transfer.

Based on these observations, we propose to put on the research agenda of statistical

parsing the task of deep-syntactic parsing. This task is not really novel. Thus the idea

of the surface→surface syntax→deep syntax pipeline goes back at least to Curry

(1961) and is implemented in a number of more recent works; cf. (Klimeš 2006,

2007), which produces tectogrammatical structures in the sense of the Prague school,4

de Groote (2001), which obtains a deep categorial grammar structure, and Rambow

and Joshi (1997), which provide a deep analysis in the TAG-framework. Moreover,

in the SemEval 2014 shared task on Broad-Coverage Semantic Dependency Parsing,

the target structures (Oepen et al. 2014) show a similarity with DSyntSs. However,

as pointed out above and as will be argued further below in more detail, DSyntSs

still show some advantages over most of the other common structures. Nonetheless,

the primary goal of this paper is not to push forward the use of DSyntSs. Rather,

we aim to propose a novel way to obtain DSyntSs (or structures that are equivalent

to DSyntSs) from a SSynt dependency parse using data-driven tree transduction in

a pipeline with a syntactic parser.

The paper is an extension of the paper presented by Ballesteros et al. (2014).

Compared to Ballesteros et al. (2014), it contains a more detailed discussion of

the theoretical background and of the data sets, more exhaustive experiments with

more challenging baselines not only on Spanish, but also on Chinese and English,

and a deeper analysis of the outcome of these experiments. The latest version of

the source code and the package distribution of our DSynt parser are available at

https://github.com/talnsoftware/deepsyntacticparsing/wiki.

The remainder of the paper is structured as follows. In Section 2, we introduce

DSyntSs and SSyntSs. Section 3 discusses the fundamentals of SSyntS–DSyntS

transduction. Section 4 describes the experiments that we carried out on Spanish,

Chinese and English material, and Section 5 presents their outcome. Section 6

summarizes the related work, before in Section 7 some conclusions and plans for

future work are presented.

4 Bojar, Cinková and Ptáček (2008) even discuss an MT-model at the tectogrammatical layer.
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2 Linguistic fundamentals of SSyntS–DSynt transduction

Before we set out to discuss the principles of the SSyntS–DSynt transduction, we

define the notions of DSyntS and SSyntS as used in our experiments and the types

of correspondences between the two.

2.1 The surface- and deep-syntactic structures

SSyntSs and DSyntSs are directed, node- and edge-labeled dependency trees with

standard feature-value structures (Kasper and Rounds 1986) as node labels and

dependency relations as edge labels. Both differ, however, with respect to the

abstraction of linguistic information: DSyntSs capture predicate-argument relations

between meaning-bearing lexical items, while these relations are not captured by

SSyntSs. At the same time, DSyntSs maintain the sentence structure (as SSyntSs do).

The features of the node labels in SSyntSs are lex, which captures the name

of the lexical item, and ‘syntactic grammemes’ of this name, i.e., number, gender,

case, person for nouns and tense, mood and finiteness for verbs. The value of lex

can be any (either full or functional) lexical item. The edge labels of a SSyntS

are grammatical functions ‘subj’, ‘dobj’, ‘det’, ‘modif’, etc. In other words, SSyntSs

are syntactic structures of the kind as encountered in the standard dependency

treebanks: dependency version of the Penn Treebank (PTB) (Johansson and Nugues

2007) for English, Prague Dependency Treebank for Czech (Hajič et al. 2006),

AnCora for Spanish (Taulé, Martı́ and Recasens 2008), Copenhagen Dependency

Treebank for Danish (Buch-Kromann 2003), etc. In formal terms, which we need

for the outline of the transduction below, a SSyntS is defined as follows:

Definition 1 (SSyntS)

An SSyntS of a language L is a quintuple TSS = 〈N,A, λls→n, ρrs→a, γn→g〉 defined

over all lexical items L of L, the set of syntactic grammemes Gsynt, and the set of

grammatical functions Rgr , where

• the set N of nodes and the set A of directed arcs form a connected tree,

• λls→n assigns to each n ∈ N an ls ∈ L,

• ρrs→a assigns to each a ∈ A an r ∈ Rgr ,

• γn→g assigns to each λls→n(n) a set of grammemes Gt ∈ Gsynt.

The top structure in Figure 3 shows a sample SSyntS, where the feature-value

information for three nodes is made explicit for illustration. A more common

graphical representation of a SSyntS (which does not show explicitly the features

and their corresponding values) is displayed in Figure 4(a).

The features of the node labels in DSyntSs are lex and ‘semantic grammemes’

of the value of lex, i.e., number and definiteness for nouns and tense, finiteness,

mood, voice and aspect for verbs.5 In contrast to lex in SSyntS, DSyntS’s lex can

be any full, but not a functional lexeme. In accordance with this restriction, in the

case of look after a person, after will not appear in the corresponding DSyntS

5 Most of the grammemes have a semantic and a surface interpretation; see Mel’čuk (2013).
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Fig. 3. SSyntS (top) and DSyntS (bottom) for the sentence The producer thinks that the new

song will be successful soon.

since it is a functional (or governed) preposition. In contrast, after in leave after

the meeting will remain in the DSyntS because there it has its own meaning of

‘succession in time’. The edge labels of a DSyntS are ‘deep-syntactic’ relations

I,. . . ,VI, ATTR, COORD, APPEND. ‘I’,. . . ,‘VI’ are argument relations, analogous

to A0, A1, etc. in the PropBank annotation. ‘ATTR’ subsumes all (circumstantial)

ARGM-x PropBank relations as well as the modifier relations not captured by

the PropBank and FrameNet annotations. ‘COORD’ is the coordinative relation

as in: John-COORD→and-II→Mary, publish-COORD→or-II→perish, and so on.

APPEND subsumes all parentheticals, interjections, direct addresses, etc., as, e.g.,

in Listen, John!: listen-APPEND→John. DSyntSs thus show a strong similarity

with PropBank structures, with four important differences: (i) their lexical labels

are not disambiguated;6 (ii) instead of circumstantial thematic roles of the kind

6 As a matter of fact, in genuine DSyntSs as defined in Mel’čuk (1988), lexical labels are
disambiguated. It is only in our current interpretation that they are not.
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(a) almost 1.2 million job have be create by the state in that time

adv

quant quant subj
analyt perf analyt pass agent

adv

prepos

det

prepos

det

(b) almost 1.2 million job create state in that time

ATTR

ATTR ATTR II I

ATTR
II

ATTR

Fig. 4. SSyntS and DSyntS for the sentence Almost 1.2 million jobs have been created by the

state in that time.

[almost 1.2 million]jobs create by state in[that time]

A1 A0

AM-TMP

Fig. 5. PropBank structure of the sentence Almost 1.2 million jobs have been created by the

state in that time.

ARGM-LOC, ARGM-DIR, etc. they use a unique ATTR relation; (iii) they capture

all existing dependencies between meaning-bearing lexical nodes and (iv) they are

connected. Formally, a DSyntS is defined as follows:

Definition 2 (DSyntS)

A DSyntS of a language L is a quintuple TDS = 〈N,A, λls→n, ρrs→a, γn→g〉 defined

over the full lexical items Ld of L, the set of semantic grammemes Gsem, and the set

of deep-syntactic relations Rdsynt, where

• the set N of nodes and the set A of directed arcs form a connected tree,

• λls→n assigns to each n ∈ N an ls ∈ Ld,

• ρrs→a assigns to each a ∈ A an r ∈ Rdsynt,

• γn→g assigns to each λls→n(n) a set of grammemes Gt ∈ Gsem.

The bottom structure in Figures 3 and 4(b) show examples of DSyntSs.

As mentioned, a number of other annotations have resemblance with DSyntSs.

In particular, as already pointed out, DSyntSs show some resemblance but also

some important differences with PropBank structures, mainly due to the fact that

the latter concern phrasal chunks and not individual nodes. Figure 5 shows the

PropBank structure that corresponds to the SSyntS and DSyntS in Figure 4. The

square brackets in the PropBank structure indicate the constituents that implicitly

form part of the arguments of A1 and AM-TMP, respectively.

The target structures of the SemEval 2014 shared task on Broad-Coverage

Semantic Dependency Parsing (Oepen et al. 2014) also show some similarities with

DSyntSs. For instance, the DELPH-IN annotation, which is a rough conversion

of the Minimal Recursion Semantics treebank (Oepen and Lønning 2006) into bi-

lexical dependencies, also captures the lexical argument (or valency) structure and

eliminates some functional elements (such as be copula and prepositions). The Enju

annotation (Miyao 2006) is a pure predicate-argument graph over all the words of

a sentence. However, it distinguishes arguments of functional elements (auxiliaries,

infinitive and dative TO, THAT, WHETHER, FOR complementizers, passive BY)

in that they are attached to the semantic heads of these elements (rather than to
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almost 1.2 million job have be create the state that time

quantmod

number
num

nsubjpass

aux

auxpass

agent

prep in

det det

Fig. 6. Collapsed Stanford dependency structure of the sentence Almost 1.2 million jobs have

been created by the state in that time.

the elements themselves). This facilitates the disregard of functional elements – as

in DSyntSs (cf. Ivanova et al. (2012) for a more complete overview of Enju and

DELPH-IN).

