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Abstract

In this paper we consider a single-server queue with Lévy input and, in particular, its
workload process (Qt )t≥0, with a focus on the correlation structure. With the correlation
function defined as r(t) := cov(Q0,Qt )/ var(Q0) (assuming that the workload process is
in stationarity at time 0), we first determine its transform

∫ ∞
0 r(t)e−ϑt dt . This expression

allows us to prove that r(·) is positive, decreasing, and convex, relying on the machinery
of completely monotone functions. We also show that r(·) can be represented as the
complementary distribution function of a specific random variable. These results are
used to compute the asymptotics of r(t), for large t , for the cases of light-tailed and
heavy-tailed Lévy inputs.
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1. Introduction

Consider a queueing system and, more particularly, its workload process (Qt )t≥0. Where one
usually focuses on the characterization of the (transient or steady-state) workload, another
interesting problem relates to the identification of the correlation function

r(t) := cov(Q0,Qt )

var(Q0)
.

For several queueing systems, this correlation function has been explicitly computed;
Morse [21], for instance, analyzed the number of customers in the M/M/1 queue. Often explicit
formulae were hard to obtain, but the analysis simplified greatly when looking at the transform

ρ(ϑ) :=
∫ ∞

0
r(t)e−ϑt dt.

Beneš [6] managed to compute ρ(·) for the workload in the M/G/1 queue; relying on the
concept of complete monotonicity, Ott [22] elegantly proved that, in this case, r(·) is positive,
decreasing, and convex. We further mention the survey by Reynolds [23] and interesting results
by Abate and Whitt [2].

The primary aim of this paper is to extend the results mentioned above to the class of single-
server queues fed by Lévy processes. Note that the M/G/1 queue is contained in this class (then
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On the correlation structure of a Lévy-driven queue 941

the Lévy process under consideration is a compound Poisson process with drift). We could
expect that such an extension is possible, as the classical Pollaczek–Khinchine result for the
M/G/1 queue carries over to queues with general Lévy input; see [25] for an early reference and,
for an extensive account of fluctuation theory for Lévy processes, see [9] and the references
therein, and [17]. The only condition we usually need to impose in order to obtain explicit
results is that no negative jumps are allowed.

In more detail, the setting we consider is the following. We define a ‘net input process’
(Xt )t≥0, which is assumed to be a Lévy process with no negative jumps. Then the workload
process (Qt )t≥0 is defined as the reflected process of (Xt )t≥0 at 0. Because of the lack of
explicit formulae for the probability distributions of the processes considered, we will work
most of the time with their Laplace transforms; in our analysis, the Laplace exponent ϕ(·) of
the process (Xt )t≥0, as well as its inverse ψ(·), plays an important role.

We first obtain an explicit expression, in terms of ϕ(·) and ψ(·), of the transform ρ(·) of
the correlation function. Using the concept of complete monotonicity, we use this transform
to establish a series of structural properties of the correlation function, viz. we prove that r(·)
is positive, decreasing, and convex. These results indeed generalize those obtained in [2] and
[22] for the M/G/1 queue. We then consider the asymptotic behavior of r(t) for large t . For
light-tailed Lévy input, these asymptotics are essentially exponential; for the M/G/1 case, they
resemble those of the busy period. For heavy-tailed input, we can use results for regularly
varying functions, e.g. Karamata’s Tauberian theorem, to obtain the asymptotics of r(·).

This paper is organized as follows. In Section 2 we obtain the Laplace transform of the
correlation function and in Section 3 we study its structural properties. The cases of light-tailed
and heavy-tailed inputs are treated in Sections 4 and 5, respectively. Concluding remarks are
found in Section 6.

2. Laplace transform of the correlation function

In this section we find an expression for the transform ρ(·) of the correlation function. We
start this section, however, with a formal introduction of our queueing system.

2.1. Lévy processes

Let (Xt )t≥0 be a Lévy process without negative jumps, with drift E(X1) < 0. Its Laplace
exponent is given by the function ϕ(·) : [0,∞) �→ [0,∞), i.e. ϕ(α) := log E(exp[−αX1]).
It is known that ϕ(·) is increasing and convex on [0,∞) with slope ϕ′(0) = − E(X1) at the
origin. Therefore, the inverse ψ(·) of ϕ(·) is well defined on [0,∞). In the sequel we also
require that Xt is not a subordinator, i.e. a monotone process; thus, X1 has probability mass
on the positive half-line, which implies that limα→−∞ ϕ(α) = ∞.

Important examples of such Lévy processes are the following.

