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Abstract

A. Mclntosh and A. Pryde introduced and gave some applications of a notion of "spectral set",
y(T), associated with each finite, commuting family of continuous linear operators T in a Banach
space. Unlike most concepts of joint spectrum, the set y(T) is part of real Euclidean space. It is
shown that y(T) is always non-empty whenver there are at least two operators in T.
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Let X be a complex Banach space and T = (Tu..., Tn) be a commuting n-
tuple of continuous linear operators in X; the space of all such operators in
X is denoted by L(X). A joint spectral set y(T) c R" is denned by

(l) y(j) = j («,, . . . ,!!„)€ R": J2{Tj - Ujl)2 is not invertible in L{X)

where / is the identity operator in X and R denotes the real numbers [1]. This
notion has proved to be useful in determining functional calculi for certain
H-tuples T with applications to finding estimates for the solution of linear
systems of operator equations [1,2, 3]. For applications to other notions of
joint spectra we refer to [4].

It is known that y(T) is always a compact subset of R" [3, Theorem 4.1].
The question arises of whether or not y(T) is empty? If n = 1, then it is easy
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[2] Euclidean n-space 301

to check that y(T) = er(T) n R and so y(T) may be empty in this case. For
n > 2, it is known that y(T) ^ 0 if each operator 7), 1 < j < n, has real
spectrum. Indeed, in this case y(T) coincides with the joint Taylor spectrum
of T [4, Theorem 1] and so is certainly non-empty. By a judicious use of
Clifford analysis and monogenic functions, Mclntosh and Pryde have shown
that y(T) ̂  0 for arbitrary commuting «-tuples T whenever n is an even
integer [3, Section 3]. If the underlying Banach space X is finite dimensional,
then it is shown in [5] that y(T) ^ 0 for arbitrary commuting n-tuples T such
that n > 2. In this note we show that y(T) is always non-empty whenever
n > 2; there are no restrictions on T or on the Banach space X. Let us record
this statement formally.

THEOREM 1. Let X be a Banach space, n > 2 be an integer and T =
[T\,...,Tn) be a commuting n-tuple of elements from L(X). Then y(T) is
non-empty.

The proof is based on some elementary Banach algebra theory combined
with an analogue of the computation given in the proof of [5, Theorem 1].

Let a(T) = {T}cc denote the bicommutant of {7): 1 < j < n} in L{X).
Then 2l(T) is a closed, abelian Banach subalgebra of L(X) containing the
identity operator / . In addition, 2t(T) is inverse closed in L{X). That is, if
S e 2l(T) is invertible in L(X), then S~l e 2l(T). This is a consequence of
the identity 2l(T)cc = 2l(T) and the fact that S'1 e {S}cc whenever S € L(X)
is invertible. Of course, if S e 2l(T), then {S}cc c 2t(T)cc. It follows that

(2) o*m{S) = oUX){S), sea(T),

where aa(T) a n d OL(X) denote the spectrum relative to the Banach algebra
2l(T) and L(X), respectively. It is clear from (2) and the definition of y(T)
that

y(T) = J («, , . . . , un) e R": 0 e aa(T) j £ ( 7 ) - UjI)2

Furthermore, since ]C>=i(7; ~ ujl)2 actually belongs to 2l(T), for every u =
(«i , . . . , un) in R", it suffices to show that

(3) y(b) = | u e R";0 € as ( ̂ (bj - Uje)2

is non-empty, whenever 93 is a commutative Banach algebra (with unit e),
n > 2 is an integer and b = {b\,..., bn) e 53".

To establish this we proceed as follows. Let 9Jt be the maximal ideal
space of 53. It follows from standard Banach algebra theory that 53 can be
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identified with a subalgebra 93 of the space C(9Jt) of continuous functions on
9TI. The Gelfand transform * : 55 —> 93 is a homomorphism such that e — 1
(the constant function 1 on 9Jt) and

(4) o9(b) = 5(101) = {5(m); w e m), b e 93.

The homomorphism property of the Gelfand transform implies that

7=1

for every b G 93". This identity, together with (4), implies that

0 G CT<B 22,{bj - Uje)2 if and only if 2_,(fy(m) - Uj)2 = 0,

for some m G Wl. It follows immediately from (3) that

So, to show y(b) is non-empty it suffices to show that there exists m G 9K
for which the set

(6) Z(b,m)=JueR":^(^(w) - M;)
2 = 0

I
is non-empty. Actually, we will show that Z(b, m) £ 0 for every m G 3Jt. So,
fix w G an. Write 5;(m) — fly(w) + icj(m), I < j < n, with a,(m) and c;(w)
being real numbers. Then u G R" satisfies J3"=1 (bj(m) - Uj)2 = 0 if and only
if

(7.1)

and simultaneously

(7.2) uj - aj(m))Cj(m) = 0.

Considering u G R" as a variable, (7.1) is the equation of a sphere in R"
centred at a(m) — (ai(m),...,an{m)) and with radius
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and (7.2) is a hyperplane in R" with normal c(m) and passing through &(m).
So, if n > 2, then there certainly are simultaneous solutions of (7.1) and (7.2)
and hence, Z(b, m) ^ 0 (for every m e SOT). These calculations should be
compared with those in [5, page 246]. This completes the proof of Theorem 1.