The degree of ‘semanticity’ of DSyntSs can be directly compared to Prague’s tec-

togrammatical structures (PDT-tecto (Hajič et al. 2006)), which contain autosemantic

words only. Synsemantic elements such as determiners, auxiliaries, prepositions and

conjunctions are not kept in tectogrammatical structures. Thanks to the distinction

between argumental and non-argumental edges, tectogrammatical structures are

trees, not graphs. That is, as in the DSyntSs, they maintain the syntactic structure of

the sentence. The main differences between DSyntSs and tectogrammatical structures

are: (i) in tectogrammatical structures, no distinction is made between governed and

non-governed prepositions and conjunctions, and (ii) in tectogrammatical structures,

the vocabulary used for edge labels emphasizes ‘semantic’ content over predicate-

argument information. For instance, a label like ADDR (addressee) indicates that the

dependent is an argument of its governor, but does not say which slot is occupied

in the valency frame of the latter. At the same time, this tag indicates that the

dependent is the recipient of a message, which a simple ARG2 label for instance

does not encode.7 DSyntSs, on the other hand, have the advantage to directly

encode predicate-argument structures and thus be straightforwardly connected to

existing lexical resources such as PropBank or NomBank, and through these to

deeper representation such as VerbNet (Schuler 2005) and FrameNet structures; see

Palmer (2009).

Although the annotations are not really of the same nature, DSyntSs can be

furthermore contrasted to the Collapsed Stanford Dependencies (SD) (de Marneffe

and Manning 2008). Collapsed SDs differ from DSyntSs (apart from the fact that

that they may be (sometimes) disconnected graphs) in that: (i) in the same fashion

as in the Prague Dependency Treebank, they collapse only (but all) prepositions,

conjunctions and possessive clitics, whereas DSyntSs omit all functional nodes

(all auxiliaries, some determiners, and some prepositions and conjunctions); (ii)

they do not involve any removal of (syntactic) information since the meaning of

the preposition remains encoded in the label of the collapsed dependency, while

DSyntSs omit or generalize the purely functional elements; (iii) they do not add

semantic information compared to the surface annotation. That is, Collapsed SDs

7 See Oepen et al. (2014) for a parallel illustration of DELPH-IN, Enju and tectogrammatical
structures.
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keep the surface-syntactic information, representing it in a different format, while

DSyntSs keep only deep-syntactic information. Consider Figure 6 for illustration.8

As in all mentioned annotations (except in SD), the opposition between active

and passive voice is neutralized in the DSynSs – for instance, both the first object of

an active verb and the subject of a passive verb are annotated as second arguments.

As in PDT-tecto, PropBank and SD, in DSyntSs multi-word expressions (MWEs)

are handled through a specific dependency relation; in DRS and DELPH-IN,

special predicates exist, which take as arguments the components of a MWE, while

in Enju, MWEs are not annotated. In our current version of the DSyntSs (as

in SD, DRS, DELPH-IN, and Enju), predicates are not disambiguated and light

verb constructions, which are the most common type of MWEs, are annotated

as regular constructions. In contrast, in the PropBank and PDT-tecto annotations,

verbs and nouns are disambiguated, and an independent resource with lexical units

and their valency frames is compiled (PropBank lexicon and PDT-VALLEX). In

PropBank and PDT-tecto, light verb constructions are also annotated: as MWEs

in PDT-tecto, and as independent lexical units in the PropBank lexicon. Finally,

in DSyntSs, argument sharing is not represented, since at this level the structures

must be trees and one node can thus receive one and only one incoming arc. In the

Meaning-Text framework, argument sharing is made explicit at the semantic layer,

where the structures are predicate-argument graphs. The PDT-tecto annotation is

also arborescent, but its authors made the choice to annotate argument sharing

by duplicating shared arguments in the tree for control and coordinate structures.9

PropBank, SD, DRS, DELPH-IN and Enju, are graph representations, so shared

arguments in coordinate and control constructions are not an issue. However, in

PropBank and SD, special relations are used in some case of control constructions

(and other phenomena), respectively C-AM and xsubj relations.

2.2 SSyntS–DSyntS correspondences

The implementation of the transduction from SSyntS to DSyntS requires a prior

detailed analysis of the correspondences between elements of SSyntS and DSyntS.

Let us thus discuss the correspondences between the two types of structures, based

on the example in Figure 7 (in which the grammemes are not shown for the sake

of clarity); we use a Spanish example (instead of, e.g., an English one) because it

allows us to illustrate all relevant phenomena.

The following correspondences between the SSyntS Sss and DSyntS Sds of a

sentence need to be taken into account during the SSyntS–DSyntS transduction:10

8 Figure 6 has been obtained through manual revision of the output of the online Stanford
demo page (http://nlp.stanford.edu:8080/parser/index.jsp); we are responsible for possible
erroneous dependencies.

9 Actually, given their annotation of coordinations, shared arguments do not always have to
be duplicated: with the conjunction as the governor of all the conjuncts, shared arguments
are simply made dependents of the conjunction.

10 In what follows, the structures in Figure 7 are used to illustrate the correspondences (i)–
(vii); we are aware that the citation of the same structures is somehow repetitive, but we

https://doi.org/10.1017/S1351324915000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324915000285


948 M. Ballesteros et al.

SSyntS

el profesor dice que se quejan mucho
the professor says that themselves they-complain a-lot

det subj
dobj

sub conj

aux refl
adv

DSyntS

profesor decir 3-PL quejarse mucho
professor say 3-PL complain a-lot

I

II

I
ATTR

Fig. 7. SSyntS and DSyntS of the sentence el profesor dice que se quejan mucho ‘the

professor says that they complain a lot’.

StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj aaux reflrefl
adv

profesor decir 3-PL quejarse mucho

I
II

Fig. 8. A node in Sss is a node in Sds.

StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj
sub conjn
aaux reflrefl

adv

profesor decir 3-PL quejarse mucho

I I
II

ATTRAA

Fig. 9. A relation in Sss corresponds to a relation in Sds.

StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj
sub conjn

aux reflrefl
adv

profesor decir 3-PL quejarse mucho

I II
II

ATTRAA

Fig. 10. A fragment of the Sss tree corresponds to a single node in Sds.

(i) A node in Sss is a node in Sds (Figure 8):

The node mucho ‘a-lot’ has a single correspondent in the DSyntS. This is also

the case of the node profesor.

(ii) A relation in Sss corresponds to a relation in Sds (Figure 9):

The SSynt relation subj is mapped to the DSynt relation I. Note that the

relation-to-relation mapping is not necessarily unique. Thus, subj is mapped

to II (rather than to I) if the verb in the SSyntS is in passive.

(iii) A fragment of the Sss tree corresponds to a single node in Sds (Figure 10):

The words dice ‘say’ and que ‘that’ and the dependency between them (dobj )

correspond to one single node in DSynt (decir ‘say’); in other words, que ‘that’

is not reflected in the DSyntS.

believe that it makes the presentation much clearer. For English glosses of the Spanish
words, see Figure 7.
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StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj
sub conjn
aaux reflrefl

adv

profesor decir 3-PL quejarse mucho

[ definit=DEF]

I
II

II
ATTRAA

Fig. 11. A relation with a dependent or governor node in Sss is a grammeme in Sds.

StnySDStnySS

el profesor dice que se quejan mucho

[ num=SG]

det subj
dobj

sub conjn
aaux reflrefl

adv

profesor decir 3-PL quejarse mucho

[ num=SG]

II
II

ATTRAA

Fig. 12. A grammeme in Sss is a grammeme in Sds.

StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj

sub conj

aux refl
adv

profesor decir 3-PL quejarse mucho

I
II

II
ATTR

Fig. 13. A node in Sss is conflated with another node in Sds.

(iv) A relation with a dependent or governor node in Sss is a grammeme in Sds
(Figure 11):

The relation det and its dependent, the definite determiner el ‘the’, are stored

in the DSyntS as the grammeme of definiteness associated to the node profesor

‘professor’. Similarly, the auxiliary relations and their governors correspond to

a grammeme of voice, tense, or aspect on the node of the dependent verb.11

(v) A grammeme in Sss is a grammeme in Sds (Figure 12):

Number grammemes are maintained on nodes which can carry semantic

number (that is, on nodes which do not have a number only for agreement

reasons, as it can be the case for verbs in English, verbs, determiners and

adjectives in Spanish and other languages, etc.), such as singular number on

the node profesor ‘professor’. Other grammemes, such as those of tense, mood,

or finiteness are mapped the same way.