(i) Brownian motion with drift. We write X ∈ Bm(µ, σ 2) when ϕ(α) = −αµ+ 1
2α

2σ 2.

(ii) Compound Poisson with drift. Jobs arrive according to a Poisson process of rate λ; the
jobs B1, B2, . . . are independent and identically distributed samples from a distribution
with Laplace transform β(α) := E(e−αB); the storage system is continuously depleted
at a rate −1. We write X ∈ CP(λ, β(·)); it can be verified that ϕ(α) = α − λ+ λβ(α).

2.2. Reflected Lévy processes; queues

We consider the reflection of (Xt )t≥0 at 0, which we denote by (Qt )t≥0. It is formally
introduced as follows; see, for instance, [4, Chapter IX]. Define the increasing process (Lt )t≥0
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942 A. ES-SAGHOUANI AND M. MANDJES

by
Lt = − inf

0≤s≤t Xs.

Then the reflected process (or workload process or queueing process) (Qt )t≥0 is given through

Qt := Xt + max{Lt ,Q0};
observe that Qt ≥ 0 for all t ≥ 0. Then the steady-state distribution of Q := limt→∞Qt is
characterized in [25]:

κ(α) := E(e−αQ) = αϕ′(0)
ϕ(α)

; (2.1)

for the special case of CP input, this is the celebrated Pollaczek–Khinchine formula. This
relation reveals all moments of the steady-state queueQ and, in particular, its mean and variance:

µ := E(Q) = − d

dα

αϕ′(0)
ϕ(α)

∣∣∣∣
α↓0

= ϕ′′(0)
2ϕ′(0)

(2.2)

and, similarly,

v := var(Q) = 1

4

(
ϕ′′(0)
ϕ′(0)

)2

− 1

3

ϕ′′′(0)
ϕ′(0)

, (2.3)

which from now on are assumed to be finite.

2.3. Correlation structure of the queue

In this paper we are interested in the correlation structure of the queue process (Qt )t≥0. Our
analysis relies on the following useful relation (see, e.g. [4, Section IX.3] and [16]):

E(exp[−αQT ] | Q0 = q) = ϑ

ϑ − ϕ(α)

(
e−αq − α

e−ψ(ϑ)q

ψ(ϑ)

)
, (2.4)

where T is exponentially distributed with mean ϑ−1, independently of the Lévy process. (As
an aside, we mention that (2.4) implies the Pollaczek–Khinchine formula in at least two ways:
(a) let ϑ ↓ 0, so that T corresponds with some epoch infinitely far away, and use elementary
calculus (l’Hôpital’s rule); (b) find E(exp[−αQT ]) by deconditioning, use that in stationarity,
E(exp[−αQT ]) should coincide with E(exp[−αQ0]), and then solve E(exp[−αQ0]).)

Equation (2.4) enables us to find explicitly the Laplace transform ρ(·) of

r(t) := corr(Q0,Qt ) = cov(Q0,Qt )√
var(Q0) var(Qt )

= E(Q0Qt)− (E(Q0))
2

var(Q0)
,

as we show now. Here it is assumed that the system is in steady state at time 0, that is, Q0
obeys the ‘generalized Pollaczek–Khinchine’ formula, (2.1). First realize that

E(exp[−αQT ] | Q0 = q) =
∫ ∞

0
ϑe−ϑt E(exp[−αQt ] | Q0 = q) dt.

By differentiation with respect to α and subsequently letting α ↓ 0, we obtain

∫ ∞

0
ϑe−ϑt E(Qt | Q0 = q) dt = −ϕ

′(0)
ϑ

+ q + e−ψ(ϑ)q

ψ(ϑ)
. (2.5)
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Concentrate on the Laplace transform γ (ϑ) of cov(Q0,Qt ). Straightforward calculus reveals
that

γ (ϑ) :=
∫ ∞

0
cov(Q0,Qt )e

−ϑt dt

=
∫ ∞

0
(E(Q0Qt)− µ2)e−ϑt dt

=
∫ ∞

0

∫ ∞

0
q E(Qt | Q0 = q)e−ϑt dP(Q0 ≤ q) dt − µ2

ϑ
;

it is assumed that the queue is in stationarity at time 0 (and, hence, it is in stationarity at time t
as well). By invoking (2.5) we find that the expression in the previous display equals∫ ∞

0

q

ϑ

(
−ϕ

′(0)
ϑ

+ q + e−ψ(ϑ)q

ψ(ϑ)

)
dP(Q0 ≤ q)− µ2

ϑ

= −µϕ
′(0)
ϑ2 + v

ϑ
+ 1

ϑψ(ϑ)
E(Q0 exp[−ψ(ϑ)Q0]). (2.6)

From the generalized Pollaczek–Khinchine formula, (2.1), we obtain, by differentiating,

E(Q0 exp[−αQ0]) = ϕ′(0)
(

− 1

ϕ(α)
+ α

ϕ′(α)
(ϕ(α))2

)
.