It is worth pointing out that the formula (5) can also be used to show that
y(b) is a compact subset of R". Indeed, to see that y(b) is bounded, fix an
element m e 9Jt. Then bj(m) e o<&(bj) and so \bj{m)\ < r(bj), 1 < j < n,
where

r(&) = sup{|A|:Ae **(&)} < | | 6 | |
denotes the spectral radius of any b e 03. Accordingly, if u is an element of
Z(b, m) (see (6)), then in the notation of (7.1) and (7.2) we have

It follows that Z(b, m) is contained in the ball in R" centred at zero with
radius

r(b) =

Since this is valid for every m € 9Jt, the set y(b) is also contained in this ball;
see (5). This should be compared with [3, Theorem 4.1(b)] where it is shown
that y(T) is contained in a ball centred at zero with radius «1/2||T||. Here
||T|| is a norm satisfying [3, page 423]

7=1

which can be associated with T by identifying T with the operator T =
£"=i Tj-ej acting in the Banach module X(n) denned over the (real) Clifford
algebra R(W) as in [3, Section 3]. In general, | | r | | is difficult to compute and
so in practice the most useful statement would be that y(T) is contained in
the ball centred at zero with radius n>l2 £ " = I ||7)||. Noting that

( \ l / 2 ( \1/2

2^r(Tj)A < 2^||r,||2) <21/2^||ry||
we can improve this statement; it suffices to use a ball of radius r(T). To see
that y(b) is a closed set, let {u(fc)} c y(b) be a sequence which is convergent
to u e R". By (5) there exist elements mk€Wl such that
(8) J2(bj{mk)-uf)2 = 0, k = 1 , 2 , . . . .

7=1
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The compactness of 9Jt guarantees the existence of a point m e 971 and a
subnet {ma} of {m^} such that ma —> m in 97t. This induces a subnet {u(a)}
of {u(fc)} and hence, U(Q) —• u in R". In particular, for each j = 1,. . . , n, we
have liraa«Ja) = Uj and, by continuity of bj, also lima6,(mQ) = bj{m). It
follows from (8) that

• Uj)2 = lim2_,(fc,(ma) - uyy = 0
7=1 " ; = i

and hence u e y(b).
It is worth summarizing and specializing our Banach algebra results to the

original setting of operators on a Banach space. Recall that {T}cc denotes the
bicommutant of {7): 1 < j < n}. Let 9Jl(T) denote the maximal ideal space
of {T}«.

THEOREM 2. Let X be a Banach space, n > 2 be an integer and T =
(T\,..., Tn) be a commuting n-tuple of elements from L(X). Then

y{T) = i u e R": 0 < a{JYc

is a non-empty, compact subset ofW which is contained in the ball centred at
zero with radius r(T) = (2£" = 1 r(7))2)'/2. Furthermore,

(9) |

We conclude with some remarks about the cardinality of y(T).
(I) If a{Tj) C R, for every j = 1,2,..., n, then we have, in the notation of

Theorem 2 (see (2) and (4) with 03 = {T}cc), that

t j { m ) e <T{X}«(Tj) = aL(X){Tj) C R, \ < j < n ,

for every m € 9Jt(T). Accordingly, the only solution in R" of the equation
T,"=\(Tj{m) - uj)2 = 0 is u = T(m). It follows from (9) that

y(T) = {(fl{m),...,fn(m));mem(T)}

whenever all operators Tj, 1 < j < n, have real spectrum; see also [4, Theo-
rem l(iii)]. Since y(S) — o(S)nR, for every 5 e L(X), we have, in particular,
that

(10)

see also [3, Corollary 7.4].
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(II) If n > 3 and, for some jo e { 1 , . . . , n} the set cr(7)0) contains a point
from C\R, then y(T) is an uncountable set. Indeed, in this case there exists
mo G 9Jt(T) such that 7)o(mo) G C\R and hence, if we determine the set

Z(f, m0) = j u G R": £(7)(m0) - uj)2 = 0

by solving the corresponding equations (7.1) and (7.2), then it is clear that the
sphere and the hyperplane in R" so specified are not degenerate (that is, they
are (n - l)-dimensional). It is then clear from (9) that y(T) is uncountably
infinite. Surprisingly, perhaps, even if X is a finite dimensional space, the
set y(T) is "very large" as soon as at least one of the operators {7}} does not
have real spectrum (n > 3).

(III) The situation with two commuting operators is quite different. First
we note that, unlike for n > 3, it can happen that y(T) is finite even if at least
one of the operators Tt or T2, has complex points in its spectrum. Indeed,
for each m G 9Jt(T), it is clear that

{u G R2: (Urn) - M,)2 + (f2(m) - u2)
2 = 0}

consists of at most 2 elements. Accordingly, if cr(7)) is a finite set, with kj
elements, say, then it follows from (9) and the fact that 7)(m) G CT(7)), for
every m G 9Tt(T), that y(T) is also a finite set with at most 2k'k2 elements.
We note that with T{ = T2 = I the number of elements in y(T) = {(1,1)}
is less than the maximum number possible, namely 2 (k\ — k2 — 1). If we
take T\ = I and T2 — il, then y(T) has 2 elements and the maximum is
obtained. So, in finite dimensional spaces it is the case that y(T) is always a
finite set (when n = 2). For infinite dimensional spaces this need not be so.
For example, if X = I2, T\ = I and T2 is the operator with diagonal matrix
{//«: n = 1,2,...}, then y(T) equals

Accordingly, y(T) is infinite and countable. It can also happen that y(T) is
infinite and uncountable. Just take X = I2, T\ = / and T2 the operator with
diagonal matrix {irn;n — 1,2,...} where {/•„} is dense in [0,1], say.

(IV) The inclusion (10) is not valid for operators {7}} without real spectra.
Indeed, take T\ = T2 = I and let Ti be any operator such that a(T3) n R is
finite and a{Ti) n (C\R) is non-empty. Then y(T) is infinite by Remark (II),
but

y(Ti) x 7(7-0 x y(T3) = {1} x {1} x (a(T3) nR)

is a finite set.
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