(vi) A node in Sss is conflated with another node in Sds (Figure 13):

For this correspondence, the reflexive pronoun se ‘itself ’/‘each other’ is part of

the lemma of the verb in the DSyntS. In the SSyntS, it is separated in order

to produce the sentence se quejan, lit. ‘themselves they-complain’.

(vii) A node in Sds has no correspondence in Sss (Figure 14):

In Spanish, which is a pro-drop language, the subject of a finite verb does not

need to be realized, even though there is a node at the DSynt level which accounts

for the agreement found on the verb, for instance (third person plural in this case).

11 Note that the fact that the determiner and its dependency are mapped onto a grammeme
entails that the governing noun actually has a one-to-one correspondence with its DSyntS
counterpart, even though we consider that both nodes form a hypernode (see Section 3.1).
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StnySDStnySS

el profesor dice que se quejan mucho

det subj dobj
sub conjn
aaux reflrefl

adv

profesor decir 3-PL quejarse mucho

I
II

II ATTRAA

Fig. 14. A node in Sds has no correspondence in Sss.

3 SSyntS–DSyntS transduction

In this section, we first flesh out the principles of the transduction between SSyntSs

and DSyntSs and detail it then step by step.

3.1 Principles of the SSyntS–DSyntS transduction

In the above list of SSynt-DSynt correspondences, the grammeme correspondences

(iv) and (v) and the ‘pseudo’ correspondences in (vi) and (vii) are few or idiosyncratic

and are best handled in a rule-based post-processing stage; see Section 3.5. The main

task of the SSyntS–DSyntS transducer is thus to cope with the correspondences (i)–

(iii). For this purpose, we consider SSyntS and DSyntS trees as two-dimensional

matrices I = N×N (with N as the set of nodes {1, . . . , m} of a given tree and I(i, j) =

ρrs→a(ni, nj) if ni, nj ∈ N and (ni, nj) = a ∈ A (i, j = 1, . . . , m; i �= j) and I(i, j) = 0

otherwise.12 That is, for a given SSyntS, I(i, j) contains in the cell (i, j), i, j = 1, . . . , m

(with i �= j) the name of the SSynt-relation that is encountered in the given tree

between the nodes ni and nj . If no relation holds between ni and nj , the cell I(i, j)

contains ‘0’. In analogy, for a given DSyntS, the cells contain DSyntS-relations

between the corresponding nodes.

Starting from the matrix Is of a given SSyntS, the task is therefore to obtain the

matrix Id of the corresponding DSyntS, that is, to identify correspondences between

is respectively js, (is, js) and groups of (is, js) of Is with id respectively jd and (id, jd) of

Id; see (i)–(iii) above. In other words, the task consists in identifying and removing

all functional lexemes, and attach correctly the remaining nodes between them.13

As already the projection of a chain of tokens onto an SSyntS, the SSyntS–DSyntS

projection can be viewed as a classification task. However, while the ‘chain→surface-

syntactic tree’ projection is isomorphic, the latter is not (see (iii)). In order to make

it appear as an isomorphic projection, it is convenient to interpret SSyntS and the

targeted DSyntS as collection of hypernodes; cf. Definition 3:

Definition 3 (Hypernode)

Given a SSyntS Ss with its matrix Is and a DSyntS Sd with its matrix Id, a node

partition p (with |p |≥ 1) of Is/Id is a hypernode hsi / hdi iff p corresponds to a

partition p′ (with |p′ |≥ 1) of Sd/Ss.

12 As the reader will have noticed, we use here the graph notation ‘(ni, nj)’ to refer to an
arc between the (starting) node ni and the (target) node nj in a tree. See also the formal
definitions of SSyntS and DSyntS in the previous section.

13 Particularly challenging is the identification of functional prepositions: based on the
information found in the corpus only, our system must decide if a given preposition
is a full or a functional lexeme. That is, we do not resort to any external lexical resources.
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In other words, a SSyntS hypernode, known as syntagm in linguistics, is any SSyntS

configuration with a cardinality ≥1 that corresponds to a single DSyntS node. The

notion of hypernode is quite generic. It subsumes several types of correspondences

discussed in Section 2.2 (namely, (i), (iii), (iv) and (vi)). For instance, dice que ‘says

that’, el profesor ‘the professor’, and se quejan ‘(they) complain’ from the example

above constitute hypernodes. Hypernodes can also contain more than two nodes,

as in the case of more complex analytical verb forms, e.g., ha sido invitado ‘he-has

been invited’, which corresponds to the node invitar ‘invite’ in the DSyntS.

In this way, the SSyntS–DSyntS correspondence boils down to a correspond-

ence between individual hypernodes and between individual arcs, such that the

transduction embraces the following three (classification) subtasks: (i) hypernode

identification, (ii) DSynt tree reconstruction and (iii) DSynt arc labeling, which are

completed by (iv) post-processing.

3.2 Hypernode identification

The hypernode identification consists of a binary classification of the nodes of a

given SSyntS as nodes that form a hypernode of cardinality 1 (i.e., nodes that have a

one-to-one correspondence to a node in the DSyntS) versus nodes that form part of

a hypernode of cardinality > 1. In practice, hypernodes of the first type (henceforth,

‘type 1’ or ‘h1’) will be formed by: (1) noun nodes that do not govern (in)definite

determiner or functional preposition nodes, (2) full verb nodes that are not governed

by any auxiliary verb nodes and that do not govern any functional preposition node

and (3) adjective, adverbial, and semantic preposition nodes which do not govern

functional preposition nodes.

Hypernodes of the second type (henceforth, ‘type 2’ or ‘h2’) will be formed by: (1)

noun nodes + (in)definite determiner + functional preposition nodes they govern,

(2) verb nodes + auxiliary nodes they are governed by + functional preposition

nodes they govern + reflexive pronoun se ‘oneself’ when it is part of the lemma of

the verb and (3) adjective, adverbial, and semantic preposition nodes + functional

preposition nodes they govern.

The following sentence shows different examples of hypernodes of type 1 (h1 )

and type 2 (h2 ):

(2) [El capitán de]h2 [la embarcación]h2 [se ha puesto a]h2 [cantar]h1 [cuando]h1 [ha

visto a]h2 [cuatro]h1 [delfines]h1 [adultos]h1 [saltar]h1 [cerca de]h2 [nosotros]h1.

‘[The captain of]h2 [the boat]h2 [(reflexive+has) started to]h2 [sing]h1 [when]h1
[he-has seen prep]h2 [four]h1 [dolphins]h1 [adults]h1 [jump]h1 [next to]h2 [us]h1.’

3.3 DSynt tree reconstruction

The outcome of the hypernode identification stage is thus the set Hs = Hs|p|=1
∪Hs|p|>1

of hypernodes of two types. With this set at hand, we can define an isomorphic

function τ : Hs → Hd|p|=1
(with hd ∈ Hd|p|=1

consisting of nd ∈ Nds, i.e., the set of

nodes of the target DSyntS). τ is the identity function for hs ∈ Hs|p|=1
. For hs ∈ Hs|p|>1

,

τ maps the functional nodes in hs onto grammemes (attribute-value tags) of the
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Algorithm 1: DSyntS tree reconstruction
for ∀ni ∈ Nd do

if ∃nj : (nj , ni) ∈ Ss ∧ τ(nj) ∈ Nd then
// the equivalent of the governor node of ni is
// included in DSyntS
(nj , ni) → Sd

else if ∃nj , na : (nj , ni) ∈ Ss ∧ τ(nj) �∈ Nd∧
τ(na) ∈ Nd then
//na is the first ancestor of nj that has
//an equivalent in DSyntS
//the equivalent of the governor node of ni

//is not included in DSyntS, but the
//ancestor na is
(na, ni) → Sd

else
//the equivalent of the governor node of ni

//is not included in DSyntS, but several
//ancestors of it are
nb := BestHead(ni, Ss, Sd)
(nb, ni) → Sd

endfor

Fig. 15. DSyntS tree reconstruction algorithm.

governor node1 node2 node3 node4

[dep1]
[dep2] [dep3]

[dep4]

Fig. 16. A sentence in its surface representation that shows two paths: [dep1] + [dep2] +

[dep3] for the node3 and [dep1] + [dep4] for node4. The nodes governor, node3 and node4 are

kept in the deep structure. The other nodes (node1 and node2) are not included in the deep

structure. The system has to decide whether node3 or node4 are attached to the governor.

meaning-bearing node in hd and identifies the meaning-bearing node as governor.