Inserting this relation, in addition to (2.2), into (2.6) we obtain the Laplace transform of
cov(Q0,Qt ):

γ (ϑ) = −ϕ
′′(0)

2ϑ2 + v

ϑ
+ ϕ′(0)

ϑ2

(
1

ϑψ ′(ϑ)
− 1

ψ(ϑ)

)
.

This also trivially provides us with the Laplace transform of corr(Q0,Qt ), as stated in the
following theorem. When specializing to CP input, we retrieve Equation (6.2) of [6].

Theorem 2.1. For any ϑ ≥ 0, and v as in (2.3),

ρ(ϑ) :=
∫ ∞

0
r(t)e−ϑt dt = γ (ϑ)

v
= 1

ϑ
− ϕ′′(0)

2vϑ2 + ϕ′(0)
vϑ2

(
1

ϑψ ′(ϑ)
− 1

ψ(ϑ)

)
. (2.7)

Remark 2.1. Using the generalized Pollaczek–Khinchine formula, (2.1), it is readily verified
that the result in Theorem 2.1 can be simplified to

ρ(ϑ) = 1

ϑ
− 1

v

(
ϕ′′(0)
2ϑ2 + κ ′(ψ(ϑ))

ϑψ(ϑ)

)
.

Example 2.1. Consider the situation in which (Xt )t≥0 corresponds to standard Brownian
motion decreased by a linear drift (say of rate 1, so X ∈ Bm(−1, 1)). In other words,
the Laplace exponent of the Lévy process is given by ϕ(α) = α + 1

2α
2 and its inverse is

ψ(ϑ) = −1 + √
1 + 2ϑ . Now consider the workload process (Qt )t≥0 and its correlation

function. The above theory shows that the Laplace transform of r(·) is given by

ρ(ϑ) = 1

ϑ
− 2

ϑ2 + 2

ϑ3 (
√

1 + 2ϑ − 1).

It turns out to be possible to explicitly invert ρ(·):
r(t) = 2(1 − 2t − t2)(1 −�N(

√
t))+ 2

√
t(1 + t)φN(

√
t), (2.8)

where �N(·) and φN(·) are the standard normal distribution and the standard normal density,
respectively. Equation (2.8) is in agreement with the results in [1] and [18, Section 12.1].
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944 A. ES-SAGHOUANI AND M. MANDJES

3. Structural properties of the correlation function

In this section we concentrate on the derivation of a number of key structural properties of
the correlation function r(·).More specifically, relying on the concept of completely monotone
functions [7], [22], we prove in Theorem 3.1, below, that r(·) is a positive, decreasing, and
convex function. To this end, we first establish a number of auxiliary results; a key result is the
following.

Proposition 3.1. Define

ξ(ϑ) := 1

µ

(
1

ϑψ ′(ϑ)
− 1

ψ(ϑ)

)
. (3.1)

Then ξ(ϑ) is the Laplace transform of a (nonnegative) random variable Z.

Remark 3.1. The Laplace transform of the stationary-excess distribution Ze associated with
Z is given by (see [2])

ξe(ϑ) = ξ(ϑ)− 1

ϑξ ′(0)
= ϕ′′(0)

2vϑ
(1 − ξ(ϑ)). (3.2)

Hence, the first moment of Z is 2v/ϕ′′(0).

To prove Proposition 3.1, we need a number of lemmas. These are stated and proved now.
They extensively use the concept of complete monotonicity [7], [14, pp. 439–442]. The class
C of completely monotone functions is defined in Appendix A, where a series of standard
properties is also given.

Lemma 3.1. We have ψ ′(ϑ) ∈ C.

Proof. Consider, for x ≥ 0,

Tx := inf{t ≥ 0 : Xt = −x}.
Then Tx is a Lévy process with Laplace exponent −ψ(ϑ); see, e.g. [24, Theorem 46.3]. More
specifically, Tx is a subordinator. Now apply Lemma A.2.

Lemma 3.2. If f (α) ∈ C then so does

f (0)− f (α)+ αf ′(α)
α2 .

