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SUMMARY

Epidemics of visceral leishmaniasis (VL) in major Brazilian cities are new phenomena since 1980.

As determinants of transmission in urban settings probably operate at different geographic scales,

and information is not available for each scale, a multilevel approach was used to examine the

effect of canine infection and environmental and socio-economic factors on the spatial variability

of incidence rates of VL in the city of Teresina. Details on an outbreak of greater than 1200 cases

of VL in Teresina during 1993–1996 were available at two hierarchical levels : census tracts

(socio-economic characteristics, incidence rates of human VL) and districts, which encompass

census tracts (prevalence of canine infection). Remotely sensed data obtained by satellite

generated environmental information at both levels. Data from census tracts and districts were

analysed simultaneously by multilevel modelling. Poor socio-economic conditions and increased

vegetation were associated with a high incidence of human VL. Increasing prevalence of canine

infection also predicted a high incidence of human VL, as did high prevalence of canine infection

before and during the epidemic. Poor socio-economic conditions had an amplifying effect on the

association between canine infection and the incidence of human VL. Focusing interventions on

areas with characteristics identified by multilevel analysis could be a cost-effective strategy for

controlling VL. Because risk factors for infectious diseases operate simultaneously at several

levels and ecological data usually are available at different geographical scales, multilevel

modelling is a valuable tool for epidemiological investigation of disease transmission.

INTRODUCTION

Heterogeneity in exposure to risk factors leads to

spatial and temporal variability in transmission rates

of infectious agents [1, 2]. To understand these patterns

of disease spread, it is necessary to realize that not

all risk factors are reducible to individual or local at-

tributes. Factors that vary at large ecological levels can

be important determinants of infection rates in smaller

regions. For instance, unvaccinated persons living in a

region where a vaccination programme has been com-

pleted enjoy a lower risk of infection thanunvaccinated

persons living in areas with no intervention [3].

Determinants of the occurrence of zoonotic vector-

borne diseases, such as visceral leishmaniasis (VL)
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in the Americas also operate at several levels. For

instance, on a broad scale, climate and land cover

determine the habitat of the vector Lutzomyia longi-

palpis and the size and longevity of its population

[4–6]. At the community level, factors such as land use

and quality of housing influence vector populations

and their interaction with susceptible persons [7, 8].

At the level of individual persons, young age and

malnutrition increase the risk of development of overt

VL following infection [7, 9].

The interplay of factors operating at various eco-

logical levels undoubtedly underlies the geographical

clustering of cases of VL that has been observed in the

Americas and elsewhere [10, 11]. In an earlier report,

we demonstrated both large-scale and small-scale

variation in the incidence rates of VL during an epi-

demic in the Brazilian city of Teresina [12]. In this

paper, we report a multilevel modelling approach to

further examine the effect of socio-economic factors,

landscape features and rates of canine infection, each

operating at a different geographical scale, on the

spatial distribution of human disease.

MATERIALS AND METHODS

Study area

Teresina, the capital of the state of Piauı́, Brazil,

occupies an area of 176 km2 at the confluence of the

Parnaı́ba and Poti rivers, 72 m above sea level and

339 km inland at 05x 05k latitude South and 42x 48k
longitude West. The climate is tropical with an

average temperature of 27 xC and total annual rainfall

of 1300 mm. The predominant vegetation within the

city consists of grass, shrubs and sparse mango and

palm trees. Peri-urban areas are covered by tropical

forest and farmland.

Until 1980, infrequent and sporadic cases of VL

had occurred in Teresina. Between 1980 and 1985, the

first urban epidemic of VL in Brazil occurred in

Teresina, when almost 1000 new cases were detected

as the population increased from 370 000 to 460000

inhabitants [13]. The incidence declined and remained

at low levels until 1992 when a new epidemic began.

By 1996, at which time the city’s population had

grown to 650 000 inhabitants, there had been more

than 1200 new cases, of which over 90% required

hospitalization and 5% resulted in death despite

treatment.

For administrative purposes, the city is divided into

494 census tracts within 74 districts. At the district

level, the National Health Foundation [Fundação

Nacional de Saúde (FNS)] is responsible for control

activities, such as canine surveys for infection, and

insecticide spraying. At the census tract level, the

Brazilian Institute of Geography and Statistics

(IBGE) collects and reports socio-economic and

demographic information.