Some of the dependencies of the obtained nodes nd ∈ Nds can be recovered from

the dependencies of their sources. Due to the node removals (e.g., the projection

of functional nodes to grammemes), some dependencies will be also missing and

must be introduced. The algorithm in Figure 15 recalculates the dependencies for the

target DSyntS Sd, starting from the matrix Is of SSyntS Ss to obtain a connected tree.

BestHead recursively ascends Ss from a given node ni until it encounters one or

several governor nodes nd ∈ Nds. In case of several encountered governor nodes, the

one which governs the highest frequency dependency is returned. Consider Figure 16

for illustration.

3.4 DSynt arc labeling

The tree reconstruction stage produces a ‘hybrid’ connected dependency tree Ss→d

with DSynt nodes Nds, and arcs As labeled by SSynt relation labels (cf. left part

of Figure 17), i.e., a matrix I−, whose cells (i, j) contain SSynt labels for all
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governor node3 node4

[dep1]
[dep4]

governor node3 node4

[depDeep1]
[depDeep2]

Fig. 17. Input (left) and output (right) of DSynt arc relabeling.

ni, nj ∈ Nds : (ni, nj) ∈ As and ‘0’ otherwise. The next and last stage of SSynt-

to-DSyntS transduction is thus the projection of SSynt relation labels of Ss→d to

their corresponding DSynt labels, or, in other words, the mapping of I− to Id of the

target DSyntS (see Tables 2 and 3 for concrete examples).

There are some labels that have a direct transduction (see Table 2 for direct SSynt-

DSynt label correspondences in Spanish), while others have several candidates. For

instance, and as shown in Table 3 for Spanish, the labels coord and copred are always

transduced to COORD and ATTR respectively, while obl obj may be mapped to II,

III, IV or VI, depending on the other dependents of the governor of the current

node. This is why it is necessary to include higher-order features based on the

siblings of the node that is about to be transduced. Figure 17 shows an example of

the relabeling: on the left side of the figure, the dependency labels are superficial

(depx), whereas on the right side of the figure, the labels are the ones usually found

in a DSyntS (depDeepx).

The system learns the SSynt-to-DSynt label projection (in training time) in order

to be able to infer it during the test time. The training procedure outputs a multi-

class classifier that detects the best DSynt label for each node, taking into account

the features that are included in the procedure. Again, this module allows for two

kinds of features: local features related to a node and higher-order features related

to the governor node of a node that is being processed and features related to the

sibling nodes.

3.5 Postprocessing

As mentioned in Section 2, there is a limited number of idiosyncratic correspondences

between elements of SSyntS and DSyntS. The correspondences (iv–vii), depicted in

Section 2.2 can be straightforwardly handled by a rule-based post-processor because

(a) they are non-ambiguous, i.e., a ↔ b, c ↔ b ⇒ a = c ∧ a ↔ b, a ↔ d ⇒ b = d,

and (b) they are few. The rule-based post-processor creates/copies grammemes and

creates respectively collapses some nodes in the DSyntS:

(1) Tense and voice grammemes are introduced for verbal lexemes in accordance

with the corresponding SSynt dependency relation (e.g., analyt fut gives rise to

‘tense=FUT(ure)’, analyt perf to ‘tense=PAST’, analyt pass to ‘voice=PASS(ive)’,

etc.); definiteness grammemes are introduced for nominal lexemes (e.g., the←det-

gives rise to ‘def=DEF’).

(2) If a number or tense grammeme is already assigned to a node ns in the SSyntS,

it is copied to the node nd corresponding to ns in the DSyntS.

(3) A reflexive verb particle that is part of the verb lemma (as e.g., se in Spanish or

si in Italian) or a pronoun (as e.g., sich in German) and its verbal governor in

the SSyntS are collapsed in the DSyntS into a single node.
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Fig. 18. Setup of a deep-syntactic parser.

(4) If a pronoun in the SSyntS of a pro-drop language is omitted, a pronoun

node is created and related to its verbal governor in the DSyntS. So far, this

case has been implemented only for the zero subject in Spanish, for which the

pronoun node is created, furnished with the number and person grammemes

derived from the SSyntS and related to its verbal governor by an actantial

relation which depends on the voice of the verb: I for active and II for passive,

respectively.

4 Experiments

In order to validate the SSyntS–DSyntS transduction described in Section 3 and

to assess its performance in combination with a surface dependency parser, i.e.,

starting from a plain sentence, we carried out a number of experiments in which we

implemented the transducer and integrated it into the pipeline. Figure 18 shows the

whole pipeline we set up.

4.1 The SSyntS and DSyntS treebanks

We carried out experiments on Spanish, English and Chinese.14

For Spanish, we use the AnCora-UPF SSyntS and DSyntS treebanks (Mille, Burga

and Wanner 2013) in CoNLL format,15 which we adjusted for our needs. In

particular, we removed from the 79-tags SSyntS treebank the semantically and

information structure influenced relation tags to obtain an annotation granularity

closer to the granularities used for previous parsing experiments (55 relation tags;

see Mille et al. (2012)). Unlike, e.g., PTB, in which syntactic (Penn TreeBank)

and semantic role (ProbBank/NomBank) annotations are superimposed in the

same CoNLL repository, in AnCora-UPF the SSyntSs and DSyntSs are separate

treebanks,16 which have been validated manually (Mille et al. 2013).

14 The Spanish treebank served us as the main source for the development of the system.
Therefore, as the reader will notice below, we used a development dataset for Spanish, but
not for English and Chinese.

15 The corpus underlying both treebanks is the same: AnCora from 2008 (Taulé et al. (2008)).
16 The separation of SSyntS and DSyntS benefits our experiments since treebanks in which

SSyntS and DSyntS are superimposed are problematic for training pro-drop language
models (such as Spanish) because some nodes that do not appear in SSyntS are introduced
in the DSyntS.
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The treebanks have been divided into: (i) a training set (3,036 sentences, 57,665

tokens in the DSyntS treebank and 86,984 tokens in the SSyntS treebank); (ii)

a development set (219 sentences, 3,271 tokens in the DSyntS treebank and 4,953

tokens in the SSyntS treebank); (iii) a held-out test set for evaluation (258 sentences,

5,641 tokens in the DSyntS treebank and 8,955 tokens in the SSyntS treebank).

For English, we use the PTB 3 (Marcus et al. 1994) dependency version (Hajič

et al. 2009) as SSynt annotation. To derive from it the DSynt annotation,17 we

implemented graph-transduction grammars in the MATE environment (Bohnet

and Wanner 2010).18 The derivation removes all determiners, auxiliaries, that

complementizers, infinitive markers to, punctuations and functional prepositions

of verbs and predicative nouns. In order to obtain a DSynt annotation of a

quality that is close to the quality of our annotation of the Spanish corpus, we

used existing (manually annotated) lexical resources during the derivation, namely,

PropBank (Kingsbury and Palmer 2002) and NomBank (Meyers et al. 2004).19 In

these two resources, 11,781 disambiguated predicates (5,577 nouns and 6,204 verbs)

are described and their semantic roles are listed. For each of them, an important

share of functional prepositions can be retrieved. To access the list of arguments

of each predicate and for each argument the list of its functional prepositions, we

draw upon two fields of the XML files of these resources: the last word of the field

‘descr’in ‘roles’, and the first word of the field of the corresponding role in ‘example’.

In this way, we obtain, for instance, for the lexical unit beg.01 (Figure 19), the

preposition from for the semantic role 1, and the preposition for for role 2. From

the example field, we also retrieve for for role 2.

For each disambiguated predicate of PropBank and NomBank, we add a new

entry with the semantic roles and associated functional prepositions. The resulting

dictionary allows us to obtain a DSynt layer freed from around 25,000 such

prepositions.

Table 1 shows the quality of the obtained DSynt layer. The quality figures

are based on the comparison of the DSyntSs of 300 sentences (6,979 SSynt and

4,976 DSynt tokens) of the PTB annotated manually with their automatically

obtained equivalents. According to our error analysis, most errors of the automatic

annotation are due to the fact that during the annotation, the only information that

is available concerns verbs and nouns which govern preposition(s). In other words,

functional prepositions governed by adjectives, adverbs or prepositions (e.g., thanks

to) cannot be identified automatically. Neither can be identified argument slots in

genitive noun compounds, as explained in Sections 4.3.1–3 for Spanish. However,

17 For English, our derived DSyntS annotation of the PTB is the first DSyntS annotation for
English.

18 Ribeyre, Candito and Seddah (2014) perform a similar automatic conversion of the French
Treebank.

19 We use PropBank and NomBank instead of VerbNet because (i) the latter covers five times
less (2,380) predicates found in the PTB, and (ii) one predicate can be associated to more
than one class, i.e., the valency pattern can be ambiguous. We are carrying out experiments
on merging all these resources together (Mille and Wanner 2015).

https://doi.org/10.1017/S1351324915000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324915000285


956 M. Ballesteros et al.

Fig. 19. (Colour online) Sample PropBank entry.