Proof. This is a consequence of subsequently applying Lemma A.1(iv) and (v).

Lemma 3.3. For σ 2 > 0 and measure �ϕ(·) such that
∫
(0,∞)

min{1, x2}�ϕ(dx) < ∞,

αϕ′(α)− ϕ(α)

α2 = 1

2
σ 2 + 1

α2

∫
(0,∞)

(1 − e−αx − αxe−αx)�ϕ(dx) ∈ C. (3.3)

Proof. The Laplace exponent ϕ(α) can be written as, with σ 2 > 0 and measure�ϕ(·) such
that

∫
(0,∞)

min{1, x2}�ϕ(dx) < ∞,

ϕ(α) = −αµ+ 1

2
α2σ 2 +

∫
(0,∞)

(e−αx − 1 + αx 1(0,1))�ϕ(dx),

which immediately yields the equality in (3.3). The claim that this function is in C follows
from the fact that any positive constant is in C, Lemma 3.2, and Lemma A.1(i).
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Proof of Proposition 3.1. We first decompose

1

ϑψ ′(ϑ)
− 1

ψ(ϑ)
= η1(ϑ)η2(ϑ),

where

η1(ϑ) := ψ(ϑ)

ϑ
and η2(ϑ) := 1

ψ(ϑ)ψ ′(ϑ)
− ϑ

(ψ(ϑ))2
.

Because of the (generalized version of the) Pollaczek–Khinchine formula, (2.1), we have
α/ϕ(α) ∈ C; now applying Lemma A.1(iii), in conjunction with Lemma 3.1, we obtain
η1(ϑ) ∈ C.

To prove that η2(ϑ) ∈ C also, we first recall from Lemma 3.3 that (αϕ′(α)− ϕ(α))/α2 ∈ C.
Again, applying Lemma A.1(iii), in conjunction with Lemma 3.1, it follows that η2(ϑ) ∈ C.

As both η1(ϑ) and η2(ϑ) are in C, Lemma A.1(ii) yields ξ(ϑ) ∈ C. Applying l’Hôpital’s
rule twice, and using the fact that ψ ′′(0)(ϕ′(0))3 = −ϕ′′(0), it is readily verified that

ξ(0) = lim
ϑ↓0

ξ(ϑ) = 1.

Now Theorem A.1 yields the result.

Let ρ(1)(ϑ) and ρ(2)(ϑ) be the Laplace transforms of r ′(t) := (d/dt)r(t) and r ′′(t) :=
(d2/dt2)r(t). Their expressions are given respectively as follows:

ρ(1)(ϑ) :=
∫ ∞

0
r ′(t)e−ϑt dt = −ϕ

′′(0)
2vϑ

(1 − ξ(ϑ)) = −ξe(ϑ), (3.4)

ρ(2)(ϑ) :=
∫ ∞

0
r ′′(t)e−ϑt dt = ϕ′′(0)

2v
ξ(ϑ), (3.5)

for ϑ ≥ 0. Here the properties that r(0) = 1 and

r ′(0) = lim
ε↓0

E(Q0Qε)− (E(Q0))
2

ε var(Q0)
= lim

ε↓0

E(Q0Xε)

ε var(Q0)
= −ϕ

′′(0)
2v

,

in conjunction with integration by parts, have been used.

Theorem 3.1. The correlation function r(t) is positive, decreasing, and convex. Furthermore,
r(t) can be written as the tail of the stationary-excess distribution function associated with Z,
i.e. r(t) = P(Ze > t). If Z has a finite second moment then r(t) is integrable and∫ ∞

0
r(t) dt = 1

8v

ϕ(4)(0)

ϕ′(0)2
− 5

12v

ϕ′′(0)ϕ(3)(0)
ϕ′(0)3

+ 1

4v

ϕ′′(0)3

ϕ′(0)4
. (3.6)

Proof. Convexity follows from the expression for ρ(2)(ϑ) in (3.5); it is concluded from
Proposition 3.1 that ρ(2)(ϑ) ∈ C; thus, r ′′(t) is nonnegative (for t ≥ 0). The monotonicity
follows from the expression for ρ(1)(ϑ) in (3.4), by applying Lemma A.1(iv) to ρ(2)(ϑ) ∈ C;
we find that −ρ(1)(ϑ) is in C, implying that r ′(t) ≤ 0 (for t ≥ 0). Then it is easily verified that
applying Lemma A.1(iv) to −ρ(1)(ϑ) ∈ C, in conjunction with (2.7), implies that ρ(ϑ) ∈ C,
and, hence, r(t) ≥ 0 (for t ≥ 0).