Human and canine data

The age, date of diagnosis, and geographic location

of the residence of 1061 cases of VL that occurred in

Teresina from 1993 to 1996 were obtained from FNS

and confirmed from clinical and laboratory records

from all hospitals in Teresina. This figure represents

about 95% of the total VL cases reported to FNS

during this period. It is likely that few cases of VL

were overlooked, since there is no alternative centre

for treating VL close to Teresina, and, by law, all

suspect and confirmed cases of VL are reported to

FNS, which is the sole distributor of anti-leishmanial

drugs in Brazil.

Incidence rates of VL were calculated for each of

the city’s 494 census tracts, using data from the 1991

and 1996 censuses. Prevalence data on canine infec-

tion with L. chagasi were available from 1987 to 1994

for 63 of the city’s 74 districts ; the 11 districts without

information of canine infection were excluded from

the analysis. For the analysis, the original census

tracts were consolidated into 430 areas (consolidated

census tracts) so that at least one case of VL would be

expected in each tract had cases been distributed

uniformly throughout the city. Aggregation of census

tracts was based on similarities in socio-economic

profiles and spatial proximity. Using a similar aggre-

gation strategy, the 63 districts were aggregated into

39 areas (consolidated districts), each with a mini-

mum of three consolidated census tracts, in order

to ensure adequate information on canine infection

for analysis. The prevalence of canine infection was

grouped into 2-year periods (1987–1988, 1989–1990,

1991–1992, and 1993–1994), and the change in

prevalence calculated from each period to the next

(Table 1).

A socio-economic status (SES) index was derived

for each consolidated census tract by principal-

component analysis [14] (SAS1, SAS Institute Inc.,

Cary, NC, USA) using data obtained during the 1991

Brazilian census on household characteristics such as

running water, indoor sanitation, garbage collection,

level of education, family income and adequacy of
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housing (Table 1). The SES index was the first

principal-component factor, which explained 55% of

the total variance. Values of the index ranged from

positive (wealthiest census tracts) tonegative (poorest).

Environmental data

Landscape features were identified by remote sensing

using a Landsat 5 Thematic Mapper (TM) scene

(6 bands, 30 m resolution) of Teresina during October

1995. Pixels were assigned to one of 30 clusters using

an unsupervised classification algorithm (Isoclust,

using Imagine1 software; ERDAS Inc., Atlanta, GA,

USA). Clusters were then grouped into 16 land cover

classes by comparison with georeferenced data col-

lected on the ground and with colour aerial and

ground-level photographs [15]. Environmental fea-

tures were also characterized using the Normalized

Difference Vegetation Index (NDVI), defined as [16] :

NDVI=(Ch2xCh1)=(Ch2+Ch1),

where Ch1 is the reflectance from each pixel in the red

wavelength band (Landsat band 3) and Ch2 is the

reflectance in the near-infrared wavelength band

(Landsat band 4). NDVI varies from x1.0 to +1.0

with positive values in general indicating green

vegetation, and negative values indicating lack of

green vegetation. NDVI correlates positively with

rainfall and humidity, factors that are related to

sandfly abundance [16, 17]. In this study we deter-

mined the minimum, the maximum, and the mean

NDVI over the pixels in each district.

Digital maps of the consolidated census tracts

and districts were produced using CartaLinx1 (Clark

Labs, Worcester, MA, USA). IDRISI1 software

(Clark Labs) was used to overlay the digital map

on the RS image to extract the land cover and

NDVI information for census tracts and district.

An urbanization index was obtained by applying

correspondence analysis [18] (SAS Inc.) to the portion

of land-cover classes found in each consolidated

census tract. The urbanization index was the first

correspondence analysis factor, which explained

about 39% of the total inertia of the matrix. It is a

continuous variable on a scale extending from ‘high

density residential and commercial areas’ to ‘heavily

vegetated areas with few residences’.