Table 1. Quality of the automatic annotation of the PTB with the DSyntS layer

Node removal/addition

Measure Automatic annotation

ph 97.00 (4974/5128)

rh 99.96 (4974/4976)

F1h 98.46

Attachment and labeling

Measure Automatic annotation

LAP 88.53 (4540/5128)

UAP 93.88 (4814/5128)

LA-P 90.00 (4615/5128)

LAR 91.24 (4540/4976)

UAR 96.74 (4814/4976)

LA-R 92.75 (4615/4976)

the automatic annotation is still of reasonable quality that allows us to use it for our

experiments.

For our experiments, we kept the same training and test dataset split as in the

CoNLL Shared Task 2009 (Hajič et al. 2009): 39,279 sentences for the training set

and 2,399 sentences for the test set. This meant in the case of the training set 958,167

tokens in the SSyntS treebank and 711,491 tokens in the DSyntS treebank, and in

the case of the test set 57,676 tokens in the SSyntS treebank and 42,467 tokens in

the DSyntS treebank.
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For Chinese, we use the Chinese Dependency Treebank (Xue et al. 2004), which

was mapped to the DSyntSs along the same lines as PTB 3, but using a graph

transduction grammar tuned to Chinese syntax and without lexical resources. The

mapping removes (i) aspectual markers (PoS AS ), (ii) prepositions in beneficiary

constructions (PoS BA), in verbal modifier constructions (PoS DER and DEV),

in passives (PoS LB ), and in verbal and nominal constructions with PoS DEC,

DEG, and P in the case of the word jiu, (iii) localizers when they are combined

with prepositions, (iv) certain particles (PoS SP and a subclass of MSP ) and (v)

punctuations.20

The Chinese treebank has been divided into a training set of 31,131 sentences

(718,716 tokens in the SSyntS treebank and 553,290 tokens in the DSyntS treebank)

and a test set of 10,180 sentences (241,247 tokens in the SSyntS treebank and 186,710

tokens in the DSyntS treebank).

4.2 Getting the SSyntS

To obtain the SSyntS of all three languages with which we experiment, we use

Bohnet and Nivre (2012)’s transition-based parser, which combines PoS tagging

and syntactic labeled dependency parsing. The parser uses a number of various

techniques to obtain competitive accuracy such as beam search, a hash kernel that

can employ a large number of features, and a graph-based completion model that

re-scores the beam to capture the tree structure in terms of completed structures

composed by up to three edges.

The parser was trained in twenty-five training iterations, using in each iteration

the model from the preceding iteration for further processing. Given that the parser

combines PoS and dependency parsing, we let the parser choose between the two

best PoS tags. The threshold for the inclusion of PoS tags was set to a score of 0.25,

and the size for the beam of the alternative PoS tags to 4.

4.3 From SSyntS to DSyntS

In what follows, we first present the realization of the SSyntS–DSyntS transducer

and then the baseline that we use for the evaluation of the performance of the

transducer. Given that we did the main development work on the Spanish treebanks,

the examples in this subsection are given for Spanish and the performance reported

for the development data set is for Spanish.

4.3.1 SSyntS–DSyntS transducer

As outlined in Section 3, the SSyntS–DSyntS transducer is composed of three main

submodules ((1) Hypernode identification, (2) Tree reconstruction and (3) Relation

20 We are conscious that this fully automatically obtained treebank cannot be of highest
quality and is thus not optimal as training material. However, we believe that it is useful
to demonstrate that our proposal is applicable to typologically quite different languages.
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label classification) and a post-processing submodule. Let us discuss each of them

separately.

(1) Hypernode identification: For hypernode identification, we trained a binary

Support Vector Machine (SVM) with polynomial kernel from The library for Support

Vector Machines (LIBSVM) (Chang and Lin 2001). The SVM allows for both

features that are related to the processed node and higher-order features, which can

be related to the governor node of the processed node or to its sibling nodes. After

several feature selection trials, we chose the following features for each node n:

• lemma or stem of the label of n,

• label of the relation between n and its governor,

• surface PoS of n’s label,21

• label of the relation between n’s governor to its own governor,

• surface PoS of the label of n’ governor node.

After an optimization round of the parameters available in the SVM implement-

ation, the hypernode identification achieved over the Spanish gold development set

99.78% precision and 99.02% recall (and thus 99.4% F1).22 That is, only very few

hypernodes are not identified correctly. The main (if not the only) error source

are governed prepositions; cf. Section 2: the classifier has to learn when to assign a

preposition an own hypernode (i.e., when it is lexically meaning-bearing) and when it

should be included into the hypernode of the verb/noun (i.e., when it is functional).

Our interpretation is that the features we use for this task are appropriate, but that

the training data set is too small. As a result, some prepositions are erroneously

removed from or left in the DSyntS.

(2) Tree reconstruction: The implementation of the tree reconstruction module

shows an unlabeled dependency attachment precision of 98.18% and an unlabeled

dependency attachment recall of 97.43% over the Spanish gold development set.

Most of the errors produced by this module have their origin in the previous module,

that is, in the hypernode identification. When a node has been incorrectly removed,

the module errs in the attachment because it cannot use the node in question as

the destination or the origin of a dependency, as it is the case in the gold-standard

annotation; cf. Figure 20.23

When a node has erroneously not been removed, no dependencies between its

governor and its dependent can be established since DSyntS must remain a tree

(which gives the same LAS and UAS errors as when a node has been erroneously

removed); cf. Figure 21.

21 The SSynt and DSyntS treebanks distinguish between surface and deep PoS.
22 For the definition of the evaluation measures we use, see Section 5.1.
23 Note that a large majority of prepositions and conjunctions that have to be removed are

second arguments, and that their dependents are by chance their second arguments too.
If the example given in Figure 20 gives a labeled and unlabeled attachment errors, the
labeling accuracy is not impaired (the node is in both cases the dependent of an edge II).
This explains why the labeling accuracy is significantly higher than the labeled attachment
score (see Section 5.2).

https://doi.org/10.1017/S1351324915000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324915000285


Data-driven deep-dyntactic dependency parsing 959

Table 2. Straightforward SSynt to DSyntS DepRel mappings (Spanish)

SSynt DSynt

abbrev ATTR
abs pred ATTR
adv ATTR
adv mod ATTR
appos ATTR
attr ATTR
aux phras NAME
aux refl dir II
aux refl indir III
bin junct ATTR
compl1 II
compl2 III
compl adnom ATTR
coord COORD
copul II
copul clitic II
copul quot II
dobj clitic II

SSynt DSynt

dobj quot II
elect ATTR
juxtapos APPEND
modal II
modif ATTR
num junct COORD
obj copred ATTR
prepos II
prepos quot II
prolep APPEND
quant ATTR
quasi coord COORD
quasi subj I
relat ATTR
restr ATTR
sequent ATTR
subj copred ATTR

Gold-standard: ser como eñe
be like ñ-rettel

II
II

Predicted: ser eñe
be ñ-rettel

II

Fig. 20. Sample gold-standard and predicted DSyntSs: node erroneously removed from the

DSyntS.

Gold-standard: y Michael Jackson
and Michael Jackson

II

Predicted: y a Michael Jackson
and to Michael Jackson

II

II

Fig. 21. Sample gold-standard and predicted DSyntSs: node erroneously left in the DSyntS.

(3) Relation label classification: For relation label classification, we use a multi-

class linear SVM. The label classification procedure depends on the concrete

annotation schemata of the SSyntS and DSyntS treebanks on which the parser

is trained. Some DSynt relation labels may be easier to derive from the original

SSyntS relation labels than others. In Tables 2 and 3, we summarize the DSynt

relation label derivation for the Spanish treebank.24 Table 2 lists all Spanish SSynt

relation labels that have a straightforward mapping to DSyntS relation labels, i.e.,

(i) neither their dependent nor their governor are removed, and (ii) the SSyntS

label always maps to the same DSynt label. Table 3 shows SSyntS relation–DSyntS

relation label correspondences that are not straightforward.

