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We present a fast and accurate data-driven surrogate model for divertor plasma detachment
prediction leveraging the latent feature space concept in machine learning research. Our
approach involves constructing and training two neural networks: an autoencoder that
finds a proper latent space representation (LSR) of plasma state by compressing the
multi-modal diagnostic measurements and a forward model using multi-layer perception
(MLP) that projects a set of plasma control parameters to its corresponding LSR. By
combining the forward model and the decoder network from autoencoder, this new
data-driven surrogate model is able to predict a consistent set of diagnostic measurements
based on a few plasma control parameters. In order to ensure that the crucial detachment
physics is correctly captured, highly efficient 1D UEDGE model is used to generate
training and validation data in this study. The benchmark between the data-driven
surrogate model and UEDGE simulations shows that our surrogate model is capable
of providing accurate detachment prediction (usually within a few per cent relative
error margin) but with at least four orders of magnitude speed-up, indicating that
performance-wise, it has the potential to facilitate integrated tokamak design and plasma
control. Comparing with the widely used two-point model and/or two-point model
formatting, the new data-driven model features additional detachment front prediction
and can be easily extended to incorporate richer physics. This study demonstrates
that the complicated divertor and scrape-off-layer plasma state has a low-dimensional
representation in latent space. Understanding plasma dynamics in latent space and
utilising this knowledge could open a new path for plasma control in magnetic fusion
energy research.
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1. Introduction

One of the critical concerns for a magnetic fusion power plant is the intense plasma
heat flux q‖ that flows very rapidly along magnetic field lines to localised material divertor
plates. For unmitigated conditions, this heat flux can exceed 10 GW m−2 (Kuang et al.
2020) based on extrapolations from current experimental databases and challenges even
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the most highly developed modern materials with thermo-mechanical engineering limits
at around 10 MW m−2. So far, the most successful method of reducing this peak heat
flux in tokamaks is achieved by detachment; that is, the use of neutral gas to buffer the
incoming plasma heat flux and radiate much of the incoming power over a much wider
area of the surrounding walls as the recombined neutrals and the radiation photons freely
stream across the magnetic field rather than being focused to the plate as for the plasma.
In other words, upstream high-temperature plasma is extinguished by high-density neutral
gas before it strikes the divertor plates; hence, it is detached.

Because the detachment phenomenon involves nonlinear coupled atomic, molecular and
plasma physics, it is challenging to obtain accurate and fast detachment predictions (i.e.
predict divertor plasma quantities such as density and temperature for prescribed upstream
plasma condition). On the one hand, theory-based models with simplifications such as the
semi-analytical two-point model formatting (2PMF) (Stangeby 2018) derives analytical
formula to calculate divertor plasma density and temperature. These over-simplified
zero-dimensional models are fast and valuable in terms of providing physics insights,
but the corresponding prediction is somewhat crude and relies on ad-hoc or data-fitted
momentum and energy loss fraction coefficients. On the other hand, sophistic tokamak
edge transport codes, such as two-dimensional (2D) UEDGE (Rognlien et al. 1994) and
SOLPS-ITER (Wiesen et al. 2015) that incorporate a higher level of complexity and
physical effects could give fairly accurate predictions but require a few days to a few
months to finish one run. Of course, with a large enough neutral gas and/or impurity
injection, detachment almost always occurs; however, ‘too much’ detachment can lead
to disruption, a rapid termination of plasma confinement, which could also damage
the machine. Thus, predicting, establishing and maintaining a proper degree of plasma
detachment, along with a stable and properly positioned ‘detachment front’, is a non-trivial
requirement. To make this challenge ever greater, current detachment control in existing
tokamaks is accomplished only with the aid of in situ diagnostics such as infrared camera
(Maurizio et al. 2017) or Langmuir probe (Eldon et al. 2022) that would not survive
in a reactor environment despite that the success of future magnetic fusion reactors,
such as ITER, rely on detachment to mitigate excessive heat load on divertor targets.
Therefore, attaining a reliable and fast detachment prediction model and control algorithm
is imperative to magnetic fusion energy research.

To address this challenge, we propose to build a detachment prediction model with
the data-driven machine learning (ML) approach. For the last few years, ML methods
have gained a lot of interest in magnetised plasma research, as summarised in the latest
review paper by Anirudh et al. (2022). Various neural networks have been explored
and applied to assorted applications of experimental and computational fusion plasma
study, e.g. to accelerate data processing (van den Berg et al. 2018), to interpret critical
plasma parameter directly from diagnostics (Samuell et al. 2021), to aid plasma shaping
via magnetic field control (Degrave et al. 2022), to forecast disruption (Kates-Harbeck,
Svyatkovskiy & Tang 2019; Montes et al. 2019; Rea et al. 2020), to speed-up the nonlinear
Fokker–Planck–Landau collision operator in particle simulations (Miller et al. 2021), to
apply closures in fluid models (Ma et al. 2020; Maulik et al. 2020; Wang et al. 2020) and to
discover governing physics-based partial observations (Mathews et al. 2021). The growing
applications of ML techniques on plasma physics indicates that data-driven science could
provide an alternative approach to scientific challenges.