Observe that combining (2.7) and (3.2) yields

ρ(ϑ) = 1 − ξe(ϑ)

ϑ
.
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946 A. ES-SAGHOUANI AND M. MANDJES

It is straightforward to verify that the right-hand side of the previous display is just the Laplace
transform of P(Ze > t). It is concluded that r(t) = P(Ze > t) by the uniqueness of the Laplace
transform. Equation (3.6) follows, after considerable calculus (i.e. application of l’Hôpital’s
rule several times and various series expansions), by evaluating∫ ∞

0
r(t) dt = ρ(0) = lim

ϑ↓0
ρ(ϑ);

it is noted that ϕ(4)(0) exists if the second moment of Z is finite.

4. Correlation asymptotics for light-tailed input

When ϕ(·) has an analytic continuation for α < 0, we are in the regime of light tails; as a
fortiori then all moments (−1)nϕ(n)(0) of X1 exist. When (Xt )t≥0 does not correspond to a
decreasing subordinator, we also have limα→−∞ ϕ(α) = ∞. Bearing in mind the facts that
ϕ(·) has a positive slope at the origin and that convexity of ϕ(·) implies continuity, there is a
unique minimizer ζ < 0 such that ϕ(ζ ) < 0, ϕ′(ζ ) = 0, and ϕ′′(ζ ) > 0.

In this situation, ψ(·) is also well defined for negative arguments; more precisely, for all
ϑ ≥ ϕ(ζ ), the inverse ψ(ϑ) has a meaningful interpretation. In fact, ϑ� := ϕ(ζ ) can be
regarded as a branching point. We thus see that Theorem 2.1 does not only apply for ϑ ≥ 0,
but also for ϑ ∈ [ϑ�, 0). Around ζ , we can write ϕ(·) as

ϕ(α) = ϕ(ζ )+ 1
2 (α − ζ )2ϕ′′(ζ )+O((α − ζ )3),

and, hence, for θ ↓ ϑ�,

ψ(ϑ)− ζ ∼
√

2

ϕ′′(ζ )
√
ϑ − ϕ(ζ ) =

√
2

ϕ′′(ζ )
√
ϑ − ϑ�

(where ‘∼’ indicates that the ratio of the left- and right-hand sides tends to 1). Routine
calculations reveal that, for θ ↓ ϑ�, ρ(ϑ) looks like

1

v

(
− ϕ′′(0)

2(ϑ�)2
+ 1

4ϑ�

(
ϕ′′(0)
ϕ′(0)

)2

− 1

3ϑ�
ϕ′′′(0)
ϕ′(0)

− 1

(ϑ�)2

ϕ′(0)
ψ(ϑ)

+ 1

(ϑ�)3

ϕ′(0)
ψ ′(ϑ)

)
,

or, more precisely,

ρ(ϑ)− 1

v

(
− ϕ′′(0)

2(ϑ�)2
+ 1

4ϑ�

(
ϕ′′(0)
ϕ′(0)

)2

− 1

3ϑ�
ϕ′′′(0)
ϕ′(0)

− 1

(ϑ�)2

ϕ′(0)
ζ

)

∼
√

2ϕ′(0)√
ϕ′′(ζ )v(ϑ�)2

(
1

ζ 2 + ϕ′′(ζ )
ϑ�

)√
ϑ − ϑ�.

We now relate the behavior of a transform
∫ ∞

0 e−ϑtf (t) dt (around a branching point ϑ� < 0)
to the behavior of the ‘transformed’ function f (t) (for large t). We obtain the following result
(cf. for instance, the ‘Heaviside approach’ of [3, Equations (3.21)–(3.23)]); see also [13,
pp. 153–154].

Proposition 4.1. Suppose that ϕ(α) < ∞ for some α < 0. Then

r(t) ∼ �
eϑ

�t

t
√
t

as t → ∞,

https://doi.org/10.1239/jap/1231340225 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1231340225


On the correlation structure of a Lévy-driven queue 947

where

� := − ϕ′(0)√
2πϕ′′(ζ )v(ϑ�)2

(
1

ζ 2 + ϕ′′(ζ )
ϑ�

)
.

Remark 4.1. As defined in Proposition 4.1, � is positive, as is seen as follows. From (3.3) we
know that

f (α) := 2

ϕ′′(0)
αϕ′(α)− ϕ(α)

α2

is a Laplace transform, and, hence, −f ′(α)/−f ′(0) is also; so, for allα, it holds that f ′(α) < 0,
or

α3ϕ′′(α)− 2α2ϕ′(α)+ 2αϕ(α) < 0.