Given that SSyntS is highly language-dependent, the SSyntS–DSyntS map-

pings must necessarily capture these idiosyncrasies. For instance, for Spanish as a

24 We show explicitly only the derivation for Spanish, first, because the SSyntS–DSyntS
projection for Spanish is the most complex in our collection of treebanks. Second, because
showing additionally the derivation for English and Chinese would not provide any further
argumentation or illustration, while occupying several pages of the paper.
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Table 3. Complex SSyntS to DSyntS mappings (Spanish); ‘Dep’ = ‘dependent’, ‘Gov’
= ‘governor’, ‘DepRel’ = ‘DSynt dependency relation’

SSynt DepRel Mapping operations to DSynt

agent remove Dep; DepRel I

analyt fut remove Gov and Dep; add tense=FUT

analyt pass remove Gov; invert I and II; add voice=PASS

analyt perf remove Gov; add tense=PAST

analyt progr remove Gov; add tem constituency=PROGR

aux refl lex remove Dep; add se at the end of Gov’s lemma

aux refl pass remove Dep; invert I and II; add voice=PASS

compar remove Dep, if conjunction; map to DepRel II

compar conj remove Dep, if governed preposition

coord conj
map to DepRel II

sub conj

det

IF Dep=el—un: remove Dep

add definiteness=DEF/INDEF

IF Dep=possessive: map to DepRel ATTR|I|II|III
IF Dep=other: map to DepRel ATTR

dobj
remove Dep, if governed preposition

map to DepRel I|II

iobj
remove Dep, if governed preposition

map to DepRel II|III|IV|V|VI

iobj clitic map to DepRel II|III|IV|V|VI

obl compl
remove Dep, if governed preposition

map to DepRel I|II|III|IV|V|VI

obl obj
remove Dep, if governed preposition

map to DepRel II|III|IV|V|VI

punc( init) remove Dep

subj
remove Dep, if governed conjunction

map to DepRel I|II

pro-drop language we need to create in the DSyntS nodes that stand for zero subjects

(i.e., subjects that do not appear in the SSyntS). Since the data-driven hypernode

classifier only removes or keeps nodes, we implemented a simple rule-based approach

for node creation. The system adds a node in the DSyntS when there is a finite

verb that does not have a dependent which is a subject. This new node inherits the

person and number from the verbal governor. This strategy is fully applicable to

other languages as well since the system only needs as input the verbal PoS tag and

the subjectival dependency relation.

The final set of features selected for label classification includes:

• lemma of the dependent node,

• dependency relation to the governor of the dependent node,

• dependency relation label of the governor node to its own governor,

• dependency relation to the governor of the sibling nodes of the dependent

node, if any.
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After an optimization round of the parameters set of the SVM model, relation

labeling achieved 94.00% label precision and 93.28% label recall on the Spanish

development set. The recall is calculated considering all the nodes that are included

in the gold standard.

The error sources for relation labeling are mostly the dependencies that involve

possessives and the various types of objects (see Table 3) due to their differing

valency. For instance, the relation det in su ‘his’/‘her’ ←det−coche ‘car’ and su

‘his’/‘her’ ←det−llamada ‘phone call’ have different correspondences in DSyntS:

su←ATTR−coche versus su←I−llamada. That is, the DSyntS relation depends on

the lexical properties of the governor. Once again, more training data is needed in

order to classify better those cases.

(4) Post-processing: In the post-processing stage for Spanish, the following rules

capture non-ambiguous correspondences between elements of the SSynt matrix

Is = Ns × Ns and DSyntS matrix Id = Nd × Nd, with ns ∈ Ns and nd ∈ Nd, and ns
and nd corresponding to each other (we do not list here identity correspondences

such as between the number grammemes of ns and nd):

• if ns is either dependent of analyt pass or governor of aux refl pass relation,

then the voice grammeme in nd is PASS ;

• if ns is dependent of analyt progr, then the voice grammeme in nd is PROGR;

• if ns is dependent of analyt fut, then the tense grammeme in nd is FUT ;

• if ns is governor of aux refl lex, then add the particle -se as suffix of node

label (word token) of dd;

• if any of the children of ns with the dependency label det is labeled by one

of the tokens un, una, unos or unas, then the definiteness grammeme in nd
is INDEF ; this grammeme is DEF for the tokens el, la, los and las;

• if the ns label is a finite verb and ns does not govern a subject relation, then

add to Id the relation nd − I→n′d, with n′d being a newly introduced node.

4.3.2 Baseline

For the evaluation of the performance of our SSyntS–DSyntS transducer, we use a

rule-based SSyntS–DSyntS mapping baseline.

The baseline carries out the most direct SSynt–DSynt relation label projections

following the SSyntS–DSyntS relation mapping tables compiled for each language

(see Tables 2 and 3 for Spanish). It removes all nodes which are systematically absent

from the DSynt corpus (determiners, auxiliaries, infinitive markers, punctuations,

etc.), and also prepositions and conjunctions involved in a dependency which

indicates the possible presence of a governed preposition (e.g., compar conj or

dobj in Table 3). The baseline always produces connected trees.

The rules of the rule-based baseline look as follows:

1 if (deprel==abbrev) then deep deprel=ATTR

2 if (deprel==obl obj) then deep deprel=II

. . .

n if (deprel==punc) then remove(current node)
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5 Results and discussion

To assess the performance of our SSyntS–DSyntS transducer in isolation and in a

pipeline with a SSyntS parser, we carried out a number of experiments on Spanish,

English and Chinese. Before we report on the performance figures obtained during

these experiments, let us first introduce the evaluation measures we use.

5.1 Evaluation measures

To measure the performance of the SSyntS–DSyntS transducer, we came up with a

number of evaluation measures for hypernode detection and node attachment.

The measures for hypernode detection are:

• Precision of the hypernode detection: ph = |Hcorr|/|Hpred| (with |Hcorr| as the

number of correctly predicted hypernodes and |Hpred| as the total number of

predicted hypernodes);

• Recall of the hypernode detection: rh = |Hcorr|/|Hg| (with |Hcorr| as the number

of correctly predicted hypernodes and |Hg| as the number of hypernodes in

the gold standard);

• F-measure of the hyper-node detection: F1h = 2ph.rh/(ph + rh).

The measures to assess the precision of node attachment are:

• Unlabeled attachment precision: UAP = |Ngovernor|/|N| (with |Ngovernor| as the

number of nodes with a correctly predicted governor, and |N| as the total

number of predicted nodes);

• Label assignment precision: LA − P = |Ngov.rel.label |/|N| (with |Ngov.rel.label | as

the number of nodes for whose governing relation the label has been correctly

predicted, and |N| as the total number of predicted nodes);

• Labeled attachment precision: LAP = |Ngovernor.label |/|N| (with |Ngovernor.label |
as the number of nodes with a correctly predicted governor and governing

relation label, and |N| as the total number of predicted nodes).

The measures to assess the recall of the node attachment are:

• Unlabeled attachment recall: UAR = |Ngovernor|/|Ng| (with |Ngovernor| as the

number of nodes with a correctly predicted governor, and |Ng| as the total

number of gold nodes);

• Label assignment recall: LA− R = |Ngov.rel.label |/|Ng| (with |Ngov.rel.label | as the

number of nodes for whose governing relation the label has been correctly

predicted, and |Ng| as the total number of gold nodes);

• Labeled attachment recall: LAR = |Ngovernor.label |/|Ng| (with |Ngovernor.label | as

the number of nodes with a correctly predicted governor and governing

relation label, and |Ng| as the total number of gold nodes).

5.2 SSyntS–DSyntS transducer results

In Tables 4–6, the performance of the subtasks of the SSyntS–DSyntS transducer

for Spanish, Chinese and English respectively is contrasted to the performance
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Table 4. Performance of the SSyntS–DSyntS transducer and of the rule-based
baseline over the Spanish gold-standard held-out test set

Hypernode detection (Spanish)

Measure Baseline SSyntS–DSyntS transducer

ph 95.15 (5616/5902) 99.79 (5598/5610)

rh 99.55 (5616/5641) 99.24 (5598/5641)

F1h 97.31 99.51

Attachment and labeling (Spanish)

Measure Baseline SSyntS–DSyntS transducer

LAP 79.57 (4696/5902) 91.07 (5109/5610)

UAP 88.95 (5250/5902) 98.32 (5516/5610)

LA-P 88.74 (5006/5902) 92.37 (5182/5610)

LAR 83.25 (4696/5641) 90.57 (5109/5641)

UAR 93.07 (5250/5641) 97.78 (5516/5641)

LA-R 88.74 (5006/5641) 91.86 (5182/5641)

of the rule-based baseline; we do not include the evaluation of the post-processing

subtask for Spanish because the one-to-one projection of SSyntS elements to DSyntS

captured by the rules of the post-processing submodule guarantees an accuracy of

100% of the operations performed, when starting from gold SSyntS trees.

The transducer has been applied to the gold standard test sets, which are the

held-out test sets presented in Section 4.1, with gold standard PoS tags, gold-

standard lemmas and gold-standard dependency trees. In the case of Spanish, the

transducer outputs in total 5,610 nodes. The rule-based baseline produces an output

that contains 5,902 nodes. As mentioned in Section 4.1, our gold standard includes

5,641 nodes. In the case of English, the transducer outputs in total 43,472 nodes.

In this case, the rule-based baseline produces an output that contains 43,510 nodes,

while the gold standard includes 43,301 nodes. Finally, for Chinese, the transducer

outputs in total 186,809 nodes. The rule-based baseline produces an output with

192,078 nodes, while the gold standard has 186,710 nodes.