In this paper, we report a fast yet accurate model-based data-driven detachment
prediction model. The rest of the paper is organised as follows. The methodology of
our approach is discussed in § 2. Section 3 describes the one-dimensional (1D) UEDGE
model used in the study and outlines the data-generation process. Section 4 presents the
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architecture of neural networks and hyper-parameters used in this study. The results of our
trained models are disseminated in § 5. Section 6 compares 1D UEDGE simulations and
our predictive model with the basic two-point model (2PM) and 2PMF. Application of our
model, its limitations and future work are briefly discussed in § 7. Finally, § 8 summarises
the paper.

2. Methodology

Steady-state plasma states are described in two different ways: (1) by control parameters
x or (2) by diagnostic measurements y. For example, if we neglect any bifurcation or
hysteresis phenomena for now, a tokamak plasma is determined by a complete set of
engineering and discharge parameters or can be characterised with of diagnosed plasma
quantities in detail. Analogously, in numerical simulations, a set of model inputs with
proper boundary conditions yields a plasma state that can also be diagnosed synthetically.
A large portion of magnetised plasma research, in fact, has been aimed at discovering
and exploiting the relation between these two descriptions, i.e. predicting laboratory and
fusion plasma behaviour under certain discharge parameters or finding an optimal control
setting for a desired plasma state. In most situations, this is not a trivial task because
of the strongly nonlinear nature of magnetised plasmas. On the one hand, sophisticated
numerical models are developed to better understand the physics which governs the
complex plasma system, and hopefully to achieve true first-principle-based predictive
capability. On the other hand, empirical and simplified models are proposed to provide
tools for daily machine operations, experiment planning and future device design. Often
there is a gap in between them: empirical and simplified models are fast but not necessarily
accurate, whereas sophisticated numerical models can provide more reliable predictions
but too slow to be used for practical application purposes. A fast yet accurate surrogate
model can bridge this gap. In this paper, we develop such a surrogate model for divertor
plasma detachment prediction with a data-driven approach.

Unlike most data-driven surrogate models that directly connect two states x and y, we
take the indirect approach proposed by (Anirudh et al. 2020). As shown in figure 1, in
addition to two conventional descriptions of plasma, here we propose a third description,
that in a latent space, termed as latent space representation (LSR). Latent space, sometimes
also referred to as feature space, is a widely used concept in ML research in which
items with similar features are positioned closely. We first find the LSR, z, of plasma by
compressing diagnostics (e.g. synthetic diagnostics mimicking physical diagnostics, such
as Langmuir probe, Thomson scattering and bolometer/radiation measurement) through
an autoencoder (AE) (described in § 4.1); then forward and inverse models can be trained
to relate control parameters x (engineering or numerical model input parameters such as
heating power and gas puffing rate/upstream density) and z. Hence, instead of constructing
neural networks x → z or z → x, our forward and inverse predictions are x → z → y
and y → z → x. Compared with the direct approach, the study by Anirudh et al. (2020)
showed that the indirect approach has several advantages, including improved predictive
performance and greater data efficiency. In this paper, we focus on forward prediction (i.e.
x → z → y), whereas the inverse prediction (optimisation problem) is subject to future
work.

3. Physics model and data

In this section, we briefly describe the tokamak edge model used to simulate divertor
detachment and outline the data-generation process.
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FIGURE 1. Three descriptions of plasma state.

3.1. 1D UEDGE model
UEDGE (Rognlien et al. 1994; Rognlien & Rensink 2002) is a finite-volume simulation
code to capture plasma and neutral transport. UEDGE has been used extensively to model
the edge region of present-day and future tokamak devices for almost three decades. It has
been utilised to study the divertor detachment physics on many machines, such as Alcator
C-Mod (Wising et al. 1997), DIII-D (Porter et al. 1996), ITER (Wising et al. 1996) and
SPARC (Ballinger et al. 2021). UEDGE solves the multi-species fluid transport model
for plasma and neutral gas, including important atomic physics, such as line radiation
from ionisation, excitation and recombination processes in realistic tokamak equilibria.
With the fully implicit Newton–Krylov scheme and adaptive stepping to advance all model
equations in time, UEDGE is able to quickly evolve the system to a steady state.