Statistical analysis

The incidence rates of VL and prevalence of

canine seropositivity were linked in IDRISI to the

Table 1. Variables included in the multilevel analysis

Variable Reference Definition

Level 1
(census tract)

LINC — Natural logarithm of the incidence rates of visceral leishmaniasis
SES* — Socio-economic status index
URB# — Urbanization index

Level 2 (district)

NDVI Minimum Minimum value of the Normalized Difference Vegetation Index
Maximum Maximum value of the Normalized Difference Vegetation Index
Mean Average value of the Normalized Difference Vegetation Index

PREV 1987/88 Prevalence of infection in dogs in 1987/88
1989/90 Prevalence of infection in dogs in 1989/90

1991/92 Prevalence of infection in dogs in 1991/92
1993/94 Prevalence of infection in dogs in 1993/94
1987/88p1989/90 Relative change in the prevalence of infection in dogs from 1987/88 to 1989/90

1989/90p1991/92 Relative change in the prevalence of infection in dogs from 1989/90 to 1991/92
1991/92p1993/94 Relative change in the prevalence of infection in dogs from 1991/92 to 1993/94

* Based on a principal components analysis of the following variables : % of households connected to the water supply
system; % of households with presence of water taps ; % of households connected to the sewage disposal system; % of

households with indoor sanitation; % of households with regular garbage collection; % of population of the census tract
with basic education; % of the heads of the households with basic education, mean income of the head of the household,
mean number of persons per household; and % of population living in favelas.

# Based on a correspondence analysis of the number of pixels in each census tract classified as water, forest, riparian
vegetation, mixed vegetation, shrub/scrub, secondary growth, asphalt roads, pasture, grass/some bare, commercial/residen-
tial, residential trees, bare/some grass, medium density residential, high density residential, new construction, and bare.
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consolidated census tracts and districts respectively.

A multilevel model [19] was then used to analyse data

simultaneously at the consolidated census tract and

district levels (Table 1). A general model for our data

can be conceptualized as follows, with the random

variables underlined [20] :

ln (INCij)=aj+b
1j
SESij+b2j URBij+eij

eij iid � N(0, s2): (1)

The natural logarithm of the VL incidence rates for

the ith census tract in the jth district [ln (INCij)]

is the continuous outcome variable (LINC). The

explanatory variables SESij and URBij are the

SES and urbanization indices in the ith census tract

of the jth district. The intercept (aj) and slopes

(b1j and b2j) are not deemed to be fixed as they would

be in standard linear regression, but are allowed

to vary from one district to the other. This is the

so-called random coefficients model [20] in which

each random coefficient consists of two components.

The first component is the overall value of the

coefficient, estimated for all census tracts, inde-

pendently of the districts to which they belong.

The second component is the coefficient variance

measuring the deviations of districts from that overall

effect [20].

Equations (2)–(4) relate the district level variables

PREVj and NDVIj to the random intercept (aj) and

random slopes (b1j and b2j) :

aj=c00+c01 PREVj+c02 NDVIj+s0j, (2)

b
1j
=c10+c11 PREVj+c12 NDVIj+s1j, (3)

b
2j
=c20+c21 PREVj+c22 NDVIj+s2j, (4)

where PREVj is one of the four 2-year prevalences of

infection in dogs or one of the three relative changes

in prevalence between periods, NDVIj represents one

of the three NDVI estimates (minimum, maximum or

mean) for districts, and d j are the error terms at the

district level.

By substituting equations (2), (3), and (4) in equa-

tion (1) :

ln (INCij)

=c00+c01 PREVj+c02 NDVIj+s0j

+(c10+c11 PREVj+c12 NDVIj+s1j)SESij

+(c20+c21 PREVj+c22 NDVIj+s2j)URBij+eij:

(5)

Expanding and rearranging terms yields :

ln (INCij)=c00+c01 PREVj+c02 NDVIj+c10 SESij

+c20 URBij+c11 PREVj SESij

+c12 NDVIj SESij+c21 PREVj URBij

+c22 NDVIjURBij

+(s0j+s1j SESij+s2j URBij+eij): (6)

The result is a single equation that resembles a

traditional regression equation with a complex error

term. Equation (6) includes estimates for the overall

grand mean effect (c00), the main effects of the district-

level variables (c01 and c02), the main effects of the

census tract level variables (c10 and c20), and the four

cross-level interaction effects (c11, c12, c21, and c22).

The deviation of each district from the overall grand

mean is measured by d0j, while d1j and d2j measure the

deviations of each district from the SES and URB

grand slopes respectively, after taking into account

the effects of PREVj and NDVIj. Model 6 is essen-

tially a mixed-effects model with random intercepts

and random slopes for each district, fitted using SAS

PROC MIXED (SAS Institute Inc.).