Now insert α := ζ < 0. Using ϕ′(ζ ) = 0 and ζ < 0, we obtain ζ 2ϕ′′(ζ )+ 2ϕ(ζ ) > 0, which
implies that

ϕ′′(ζ )
ϕ(ζ )

+ 2

ζ 2 < 0

(use ϕ(ζ ) < 0), and, hence,

−ϕ
′′(ζ )
ϑ�

>
2

ζ 2 >
1

ζ 2 ,

thus implying that � > 0.

Example 4.1. It can be checked that, for Brownian motion with drift, i.e. X ∈ Bm(−1, 1) as
in the setting of Example 2.1,

r(t) ∼ 8

√
2

π

e−t/2

t
√
t

;

this could be found directly from (2.8) as well (cf. [1] and [18, Section 12.1]).

Example 4.2. For the compound Poisson model with exponential jobs (i.e. M/M/1 queue), it
can be checked that

ψ(ϑ) = 1
2 (λ− µ+ ϑ +

√
(λ− µ+ ϑ)2 + 4ϑµ),

so that the branching point is ϑ� = −(√µ − √
λ)2. Also, ζ = −µ + √

λµ. Proposition 4.1
now yields an explicit expression for the correlation asymptotics:

r(t) ∼ 1

2ρ
√
π

(
1 − √

ρ

1 + √
ρ

)3 exp[−(1 − √
ρ)

√
µt]

(
√
µt)3/2

as t → ∞.

Remark 4.2. For compound Poisson input, that is, X ∈ CP(λ, β(·)), the tail asymptotics of
the correlation function are proportional to those of the busy period, at least in this light-tailed
regime (where light tailedness here means that we should require that β(α) < ∞ for some
α < 0). This can be seen as follows.

First recall that the Laplace exponent is ϕ(α) = α − λ + λβ(α). With π(·) the Laplace
transform of the busy period, it is known that it satisfies π(ϑ) = β(ϑ+λ−λπ(ϑ)). Therefore,

0 = β(ϑ + λ− λπ(ϑ))− π(ϑ) = 1

λ
ϕ(ϑ + λ− λπ(ϑ))− ϑ

λ
,
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948 A. ES-SAGHOUANI AND M. MANDJES

and, hence, ϕ(ϑ + λ− λπ(ϑ)) = ϑ . Applying ψ(·) to both sides, we obtain

π(ϑ) = λ+ ϑ

λ
− 1

λ
ψ(ϑ).

Considering the tail asymptotics of the busy period, first observe that π(·) also has a branching
point at ϑ� < 0 (i.e. it has the same branching point as ρ(ϑ)) such that, for ϑ ↓ ϑ�,

π(ϑ) ∼ λ− ϑ

λ
− 1

λ

(
ζ +

√
2

ϕ′′(ζ )
√
ϑ − ϑ�

)
.

Applying the Heaviside approach now yields, with P the busy period,

d

dt
P(P ≤ t) ∼ 1

λ

√
2

ϕ′′(ζ )
1

2
√
π

eϑ
�t

t
√
t

= 1√
2π

√
1

β ′′(ζ )
eϑ

�t

λt
√
λt
,

in line with the results of [13, Section 5.6]. These asymptotics are indeed proportional to those
of Proposition 4.1. Similarly, applying the relation

E(e−ϑP ) = 1 − ϑ

∫ ∞

0
P(P > t) dt,

we obtain

P(P > t) ∼ −
√

2

ϕ′′(ζ )
1

2
√
π

eϑ
�t

ϑ�λt
√
t

= − 1√
2π

√
1

β ′′(ζ )
eϑ

�t

ϑ�λt
√
λt
.

5. Correlation asymptotics for heavy-tailed input

Where the previous section focused on light-tailed Lévy input, we now consider the heavy-
tailed case. We extensively use the concept of slowly (and regularly) varying functions.
Proposition 5.1, below, is the main result of this section; in Corollary 5.1, below, it is applied
to the situation of a queue with CP input with regularly varying jobs.

The following class of functions plays a crucial role in our analysis.

Definition 5.1. We say that f (x) ∈ Rδ(n, σ ), where n ∈ N, σ ∈ R, and δ ∈ (n, n + 1), for
x ↓ 0 if

f (x) =
n∑
i=0

f (i)(0)

i! xi + σxδL

(
1

x

)
(x ↓ 0)

for a slowly varying function L (i.e. L(x)/L(tx) → 1 for x → ∞ and any t > 0).