In this proof-of-principle study, highly flexible and efficient 1D UEDGE code is used
to quickly generate a large training data set that covers a wide range of parameter
space beyond normal tokamak operation. Unlike the commonly used 2D UEDGE model,
which simulates the entire tokamak periphery, including closed flux surface region,
scrape-off-layer (SOL) and private flux surface region, the 1D UEDGE in this study
models only one flux tube in the low-field side SOL, starting from the outer mid-plane
to the outer divertor target plate, as depicted in figure 2(a). Nevertheless, 1D UEDGE
code solves the same set of equations as its 2D counterpart except radial transport and
drifts. Plasmas are allowed to transport in the parallel direction that is along the magnetic
field whereas neutrals transport poloidally along the flux tube. As a result, the essence
of plasma detachment physics is retained despite the one-flux-tube assumption. In fact,
simplified 1D geometry disentangles many secondary effects and is sometimes preferred
to better quantify the role of different physics processes played in the detachment (Dudson
et al. 2019). In the 1D UEDGE set-up, spatial variation of the magnetic field B is retained,
i.e. the flux expansion along a flux tube in the SOL is considered in the 1D UEDGE mesh.
Power, or the energy influx, across the core boundary is injected at the outer midplane
(upstream), and is equally partitioned between electrons and ions. Plasma particles are also
assumed to be fueled at upstream. As plasma moves downside the flux tube, it recombines
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(a) (b)

FIGURE 2. (a) 2D (black) versus 1D (red) UEDGE simulation meshes and (b) sketch of 1D
UEDGE simulation set-up.

to neutrals which eventually are recycled at the divertor target plate. In this study, the
particle and momentum recycling coefficients are set to be 0.99.

Figure 3 shows the typical attached (in blue) and detached (in orange) plasma in 1D
UEDGE simulations. Compared with attached plasma, detached plasma normally has a
lower electron temperature Te, a higher neutral gas density ng at the divertor target and a
distinct detachment front, or radiation peak away from the divertor target. Not surprisingly,
1D UEDGE code is able to qualitatively reproduce the target ion saturation current density
Jsat

‖ rollover (e.g. figure 2 in Loarte et al. 1998) and electron temperature cliff (e.g.
figure 5(a) in McLean et al. 2015) phenomena observed in detachment experiments as
shown in figure 4. We admit that more sophisticated models such as 2D UEDGE and
SOLPS-ITER considering additional details in principle yield more trustworthy results;
but the fundamental physics picture of plasma detachment, that plasma radiates enough
power to reach a low-enough temperature (a few electronvolts) and to recombine into
neutral gas, will not change. Rather than developing a more comprehensive data-driven
model with training data from state-of-the-art numerical simulations, here we focus on
exploring the data-driven approach for detachment prediction with a somewhat simplified
physics-based model (1D UEDGE) that could cover lots of plasma discharge scenarios
relatively cheap computationally.

3.2. Data generation
Although there are more than a dozen independent geometry and plasma parameters that
can be adjusted in the 1D UEDGE model, here we only vary the three most relevant
parameters, namely, upstream density ne,u, injection power Pinj and impurity fraction fZ .
These three parameters (ne,u, Pinj, fz) are hereafter referred to as ‘model inputs’.
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(a) (b)

(c) (d)

FIGURE 3. Examples of (a) plasma density, (b) electron temperature, (c) neutral density and
(d) radiation profile of attached (blue) and detached (orange) divertor plasma from 1D UEDGE
simulations.

(a) (b)

FIGURE 4. Reproductions of (a) Jsat
‖ rollover and (b) Te cliff features in 1D UEDGE density

scan simulations.

In this study, we use DIII-D tokamak geometry with a fixed divertor leg length Lleg =
0.2696 m, defined as the poloidal distance between the X-point to the outer divertor target
as shown in figure 2(b). We uniformly sample ne,u ∈ [1, 7] × 1019 m−3, Pinj ∈ [1, 10] MW
and fZ ∈ 0–10 %. Because the first wall material of DIII-D tokamak is graphite, here the
impurity species is set to be carbon. With 60 sample points for ne,u and fZ , and 40 sample
points for Pinj, 144 000 cases in total are launched. However, not all of these cases can
reach a physically feasible steady-state solution within a limited simulation time. Hence,
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Data set ntotal ndetach(%) nattach(%)

Training 111 598 56 047 (50.22) 55 551 (49.78)
validation 57 655 28 468 (49.38) 29 187 (50.62)

TABLE 1. Numbers of detached and attached cases and their percentages in the training and
validation data sets.

only 111 598 converged simulation cases with good power balance relation are accepted as
the training data set. Similarly, an independent validation data set with a coarser sampling
rate (50 × 50 × 30 and 57 655 accepted solutions) is generated. Unless stated otherwise,
the neural networks presented in this paper are trained and validated based on the training
data set, only the combined forward prediction model is validated with the validation data
set.