Our data-driven SSyntS–DSyntS transducer is significantly better than the baseline

with respect to all evaluation measures. The transducer relies on distributional

patterns identified in the training data set, and makes thus use of information that is

not available to the rule-based baseline, which merely takes into account one node

and its immediate parent at a time.

However, the rule-based baseline results also show that transduction that would

remove a few nodes would obtain a performance close to a 100% recall for the

hypernode detection because a DSynt tree is a subtree of the SSynt tree (if we ignore

the nodes introduced by post-processing). This is also evidenced by the label and

attachment recall scores.

For Spanish, which is the language we used for the system development (Balles-

teros et al. 2014), the results of the transducer on the test and development sets are
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Table 5. Performance of the SSyntS–DSyntS transducer and of the rule-based
baseline over the English gold-standard held-out test set

Hypernode detection (English)

Measure Baseline SSyntS–DSyntS transducer

ph 96.96 (42187/43510) 98.67 (42096/42663)

rh 99.31 (42187/42480) 99.10 (42096/42480)

F1h 98.12 98.88

Attachment and labeling (English)

Measure Baseline SSyntS–DSyntS transducer

LAP 86.97 (37840/43510) 90.63 (38667/42663)

UAP 90.77 (39494/43510) 93.70 (39974/42663)

LA-P 90.89 (39545/43510) 93.90 (40060/42663)

LAR 89.08 (37840/42480) 91.02 (38667/42480)

UAR 92.97 (37840/42480) 94.11 (39974/42480)

LA-R 93.09 (37840/42480) 94.30 (40060/42480)

Table 6. Performance of the SSyntS–DSyntS transducer and of the rule-based
baseline over the Chinese gold-standard held-out test set

Hypernode detection (Chinese)

Measure Baseline SSyntS-DSyntS Transducer

ph 97.12 (186547/192078) 99.88 (186587/186809)

rh 99.91 (186547/186710) 99.93 (186587/186710)

F1h 98.50 99.91

Attachment and labeling (Chinese)

Measure Baseline SSyntS–DSyntS Transducer

LAP 96.04 (184463/192078) 99.07 (185069/186809)

UAP 97.02 (186349/192078) 99.83 (186494/186809)

LA-P 96.10 (184601/192078) 99.12 (185161/186809)

LAR 98.80 (184463/186710) 99.12 (185069/186710)

UAR 99.81 (186349/186710) 99.88 (186494/186710)

LA-R 98.87 (184601/186710) 99.17 (185161/186710)

quite comparable. For convenience of the reader, the development set figures are

repeated in Table 7.

The hypernode detection is even better on the test set. Label assignment precision

and recall are the measures that suffer most from using unseen data during the

development of the system. The attachment figures are more or less equivalent on

both sets.
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Table 7. Performance of the SSyntS–DSyntS transducer over the Spanish
development set

ph rh UAP LAP LA-P UAR LAR LA-R

99.78 99.02 98.18 92.64 94.00 97.43 91.43 93.28

Table 8. Performance of Bohnet and Nivre’s joint PoS-tagger+dependency parser
trained on the Ancora-UPF treebank for Spanish, PTB treebank for English, and the
CTB treebank for Chinese

PoS LEMMA LAS UAS

Spanish 96.05 92.10 81.45 88.09

English 98.50 99.46 89.70 92.21

Chinese 93.70 75.72 81.02

It is also worth noting that the Chinese results confirm that the SSyntS–DSyntS

Chinese mapping is rather straightforward. This is why the baseline provides very

competitive results. However, the data-driven system is capable of improving these

results and even achieve figures that are very close to a perfect mapping. In English,

the difference between the baseline and the data-driven system is significant, since,

unlike in Chinese, the predicates are annotated using a manually supervised resource

(see Section 4.1). The difference is even more striking with Spanish, due to the fact

that the DSyntS treebank has been revised manually in several iterations (Mille

et al. 2013).

5.3 Results of deep-syntactic parsing

Let us consider now the performance of the complete DSynt parsing pipeline, i.e.,

PoS-tagger+surface-dependency parser → SSyntS–DSyntS transducer on the held-

out test set. Table 8 displays the figures of the Bohnet and Nivre parser for Spanish,

English and Chinese respectively. The figures are in line with the performance

of state-of-the-art parsers for Spanish (Mille et al. 2012), English and Chinese

(Ballesteros and Bohnet 2014). Note that for Chinese we did not predict the lemmas

(there are no lemmatized forms in the treebank), but rather used gold standard

forms instead.

Tables 9–11 show the performance of the pipeline when we feed the outputs

of the syntactic parser to the rule-based baseline module and the SSyntS–DSyntS

transducer for Spanish, English and Chinese, respectively.

In the case of Spanish, we observe a clear error propagation from the dependency

parser (which provides 81.45% LAS) to the SSyntS–DSyntS transducer, which loses

in tree quality about 18%: the difference between 90.57% (Table 4) and 67.26% LAS

(Table 9) is more than 23%. For Chinese and English, we observe a similar behavior,

but in this case the system is capable to recover better from the erroneous output of

the surface parser. This is because the mapping from SSyntS to DSyntS is simpler,
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Table 9. Performance of the rule-based baseline and the SSyntS–DSyntS transducer
over the Spanish predicted held-out test set

Hypernode detection (Spanish)

Measure Baseline SSyntS–DSyntS transducer

ph 92.77 (5416/5838) 97.07 (5391/5554)

rh 96.01 (5416/5641) 95.57 (5391/5641)

F1h 94.36 96.31

Attachment and labeling (Spanish)

Measure Baseline SSyntS–DSyntS transducer

LAP 59.44 (3470/5838) 68.31 (5109/5554)

UAP 70.14 (4095/5838) 77.31 (4294/5554)

LA-P 73.93 (4316/5838) 80.47 (4469/5554)

LAR 61.51 (3470/5641) 67.26 (3794/5641)

UAR 72.59 (4095/5641) 76.12 (4294/5641)

LA-R 76.51 (4316/5641) 79.22 (4469/5641)

Table 10. Performance of the rule-based baseline and the SSyntS–DSyntS transducer
over the English predicted held-out test set

Hypernode detection (English)

Measure Baseline SSyntS–DSyntS transducer

ph 96.82 (42104/43488) 98.38 (41974/42665)

rh 99.11 (42104/42480) 98.81 (41974/42480)

F1h 97.95 98.59

Attachment and labeling (English)

Measure Baseline SSynS–DSyntS transducer

LAP 78.53 (34152/43488) 81.70 (34856/42461)

UAP 83.21 (36189/43488) 85.80 (36605/42461)

LA-P 86.36 (37557/43488) 88.93 (37941/42641)

LAR 80.40 (34152/42480) 82.05 (34856/42480)

UAR 85.19 (36189/42480) 86.17 (36605/42480)

LA-R 88.41 (37557/42480) 89.31 (37941/42480)

and thus the system achieves a higher performance (closer to the performance of

the surface parser).

To observe the influence of the automatic conversion of the DSyntS layer of the

English treebank on the quality of the SSyntS–DSyntS transducer, we ran it on a

manually annotated DSyntS test set of 300 sentences over the gold surface-standard

held-out test set (Table 12) and over the predicted surface-standard held-out test set

(Table 13). Compared to the performance on the automatically obtained DSyntS test
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Table 11. Performance of the rule-based baseline and the SSyntS–DSyntS transducer
over the Chinese predicted held-out test set

Hypernode detection (Chinese)

Measure Baseline SSyntS–DSyntS transducer

ph 97.08 (186547/191866) 99.74 (186290/186784)

rh 99.77 (186547/186710) 99.78 (186290/186710)

F1h 98.41 99.76

Attachment and labeling (Chinese)

Measure Baseline SSyntS–DSyntS transducer

LAP 75.00 (143903/191866) 77.18 (144163/186784)

UAP 77.92 (149497/191866) 80.06 (149530/186784)

LA-P 85.66 (164348/191866) 88.18 (164696/186784)

LAR 77.07 (143903/186710) 77.21 (144163/186710)

UAR 80.07 (149497/186710) 80.09 (149530/186710)

LA-R 88.02 (164348/186710) 88.21 (164696/186710)

Table 12. Performance of the rule-based baseline and the SSyntS–DSyntS transducer
over the English surface gold-standard held-out test set and the manually annotated
DSyntS test set

Hypernode detection (English)

Measure Baseline SSyntS–DSyntS transducer

ph 94.46 (4918/5249) 95.72 (4918/5138)

rh 99.64 (4958/4976) 98.83 (4918/4976)

F1h 96.98 97.25

Attachment and labeling (English)

Measure Baseline SSynS–DSyntS transducer

LAP 78.66 (4129/5249) 80.03 (4112/5138)

UAP 86.11 (4520/5249) 87.27 (4484/5138)

LA-P 82.98 (4356/5249) 84.84 (4359/5138)

LAR 82.98 (4112/4976) 82.64 (4112/4976)

UAR 90.84 (4520/4976) 90.11 (4484/4976)

LA-R 87.54 (4356/4976) 87.60 (4359/4976)

set (see Tables 5 and 10), the performance is somewhat lower (due to the fact that

manually annotated, i.e., ideal, DSyntSs are more diverging from the SSyntSs than

automatically derived ones). However, it is still high enough to provide reasonably

well-formed and correct DSyntSs for downstream applications.