Lemma 5.1. Suppose that ϕ′(α) ∈ Rδ−1(n− 1, σ ). Then, for α ↓ 0,

ϕ(α) ∈ Rδ

(
n,
σ

δ

)

and, for ϑ ↓ 0,

ψ(ϑ) ∈ Rδ(n, τ ) with τ := − σ

δ(ϕ′(0))δ+1 ,

ψ ′(ϑ) ∈ Rδ−1(n− 1, τδ).
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Proof. The first statement is an immediate consequence of Karamata’s theorem; the second
statement follows from ψ(ϕ(α)) = α; the third statement follows in an elementary way by
using ψ ′(ϑ) = 1/ϕ′(ψ(ϑ)).

The following lemma presents the behavior of ξe(ϑ) as ϑ ↓ 0. We need this type of result as
Karamata’s Tauberian theorem then enables us to translate the behavior of transforms around
0 into the behavior of r(t) for large t .

Lemma 5.2. If ϕ′(α) ∈ Rδ−1(n− 1, σ ), with n ∈ {3, 4, . . . } and δ ∈ (n, n+ 1), then

ξe(ϑ) = 1 − ϑρ(ϑ) ∈ Rδ−3(n− 3, ω) with ω := (δ − 1)

vδ(ϕ′(0))δ−2 σ.

Proof. Recall (3.1) and (3.2). The crucial step is to verify that

ϑ

ψ(ϑ)
∈ Rδ−1(n− 1,−τ(ϕ′(0))2) and

1

ψ ′(ϑ)
∈ Rδ−1(n− 1,−τδ(ϕ′(0))2);

use Lemma 5.1. Verification of the claim is now straightforward (though tedious).

The Tauberian theorem in [12, Theorem 8.1.6] now yields the following result; see also [10].

Proposition 5.1. If ϕ′(α) ∈ Rδ−1(n− 1, σ ), with n ∈ {3, 4, . . . } and δ ∈ (n, n+ 1), then

r(t) ∼ ω(−1)n+1

�(4 − δ)
t3−δL(t) as t → ∞.

Proof. First recall that r(t) = P(Ze > t) and that Ze has transform ξe(·). Lemma 5.2 and
Theorem 8.1.6 of [12] yield the result.

Corollary 5.1. Interestingly, we can now also find a criterion for long-range dependence; cf.
the remarks in the introduction of [22].

Suppose that ϕ′(α) ∈ Rδ−1(n − 1, σ ), with n ∈ {3, 4, . . . } and δ ∈ (n, n + 1). Then the
queueing process is long-range dependent if n = 3, as in this case

∫ ∞
0 r(t) dt = ∞. Consider,

for instance, the case in which X ∈ CP(λ, β(·)), with P(B > t) ∼ t−ν for ν ∈ (3, 4). Then
the first three moments of B exist and, hence, also the first two moments of the steady-state
queue length, as well as the covariance cov(Q0,Qt ). The tail of B, however, is so heavy that
cov(Q0,Qt ) decays roughly as t3−ν , giving rise to a long-range dependent queueing process.

Likewise, it follows that the queueing process is short-range dependent if n ∈ {4, 5, . . . };
for instance, when considering CP input with P(B > t) ∼ t−ν for ν ∈ (4,∞).

6. Concluding remarks

In this paper we studied the correlation function of the workload process of a single queue
fed by a Lévy process (that is, a Lévy process reflected at 0). Relying on the concept of complete
monotonicity we have been able to derive a set of structural properties of the correlation function,
viz. that it is a positive, decreasing, and convex function. Importantly, we have shown how to
represent the correlation function r(·) as the complementary distribution function of a specific
random variable. This representation, as well as an explicit characterization of the Laplace
transform of r(·), enabled the analysis of the asymptotic behavior of r(t) for large t ; both the
light-tailed and heavy-tailed cases were studied.

An alternative way to conclude that the correlation function is positive, decreasing, and
convex, may be the following. The Laplace exponent of any Levy process can be approximated
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arbitrarily closely by that of an appropriately chosen CP process; see, e.g. [14, Theorem XVII.1].
As the claim has been proved for CP input [22], a limit argument may lead to an alternative
proof of Theorem 3.1. Exploration of this approach is a subject for further research.