To avoid manual intervention of hundreds of thousands simulations individually, all the
UEDGE runs are launched and managed by Merlin (Peterson et al. 2022), a ML workflow
framework designed for large-scale high-performance computing (HPC) environments. It
takes 4 days with 200 CPUs to obtain about 170 000 converged cases. The data-generation
time could be further shortened if more CPUs were utilised.

For the diagnostic description of plasma state in this 1D set-up, five synthetic
measurements are taken across the simulation domain, including the upstream electron
temperature Te,u, ion saturation current density Jsat

‖ , electron density ne,t and temperature
Te,t at divertor target, as well as the radiation profile Prad. As illustrated in figure 2(b), Te,u
mimics the mid-plane Thompson scattering measurement, Jsat

‖ mimics the Langmuir probe
measurement, ne,t and Te,t come from either divertor Thompson scattering or Langmuir
probe and Prad is deduced from either bolometer or C-III emission. Note here Jsat

‖ , Te,u,
ne,t and Te,t are scalars, whereas Prad is a 1D profile. These diagnostic measurements are
collected for all 111 598 cases and then normalised for model training.

Prior model training, all cases are labelled as either ‘detached’ or ‘attached’ because
there is no ‘partial detached’ state in the 1D system. Here the choice of detachment
criterion is straightforward. As shown in figure 5, electron temperature at the divertor
target Te,t has two distinct distributions around Te,t = 2.1 eV. The gap at 2.1 eV is caused
by the temperature cliff phenomenon shown in figure 4(b). Therefore, 56 047 cases with
Te,t < 2.1 eV are labelled ‘detached’, whereas the remaining 55 551 cases are labelled as
‘attached’ cases. As shown in table 1, nearly half of the cases in the validation data set
are labelled ‘detached’, similar to the percentage of ‘detached’ cases in the training set.
In DIII-D experiment, the temperature cliff occurs around 5 eV, this apparent discrepancy
is mainly due to our simplified 1D set-up. The temperature cliff in our simulations is
consistent with the sonic transition point where the ion parallel velocity reaches sonic
moving away from the target. A thorough investigation of temperature cliff in one
dimension is beyond the scope of this paper and will be presented in a separated paper
by Zhao et al. (2022). We would like to point out that labelling cases is primarily to
better quantify the models’ accuracy in § 5; it does not affect the training process at all.
In addition, the lower Te,t ∼ 0.22 eV limit shown in figure 5 is likely related to the atomic
physics. When Te < 1 eV, the ionisation rate decreases whereas the recombination rate
increases dramatically. In this temperature range, electron collisionality is very high such
that three-body recombination becomes dominant. This process moves plasma potential
energy to electron thermal energy, stopping Te decreasing further.
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FIGURE 5. Histogram and cumulative distribution of electron temperature at divertor target
Te,t from the training data set (111 598 cases in total).

(a)

(b) (c)

FIGURE 6. Sketches of (a) β-variational autoencoder, (b) forward multilayer perceptron
(MLP) and (c) combined data-driven model.

4. Development of ML models

The goal of our ML-based approach is to predict the outputs of UEDGE simulations
directly from a set of given model inputs, without actually performing UEDGE simulations
and with significant speed up. As has been shown in the literature (Anirudh et al. 2020),
this task becomes substantially easier and more tractable if the prediction is made through
an intermediate and reduced dimensional space also learned through ML (see figures 1
and 6). Therefore, in this work, we utilise two ML models. The first ML model, a
variational autoencoder (VAE), is used to generate an invertible mapping from diagnostic
measurements to a reduced-dimensional ‘latent space’, whereas the second ML model, a
surrogate model, is used to predict UEDGE outputs in this latent space, given the inputs
to UEDGE.
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4.1. Latent space identification using AEs
The basic idea behind latent space identification (also referred to as dimensionality
reduction or data compression) is straightforward. Given an input data point, the goal of
an AE is to reduce it to fewer dimensions such that the reduced representation allows
the original input to be reconstructed as faithfully as possible. An AE comprises two
parts: (1) an encoder that learns to meaningfully encode the data into a set of values,
a compact representation of the input (i.e. latent coordinates); and (2) a decoder that
attempts to reconstruct the original inputs from this latent space encoding. By forcing
the reconstruction of data, an AE attempts to learn a suitable latent space that captures
all necessary degrees of freedom while discarding trivial variations, noise and redundant
correlations in the data.

In this work, we utilise two types of AE to create a suitable LSR in two steps. First, we
develop a (vanilla) AE to identify an appropriate level of reduction, i.e. the dimensionality
of the latent space and a suitable neural network architecture. Next, we turn this AE into a
special type of AE, called the β-VAE, to create the final LSR.