Twenty-one separate models were fitted, one for

each of the seven PREVj variables with each of the

three NDVIj variables (Table 1). All models were

adjusted for the census tract level variables SESij and

URBij. By using backward elimination and compar-

ing the deviances and Akaike’s Information Criteria

(AIC) we chose as final models the most parsimonious

version of each of the 21 saturated models [20, 21].

Models that best fit the data had lower deviance

values and/or larger AIC values compared to the

other versions. All variables were treated as continu-

ous in the analysis.

RESULTS

Of the 21 final models, only the three that included the

minimum NDVI with either the prevalence of infec-

tion in dogs in 1991–1992, the prevalence of infection

in dogs in 1993–1994, or the relative change in

prevalence from 1989–1990 to 1991–1992 significantly

explained variability in VL incidence rates over

Teresina’s census tracts (Table 2).

In Model 1, which included the minimum NDVI

and prevalence of infection in dogs in 1991–1992

(P9192) as explanatory variables, the fixed-effects

component showed that the more urbanized census

tracts had lower LINC, and districts with high

minimum NDVI had higher incidence rates of VL.
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There was a significant cross-level interaction between

URB and NDVI. The effect of a given P9192 level on

LINC varied depending on the SES index level. As an

illustration of this effect, holding all other variables at

the same level, a canine prevalence of 3% (1991–1992)

in a poor census tract (SES index of x3.0) was

associated with an increase of 0.63 points in LINC,

or about 1.9 cases/1000 person-years, beyond that

in a wealthy census tract (SES index of 3), for which

the canine prevalence of 3% would have produced

only 0.8 cases/1000 person-years. The random com-

ponent of Model 1 shows that the LINC grand mean

varied between districts even after controlling for the

effects of SES, URB, P9192, NDVI, and interaction

terms. In this model, there was no evidence for

variation in the association between SES and VL

across districts.

Model 2 showed an association between P9394 and

LINC but no cross-level interaction between SES and

P9394. The random component of the model showed

that the SES slope varied among districts after con-

trolling for the effects of SES, URB, P9394, NDVI,

and interaction terms.

In addition to results of the fixed and random

components which were similar to those of Model 2,

Model 3 showed that the SES level in census tracts

modulated the relationship between CHANGE2

(relative change in canine prevalence from 1989 to

1992) and LINC. A positive CHANGE2 increased

LINC to a greater extent in census tracts that had

lower SES.

DISCUSSION

Epidemics of VL in large Brazilian cities are a new

phenomenon since 1980. Little is known about the

dynamics of transmission of L. chagasi in urban and

peri-urban centres or the variables that determine the

distribution of disease in these settings. In this study,

multilevel analysis of the epidemic of VL in Teresina

during 1993–1996 demonstrates the importance of the

interactions of environmental, human, and canine

factors in establishing patterns of disease occurrence.

The independent effect of several factors demon-

strated in this study is not unexpected. High rates of

disease in neighbourhoods with low socio-economic

Table 2. Random coefficients models for the effects of measures of prevalence of infection in dogs on visceral

leishmaniasis incidence rates in Teresina, Brazil, 1993–1996

Model 1 Model 2 Model 3

Estimate P value Estimate P value Estimate P value

Fixed part
Intercept x0.523 0.007 x0.622 <0.001 x0.446 0.002

SES (census tract) 0.036 0.218 x0.090 0.002 x0.078 0.004
Urbanization index (census tract) x0.729 0.006 x0.546 0.026 x0.647 0.010
Minimum NDVI (district) 0.941 0.040 0.999 0.026 0.844 0.051

Urbanization*NDVI x1.950 0.009 x1.674 0.020 x1.821 0.012
Prevalence of infection in dogs (district)
1991/92 6.493 0.229

1993/94 2.582 0.012
1989/90p1991/92 0.131 0.027

SES*Prevalence of infection in dogs
1991/92 x6.010 <0.001
1993/94

1989/90p1991/92 x0.049 0.007

Random part
Intercept 0.067 0.007 0.036 0.088 0.058 0.045
SES slope 0.013 0.025 0.011 0.035

Covariance x0.001 0.887 x0.005 0.638
Residual variance 0.334 <0.001 0.319 <0.001 0.319 <0.001

Deviance 754.41 761.96 774.75
AIC x379.21 x384.98 x391.37

SES, Socio-economic status index ; NDVI, Normalized Difference Vegetation Index; AIC, Akaike’s Information Criteria.
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standing may result from poor living conditions and

location in the periphery of the city where vegetation

density is favourable for vector populations and

perhaps sylvatic canine reservoir hosts. Malnutrition,

a known risk factor for the development of VL among

persons infected with L. chagasi, is also likely to be

more prevalent in the poorer areas of the city. A high

or rising prevalence of infection in dogs would lead to

an increase in the incidence of human disease if the

dog is the principal or sole reservoir of the infection as

is commonly believed.