Restricting ourselves to the case of CP input, we could say that Section 4 covers the case
in which the jobs have a finite moment generating function in a neighborhood of the origin:
β(α) < ∞ for some α < 0, and, hence, all moments are finite. On the other hand, in Section 5
we addressed the situation in which just a finite set of moments are finite. In between, however,
there is a third class of distributions: those for which all moments are finite, but without an
analytic continuation for α < 0 (that is, β(α) = ∞ for all α < 0). Examples of distributions
in this class are the Weibull and lognormal distributions. A subject for further research would
be the analysis of the correlation asymptotics for this class of distributions.

As we lack, in most cases, an explicit formula for r(t), we may attempt to estimate it through
simulation. This is particularly challenging, as r(t) can be extremely small for large t , and is
the difference of two (potentially large) numbers. A way to circumvent this problem is to
use importance sampling [5, Section V.1], that is, sampling under an alternative measure and
correcting the simulation output by likelihood ratios (that keep track of the relative likelihood of
the realization under the actual measure, relative to the alternative measure). The resemblance
with the busy period asymptotics suggests that, for light-tailed input, the (exponentially-twisted)
change of measure proposed in [20] may work well; it is noted that the analysis of [20] indicates
that the twisting of the work present at time 0 should be handled with care. Another option
could be to rely on the representation of the correlation function r(·) as the complementary
distribution function of the random variable Ze; see Theorem 3.1.

A potential application area of our results is the following. Suppose that no measurements
of the queue’s input process can be made, and, hence, estimation of the probabilistic law of the
input process has to be performed in an alternative manner. One approach could be to measure
the queue’s workload (for instance periodically), and to infer the input characteristics from
the resulting measurements. Insight into the correlation between subsequent measurements, as
obtained in the present paper, may be useful when devising such a procedure. Work along these
lines for queues with Gaussian input was carried out by Mandjes and van de Meent [19] (in
a somewhat more experimental context), and for M/G/∞ systems by Bingham and Pitts [11]
(building on the results presented in [23]); see also [15].

Appendix A. Complete monotonicity

The concept of complete monotonicity is summarized in the following definition.

Definition A.1. A function f (α) on [0,∞) is completely monotone if, for all n ∈ N and α ≥ 0,

(−1)n
dn

dαn
f (α) ≥ 0.

We write f (α) ∈ C.

The following deep and powerful result is due to Bernstein [7]. It says that there is
equivalence between f (α) being completely monotone and the possibility of writing f (α)
as a Laplace transform. For more background on completely monotone functions, see [14, pp.
439–442].

Theorem A.1. A function f (α) on [0,∞) is the Laplace transform of a nonnegative random
variable if and only if (i) f (α) ∈ C and (ii) f (0) = 1.
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The concept of complete monotonicity is easy to work with, as we can use a set of practical
properties.

Lemma A.1. The following properties apply.

(i) C is closed under addition: if f (α) ∈ C and g(α) ∈ C then f (α) + g(α) ∈ C. This
extends to, if fx(α) ∈ C for x ∈ �,

∫
x∈� fx(α)µ(dx) ∈ C for any measure µ(·).

(ii) C is closed under multiplication: if f (α) ∈ C and g(α) ∈ C then f (α)g(α) ∈ C.

(iii) Properties of composite C functions: if f (α) ∈ C and g(α) ≥ 0 with g′(α) ∈ C, then
f (g(α)) ∈ C.

(iv) Let U(α) be nondecreasing on [0,∞), let U(0) = 0, let u := limα→∞ U(α) < ∞, and
let

f (α) :=
∫

[0,∞)

e−αx dU(x);

clearly, f (α) ∈ C and u = f (0). Then also

g(α) := f (0)− f (α)

α
∈ C.

(v) C is closed under differentiation: if f (α) ∈ C then −f ′(α) ∈ C.

Proof. Property (i) follows trivially from the definition. Property (ii) follows from [14,
Criterion 1], and property (iii) follows from [14, Criterion 2]. Property (iv) can be found in,
for instance, [22, Equation (4.2)]. The proof of property (v) is trivial.

Lemma A.2. Let (Yt )t≥0 be an increasing subordinator Lévy process, with Laplace exponent
ξ(α). Then −ξ ′(α) ∈ C.

Proof. According to Bertoin [8, Chapter III, Equation (3)], we can write

ξ(α) = −dα +
∫
(0,∞)

(e−αx − 1)�ξ (dx),

with d ≥ 0 and measure �ξ(·) such that
∫
(0,∞)

min{1, x2}�ξ(dx) < ∞. This implies that

−ξ ′(α) = d +
∫
(0,∞)

xe−αx�ξ (dx),

so that −ξ ′(α) ∈ C; use Lemma A.1(i).
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