4.1.1. AE design to identify the dimensionality of a suitable latent space
Given a set of diagnostic measurements (y), we develop an AE to identify the

compressed LSR (z) of the plasma state. We use y′ to denote the reconstructed input from
the AE. In other words, the encoder maps y → z and the decoder maps z → y′. In our case,
y (and, hence, also y′) has 34 values: it comprises 4 scalar values (Jsat

‖ , Te,u, Nt and Te,t)
and a 30-element 1D array (Prad). However, the different values (scalars versus the array)
exhibit different ranges of values. Therefore, we utilise a scaling factor αi for each of the
34 input dimensions to prevent overfitting on the 30 values for the array. In particular,
we choose αi = 0.1 for values corresponding to the array elements and αi = 1.0 for the
scalars, effectively asking the model to consider each array element 10× less important
than the scalars. Formally, our AE is trained to minimise the loss function

L(y, y′) = 1
N

∑

i

αi|yi − y′
i|n, (4.1)

where N = 34 is the total number of elements in the input diagnostic measurement data y.
For n = 1, the loss function is the mean absolute error (MAE) or L1 norm, and for n = 2,
it becomes the mean square error (MSE) or L2 norm.

As our input data are simply a collection of values, our AE design uses a series
of fully connected neural network layers. Each such layer provides dense connections
between input and output values through a linear transformation (a matrix multiplication
with an additive bias) followed by a nonlinear activation. Given a chosen input/output
dimensionality and an activation function, the training of the model then learns the
appropriate matrix and bias to perform this transformation. We experimented with
different depths of the neural network (i.e. the number of such fully connected layers)
and the corresponding dimensionalities. All models were trained using the Tensorflow
(Abadi et al. 2015) and Keras (Chollet et al. 2015) frameworks with the Adam optimiser
(Kingma & Ba 2014). A dataset of 111 598 samples was used for developing the AE, with
a randomly selected 80 % subset of these data for training, and the remaining 20 % for
validating the model (i.e. assess its accuracy).

The final AE model, which provided the best reconstruction accuracy (see table 2),
contains three fully connected layers that progressively reduce the data dimensionality
as 34 → 18 → 10 → 6. Each layer is followed by the sigmoid activation function. The
output of the last layer is the desired LSR; in other words, a 6-dimensional (6D) latent
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Dz 8 7 6 5 4

L(y, y′)n=1 3.5 × 10−4 4.2 × 10−4 4.7 × 10−4 4.8 × 10−4 5.2 × 10−4

L(y, y′)n=2 2.5 × 10−6 3.1 × 10−6 3.3 × 10−6 4.5 × 10−6 5.2 × 10−6

TABLE 2. To choose a suitable dimensionality, Dz, of the latent space, we study the
reconstruction errors posed by different dimensionalities. Given the significant jump in the error
when going from six to five, Dz was found to be the appropriate choice.

space is adequate to compress a 34-element diagnostic data in our case so as to recover the
input with sufficient accuracy.

4.1.2. VAE design to identify a suitable latent space
The AE set-up described here is capable of generating compressed encoding of the

input data. However, such AEs provide no control of the distribution of the data in
the learned LSR. Typically, this is not a big issue if the AE is used to encode/decide the
data, i.e. use the AE (both encoder and decoder) as one model. However, it is not suitable
for our application as our goal is to utilise only the decoder and in conjunction with a
forward, surrogate model. Specifically, in our case it is important to provide smoothness
guarantees on the LSR, otherwise even small prediction errors from the forward model
could be amplified significantly by the decoder. To regularise the distribution in the latent
space and to improve decoder’s generative capability, we use a specific type of AE, called
β-VAE (Higgins et al. 2016). The key difference between the (vanilla) AE and the VAE
is that the VAE forces the distribution of z to a given reference distribution, typically a
multivariate normal distribution, offering some important mathematical guarantees, such
as smoothness. To ensure that z mimics the reference distribution, a regularisation term is
added to the loss function to measure how different the two distributions are. Specifically,
the loss function from (4.1) is modified to

L(y, y′) = 1
N

∑

i

αi|yi − y′
i|n + βDKL( f (z) || f0), (4.2)

where DKL( f (z) || f0) is the Kullback–Leibler divergence, which measures how the
distribution f (z) differs from the reference distribution f0, and a hyperparameter β is
used to balance the decoder reconstruction accuracy (the first term in the loss function)
and the orthogonality of latent space coordinates (the second term). As is common for
VAEs, our reference distribution f0 is a multivariate normal distribution, N (0, 1). In many
applications, β is set to be larger than unity for better separation of independent latent
space coordinate; in our case, forcing the LSR distribution function to match the normal
distribution is not necessary. Instead, a small β = 10−9 is found to be suitable. The VAE
used in this study has the same network architecture and training parameters as the AE
described previously.