As we observe in Tables 12 and 13, the recall of the rule-based baseline is a

little bit higher than the one obtained with the machine learning approach, however
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Table 13. Performance of the rule-based baseline and the SSyntS–DSyntS transducer
over the English surface predicted held-out test set and the manually annotated DSyntS
test set

Hypernode detection (English)

Measure Baseline SSyntS–DSyntS transducer

ph 93.34 (4952/5249) 95.53 (4912/5142)

rh 99.52 (4952/4976) 98.71 (4912/4976)

F1h 96.86 97.09

Attachment and labeling (English)

Measure Baseline SSynS–DSyntS transducer

LAP 70.81 (3717/5249) 72.19 (3712/5142)

UAP 78.83 (4138/5249) 79.75 (4101/5142)

LA-P 78.83 (4138/5249) 80.69 (4149/5142)

LAR 74.70 (3717/4976) 74.60 (3712/4976)

UAR 83.16 (4138/4976) 82.42 (4101/4976)

LA-R 83.16 (4138/4976) 83.38 (4149/4976)

the precision is much higher for the machine-learning system. Since the output

trees of the rule-based baseline have more nodes, it provides a more recall oriented

system, but it suffers more in precision, leading to lower F1 scores for all measures.

Moreover, since the machine learning model is trained on partially (and not fully

manually) validated sentences, the parser tries to predict the annotation provided in

the partially validated sentences.

6 Related work

As already pointed out in Section 1, the idea of deep parsing is not novel: it goes

back at least to Curry (1961) and has already been addressed in some depth in the

early days of Natural Language Processing in the context of language understanding

(Bobrow and Webber 1981; Dahlgren 1988). Over the years, some authors continued

to work on rule-based proposals for deep parsing in different theoretical frameworks.

Among others, Rambow and Joshi (1997) proposed a deep analysis proposal in

the TAG-framework, de Groote (2001) proposed something similar in the CCG

framework. There have also been proposals in the Prague School Dependency

framework (Klimeš 2006). More recently, the importance of deep linguistic processing

for parsing has been reiterated, e.g., by Baldwin et al. (2007). However, to the best of

our knowledge, data-driven deep-syntactic parsing as proposed in this article is novel.

As data-driven semantic role labeling, frame-semantic analysis, and logical form

analysis, DSynt parsing has the goal to obtain more semantically-oriented structures

than those delivered by state-of-the-art syntactic parsing (McDonald et al. 2005;

Nivre et al. 2007b; Kübler et al. 2009; Bohnet and Kuhn 2012; Bohnet and Nivre

2012; Dyer et al. 2015). Semantic role labeling received considerable attention in the

CoNLL shared tasks for syntactic dependency parsing in 2006 and 2007 (Buchholz
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and Marsi 2006; Nivre et al. 2007a), the CoNLL shared task for joint parsing of

syntactic and semantic dependencies in 2008 (Surdeanu et al. 2008) and the shared

task in 2009 (Hajič et al. 2009). The top ranked systems were pipelines that started

with a syntactic analysis (as we do) and continued with predicate identification,

argument identification, argument labeling, and word sense disambiguation (WSD);

cf. Johansson and Nugues (2008b) and Che et al. (2009). At the end, a re-ranker that

considers jointly all arguments to select the best combination was applied. Some of

the systems were based on integrated syntactic and semantic dependency analysis;

cf., e.g., Gesmundo et al. (2009); see also Lluı́s, Carreras and Màrquez (2013) for

a more recent proposal along similar lines. However, all of them lack the ability to

perform necessary structural changes – as, e.g., introduction of nodes or removal of

nodes necessary to obtain a DSyntS.

Logical form analyzers such as Boxer (Bos 2008) tend also to pipeline syntactic

and deep parsing, as we do. In the case of Boxer, a CCG parser is integrated into

a pipeline with the DRS parser. However, they output abstract structures that are

void of any syntactic dependencies – which can however be important for some

applications (such as Machine Translation).

Finally, even though, as discussed in Section 2.1, the deep structures used in

SemEval 2014 (Oepen et al. 2014) are different from DSyntSs, the systems solve

a similar problem. Among the best performing systems, are Priberam (Martins

and Almeida 2014) and CMU (Flanigan et al. 2014), which follow graph-based

approaches. Alpage (Ribeyre, De La Clergerie and Seddah 2014) and Peking (Du

et al. 2014) are similar to our approach since they propose transition-based parsing

algorithms for DAGs, similar to the one presented by Sagae and Tsujii (2008),

where the usual set of transitions is different in each task. Both Alpage and Peking

transform graphs into trees. Turku (Kanerva, Luotolahti and Ginter 2014) is also

similar to our proposal since it works with a cascade of classifiers. In contrast to

Turku, however, we present a joint transition-based dependency parser tagger for

getting the SSyntS from plain text sentences and a cascade of classifiers to transduce

the SSyntS then to the DSyntS.

7 Conclusions and future work

We have presented a novel data-driven deep-syntactic parsing pipeline which consists

of a state-of-the-art dependency parser and a SSyntS–DSyntS transducer. The

DSyntSs provided by the pipeline can be used in different applications since they

abstract from language-specific grammatical idiosyncrasies of the SSynt structures

as produced by state-of-the art dependency parsers, but still avoid the complexities

of genuine semantic analysis. DSyntS treebanks needed for data-driven applications

can be bootstrapped by the pipeline. If required, a SSyntS–DSyntS structure pair can

be also mapped to a pure predicate-argument graph such as the Enju conversion

(Miyao 2006), to an DRS (Kamp and Reyle 1993), or to a PropBank structure.

An online demo (Soler-Company et al. 2015) of our DSynt parser is available at

http://dparse.multisensor.taln.upf.edu/main.
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In the future, we will carry out further in-depth feature engineering for the task

of DSynt parsing. It proved to be crucial in semantic role labeling and dependency

parsing (Che et al. 2009; Ballesteros and Nivre 2012); we expect it be essential

for our task as well. Furthermore, we will join surface-syntactic and deep-syntactic

parsing we kept so far separately; see, e.g., Zhang and Clark (2008), Bohnet and

Nivre (2012), Lluı́s et al. (2013) for analogous proposals. Further research is required

here since although joined models avoid error propagation from the first stage to

the second, they need to bridge a broader abstraction moat – which is why pipelined

models still prove to be competitive; cf. the outcome of CoNLL shared tasks.

We will try to improve the English and Chinese DSyntS treebanks we obtained by

automatic conversion in order to make them genuine DSyntS treebanks (and thus

more comparable to the Spanish DSyntS treebank we work with). This will allow

our DSynt parser to also provide genuine DSyntSs, with no traces of SSyntSs left

in its output.

Finally, our DSynt parser could be exploited in machine translation or summar-

ization by using it jointly with a DSyntS generator such as the one presented by

(Ballesteros et al. 2015).
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E. 2007b. Maltparser: a language-independent system for data-driven dependency parsing.

Natural Language Engineering 13: 95–135.

Oepen, S., Kuhlmann, M., Miyao, Y., Zeman, D., Flickinger, D., Hajic, J., Ivanova, A., and

Zhang, Y. 2014. Semeval 2014 task 8: broad-coverage semantic dependency parsing. In

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),

Dublin, Ireland, pp. 63–72.

Oepen, S., and Lønning, J. T. 2006. Discriminant-based MRS Banking. In Proceedings of the

5th International Conference on Language Resources and Evaluation (LREC 2006), Genoa,

Italy.

Palmer, M. 2009. Semlink: linking Propbank, VerbNet and FrameNet. In Proceedings of the

Generative Lexicon Conference (GenLex-09), Pisa, Italy.

Palmer, M., Gildea, D., and Kingsbury, P. 2005. The proposition bank. Computational

Linguistics 31: 71–106.

Rambow, O., and Joshi, A. 1997. A formal look at dependency grammar and phrase structure

grammars, with special consideration of word-order phenomena. In L. Wanner (ed.), Recent

Trends in Meaning-Text Theory, pp. 167–90. Amsterdam: Benjamins Academic Publishers.

Ribeyre, C., Candito, M., and Seddah, D. 2014. Semi-automatic deep syntactic annotations of

the french treebank. In Treebanks and Linguistic Theories, pp. 184–197. Tübingen, Germany.
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