In this study, a high level of infection in dogs, par-

ticularly in impoverished areas, just before the start of

the human epidemic (P9192), or during the epidemic

(P9394), or a rising prevalence (CHANGE2) of canine

infection before the epidemic all strongly predicted a

high incidence of VL. These results seem to support

the widely held hypothesis that identification and

killing of infected dogs can reduce rates of human VL.

If this were true, targeting areas with rising rates of

canine infection would be more effective than target-

ing only areas with high absolute prevalence since

the latter approach would miss low-prevalence areas

experiencing a recent increase.

However, other possible explanations linking high

prevalences of infections in dogs and high incidence

of VL among humans should also be considered.

It is possible, for instance, that dogs and humans are

under the same epizootic pressure, but dogs are more

susceptible and develop disease before the human

population, and there is no direct connection between

infection in the two populations. Although a link

between canine and human infection seems more

likely [22, 23], the failure of the strategy of killing dogs

to reduce the incidence of human VL supports the

need of further research on the role of the infected dog

in the transmission of human VL.

An important new finding of this study is the in-

fluence of socio-economic conditions on the relation-

ship between canine infection and human VL. In

areas of low socio-economic standing, high or rising

rates of infection in dogs were predictive of high rates

of human disease, perhaps because the degree of

contact among susceptible people, infectious dogs,

and infected vectors is greater in impoverished areas

than in wealthy areas, even if the prevalence of infec-

tion in dogs is similar in both areas. An alternative

explanation for the finding is that residents of wealthy

areas with high prevalence of infection in dogs before

the epidemic may have demanded intervention by the

government that resulted in lower rates of human VL

during the epidemic. The lack of a significant inter-

action between SES and the prevalence in dogs in

1993–1994 suggests that implementation of control

measures once the epidemic was underway may have

been too late to be effective, even in wealthy neigh-

bourhoods. Whatever the explanation, our findings

have practical implications for control programmes.

Interventions to interrupt transmission should focus

upon poor neighbourhoods experiencing high or

rising rates of canine infection.

Several criticisms concerning methodological as-

pects of this study deserve mention. First, because

the design of this study is ecological, and both the

outcome and explanatory variables were measured

at the group level (census tracts and districts),

extrapolation of the findings to individual persons or

households may not be appropriate. However, even

though analysis at the individual level is important to

enhance understanding of the epidemiology of VL,

ecological effects are particularly relevant when

interventions to control disease are executed at the

level of entire communities [24].

Second, this study used geographical scales to

define the ecological analyses that were not grounded

on theory, but on availability of information. Areas

with boundaries and shapes defined for administrat-

ive reasons may not accurately capture the phenom-

ena under investigation, and a better design might

have employed regular blocks with equal numbers

of households and separated from each other by a

distance sufficiently large to ensure independence of

transmission cycles. However, use of ecological levels

defined for administrative reasons is convenient,

and has the advantage of generating results that are

compatible with the geographical scales at which

public health interventions are implemented.

Multilevel modelling has not been employed

frequently in epidemiological analyses of infectious

diseases. However, surveillance data often are gath-

ered at several geographical scales and the planning,

execution and design of public health interventions

commonly involves multiple layers of data. From the

statistical point of view, carrying out an analysis that

does not take the hierarchical structure of the data

into consideration will generally cause standard errors

of regression coefficients to be underestimated [25].

An alternative approach, modelling variation be-

tween districts by introducing separate terms for each

district or sector, would require estimates of many

times more coefficients than the multilevel procedure

[25]. Multilevel modelling, used with appropriate
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attention to definitions of levels of hierarchy and

theory of disease spread, is an attractive approach to

the analysis of the type of data available in many

epidemiological studies of infection.
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