4.2. Predicting simulation outputs using a surrogate model
Given the LSR, z, generated by the VAE described previously, we next develop another
ML model that can predict z based on the physics model inputs, x (i.e. global discharge
parameters). Due to a small numbers of model inputs (i.e. three varying parameters in
1D UEDGE model) and outputs (i.e. 6D latent space), here a simple yet robust MLP
is chosen to be our forward model. This MLP has four fully connected layers with 24
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neurons on each layer, uses the rectified linear (ReLu) activation function, and MSE as the
loss function. An Adam optimiser with a learning rate 0.001 is used for training the model.

5. Data-driven model performance

In this section, we discuss the results on the performance and validation of the ML
models developed using the methods discussed in § 4.

5.1. Latent space identification using AEs
Through the AE described previously, we identify the dimensionality of a suitable latent
space, Dz, to be six. Table 2 indicates that with both L1 or L2 norm, the validation loss
(in normalised units) increases as Dz decreases. The L2 norm appears to have a critical
turning point at Dz = 6; the validation loss increases substantially when Dz is set to be
less than six, whereas for Dz > 6, the improvement is less profound.

Next, we study the performance of the VAE using figure 7 with UEDGE data fUEDGE
on the horizontal axis and the residual between VAE-reproduced data and UEDGE data
ε = fβ-VAE − fUEDGE on the vertical axis. If a perfect reconstruction can be achieved, all data
points would lie exactly on the horizontal ε = 0 lines. In our case, two of the four scalar
diagnostic measurements, the electron density at divertor ne,t and the electron upstream
temperature Te,u can be reproduced with excellent accuracy, whereas the other two scalar
measurements, the ion saturation current, Jsat

‖ , and the electron temperature at divertor,
Te,t, also show good quality reconstruction, with a slight performance degradation at
high values of the respective diagnostics. Nevertheless, the R2 scores (or, coefficient of
determination that measures the goodness-of-fit between the two variables f = {fi}, g =
{gi} defined as R2 = 1 − ∑

i( fi − gi)
2/

∑
i f 2

i with i being the index of the variable;
hence, R2 = 1 indicates perfect correlation whereas R2 = 0 means no correlation) for
these four scalars all exceed 0.997, evidencing a close to perfect replication of input
data from trained β-VAE statistical-wise. To quantify the reconstruction quality of the
radiation profile, Prad, we choose two metrics: peak amplitude and location. The peak
radiation amplitude prediction by the VAE is consistent the UEDGE data with a slightly
larger variance (R2 � 0.994 < 0.997). It appears to be challenging to reproduce the peak
radiation or detachment front location with R2

detached ≈ 0.7 and R2
attached ≈ 0. However, due

to the discrete nature of the simulation mesh, radiation peak locations are discretised as
well so that the R2 score here could be misleading, especially for the attached cases. In
fact, all 55 551 attached cases whose peaking radiation location at the divertor target are
correctly reproduced by β-VAE but they are represented by what appears to be ‘a single’
orange dot in figure 7( f ).

One plasma quantity that we are especially interested in for detachment prediction is
the electron temperature at the divertor target, Te,t, as this is arguably the most important
and direct indicator of detachment. As shown in figure 8(a), VAE is able to reproduce Te,t
near the detachment onset value (∼2.1 eV for this study) very well. Figure 8(b) shows that
the VAE is able to also accurately retain the ion exit velocity, v‖i,e = Jsat

‖ /(ene,t), which
is an inherent quantity that was not trained directly. A discrepancy between the VAE’s
predictions and UEDGE results appears for Jsat

‖ /(ene,t) > 55 km s−1, which corresponds to
attached plasma cases with Te,t 	 2.1 eV. However, this type of discrepancy exists only
for less than 2 % of the total cases: the small number of Te,t 	 2.1 eV samples may cause
the relatively large prediction error for these cases. This result indicates that our trained
VAE captures the correct physics constraints between different plasma variables (i.e. AE
inputs and outputs) for at least the majority of the cases in our dataset.

Finally, we show that β-VAE encoded LSRs are indeed apart in latent space based
on plasma states (e.g. detached or attached). Figure 9 illustrates the distinctive clusters
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 7. Performance of β-VAE in terms of absolute residual error for (a) Jsat
‖ , (b) ne,t, (c)

Te,u, (d) Te,t, (e) Pmax
rad and ( f ) peak radiation or detachment front location. Here, the x-axis is

UEDGE (true) value and the residual error is defined as ε = fβ-VAE − fUEDGE for the quantity f .
All predictions show excellent correlation with the true values, as quantified with almost-perfect
R2 scores. The distribution of data points are shown in adjoining panels to overcome the issue of
overplotting in the scatter plots; these indicate that for most cases, relatively low and unbiased
error is obtained, whereas higher errors are associated with relatively smaller number of samples.

of LSRs for detached and attached cases in latent space using the t-distributed
stochastic neighbour embedding (t-SNE) method (Van der Maaten & Hinton 2008).
Similarly, figure 10 has the distributions of all six latent coordinates, again separated by
attachment/detachment label. The result shows that despite overlaps between detached
and attached plasmas in some latent variables (e.g. latent variables 1, 4 and 5), the two
scenarios are broadly well separated in the other latent variables (e.g. latent variables
2 and 6), which is a nice feature to have for the upcoming forward detachment
prediction.
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(a) (b)

FIGURE 8. Residual plots for (a) Te,t near detachment transition and (b) Jsat
‖ /ne,t. Detached

cases are in blue whereas attached cases are in orange. Note here that the y-axis of the distribution
plots is in logarithmic scale.

FIGURE 9. t-SNE visualisation of a subset of 10 000 randomly picked LSR samples in the
training data set in which detached (blue) and attached (orange) cases are clearly separated.

5.2. Predicting simulation outputs using a surrogate model
Here, we study the performance of our surrogate model, an MLP, after 10 000 epochs.
In particular, we compare the LSR generated by the VAE, z, and that predicted by the
surrogate model, zf . Figure 10 depicts plots the six coordinates within the two quantities
(z vs. zf ) as individual scatter plots and shows high degree of correlation. As shown
in the figure, the R2 values for all six coordinates exceeds 0.99, indicating exceptional
performance and that our surrogate model is capable of predicting the LSR with almost
full accuracy.

5.3. Forward prediction
With both β-VAE and forward model trained, we are now able to predict diagnostic
measurement of a plasma state from the model inputs by combining the forward model
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 10. Performance of the MLP model in terms of absolute residual error for all six latent
variables. Here the x-axis is β-VAE encoded value, whereas the residual is defined as ε = fMLP −
fβ-VAE for quantity f . As with earlier results, an almost-perfect R2 score indicates exceptional
prediction quality.

and decoder (figure 6c). To ensure that this model is evaluated properly, a separated
validation data set consists 57 655 cases generated independently following the similar
data-generation process described in § 3.2.

The performance of forward detachment prediction model is illustrated in figure 11
where all 57 655 cases are evaluated with the ML model then validated with the UEDGE
simulation results. As expected, the overall accuracy degrades marginally compared with
the performance of β-VAE (e.g. figure 7) in this sequential MLP and decoder architecture.

Figure 12 and table 3 elucidate the accuracy of this combined forward detachment
prediction model, quantified with error statistic analysis. We examine model accuracy
for both detached and attached cases, and find that our model does perform slightly
different for different plasma states. For attached plasma, it gives better results when
predicting certain plasma quantities, such as ion saturation current and divertor target
electron density, whereas it is less satisfactory for divertor target electron temperature
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 11. Performance of combined forward prediction model in terms of residuals for (a)
Jsat
‖ , (b) ne,t, (c) Te,u, (d) Te,t, (e) Pmax

rad and ( f ) peak radiation or detachment front location. Here
the x-axis is UEDGE (true) value, whereas the residual is defined as fresidual = fML − fUEDGE for
quantity f . The distribution of f and the R2 scores between fML and fUEDGE for detached (blue)
and attached (orange) cases are also provided.

prediction. However, no significant quantitative difference is found except the detachment
front location prediction. Out of four scalar measurements, upstream temperature Te,u is
the most accurately predicted diagnostic quantity with mean and standard derivation of
relative error μ = −0.37 % and σ = 0.83 for the entire validation data set. The other
three scalar measurements are also well predicted with |μ| < 3 % and σ < 4 % for
all the relative errors. The peak radiation strength prediction appears to have a fairly
large uncertainty (∼10 %). This is possibly due to the shape peak structure (i.e. lack of
resolution) for detached plasmas and boundary effect (i.e. maximum value resides at the
last point) for attached plasmas as shown in figure 13(b). Fortunately, the more useful
information, the peak radiation location (equivalent to the detachment front location LDF
to some extent) prediction is remarkably accurate. Here LDF is correctly predicted to be
at the divertor target plate for nearly all attached plasmas, and has a small uncertainty
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(a) (b) (c)

(d) (e) ( f )

FIGURE 12. Probability distribution functions (PDFs) of relative error of (a) Jsat
‖ , (b) ne,t, (c)

Te,u, (d) Te,t, (e) Pmax
rad and ( f ) absolution error of peak radiation or detachment front location.

Detached cases are in blue whereas attached cases are in orange. Dashed lines are shifted
Gaussian distribution functions with μ and σ from table 3 correspondingly.

(σ = 0.60 cm) for detached plasmas. Note that the error distributions of four scalar
measurements appear to follow Gaussian distribution, whereas for the peak radiation
amplitude and location, the error distribution are no longer Gaussian : the standard
derivation σ is skewed by rare (i.e. probability ∼0.1 %) extreme cases.

We are particularly interested in Te,t prediction as this is the primary indicator of
detachment. If we use the same detachment criterion (e.g. Te,t = 2.1 eV), there are 35
out of 28 468 detached cases (i.e. blue triangles at the top left quadrant of figure 13a)
misclassified as ‘attached’. Similarly, 25 out of 29 187 attached cases (orange diamonds at
the bottom right quadrant of figure 13a) are mislabelled ‘detached’. Even counting in the
other marginal cases, the misclassification rate is lower than 0.2 %. These misclassified
cases appears to congregate near the detachment onset point (i.e. all these cases have
Te,t ∈ (1, 4) eV). However, no common feature can be identified in terms of the control
parameters x.

In addition to accuracy, speed is another important metric for a real-world application.
Table 4 summarises our predictive model’s performance in terms of the wall-clock time
required to predict diagnostic measurements based on controlled inputs. Even without any
optimisation, this model takes about 36 ms to carry out a prediction for one case: about
10 000 times faster than 1D UEDGE simulations which normally require a few minutes to

https://doi.org/10.1017/S002237782200085X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200085X


Data-driven model for divertor plasma detachment prediction 17

(a) (b)

FIGURE 13. (a) Electron temperature at divertor target Te,t prediction versus UEDGE
simulation result and (b) examples of radiation profile or detachment front prediction. True
(UEDGE) detached cases are in blue whereas attached cases are in orange.

Detached Attached Combined

μ σ μ σ μ σ

εJsat
‖ ,rel(%) 1.66 3.76 1.67 1.26 1.67 2.79

εne,t,rel(%) 1.06 3.97 1.81 1.66 1.44 3.05
εTe,u,rel(%) −0.43 1.05 −0.30 0.52 −0.37 0.83
εTe,t,rel(%) −0.13 3.90 −2.70 3.06 −2.01 3.57
εPmax

rad ,rel(%) 0.19 23.76 13.39 43.85 6.88 36.00
εLDF,abs (cm) 0.07 0.60 0 0 0.04 0.42

TABLE 3. Mean (μ) and standard deviation (σ ) of the relative or absolute error of forward
prediction model.

Number of cases 1 10 100 1000 10 000 100 000

Speed (ms) 36 37 42 51 178 2259

TABLE 4. Wall-clock time versus number of cases.

find a converged solution. It is already within the minimum requirement for detachment
control (∼100 ms). The model efficiency also increases when predicting multiple cases
(for n < 100 000).

6. Comparison with 2PMs

Validation of the forward model for detachment prediction shows that our model is
able to accurately predict UEDGE result with a dramatic speed-up, but perhaps a more
meaningful benchmark exercise would be comparing our newly developed model, as well
as the UEDGE model, with the widely used detachment prediction models nowadays,
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(a) (b)

FIGURE 14. Upstream density scan of (a) Jsat
‖ and (b) Te,u for UEDGE (blue), ML data-driven

model (orange) and basic 2PM (black dashed) with Pinj = 1.71 MW and fZ = 0.

namely the analytical basic 2PM (Stangeby et al. 2000) and the most sophisticated
semi-analytical 2PMF (Stangeby 2018).

6.1. Basic 2PM
The basic 2PM is derived to evaluate Te,u, Te,t and ne,t for given ne,u, parallel heat flux
q‖ and flux tube length L based on particle, pressure and power balance. Because of its
simplicity, basic 2PM has been implemented in the tokamak detachment control a priori
to estimate the degree of detachment (Eldon et al. 2022). Because 2PM does not account
for momentum and power loss between the upstream and downstream points, we therefore
benchmark UEDGE, the forward detachment model and the 2PM on a case with zero
impurity to remove the impurity radiation. Figure 14 displays upstream density scan of Jsat

‖
and Te,t for the three models. Clearly, the data-driven model prediction and the UEDGE
simulation results are in good agreement whereas the 2PM gives a quite different result.
This one-order-of-magnitude discrepancy between our data-driven model/UEDGE and
2PM is due to the more comprehensive physics in our model/UEDGE. For instance, in this
comparison the upstream ion temperature is much higher than the electron temperature
in the upstream region in the UEDGE simulations due to slow ion parallel thermal
conduction whereas the electron and ion temperatures are assumed to be the same in the
basic 2PM. In addition, in the basic 2PM, the parallel heat flux is assumed to be conductive
using the Spitzer–Härm formula, whereas in 1D UEDGE simulations, the parallel heat
flux is assumed to be local flux-limited thermal transport. UEDGE is only able to recover
2PM result by further simplifying simulation (e.g. using slab configuration and turn off
non-ideal terms) and manually adjusting boundary conditions to match 2PM assumptions,
such as Te = Ti upstream.

6.2. 2PMF
To address the volumetric momentum and power losses, and the magnetic geometry
effects, the basic 2PM has been extended to semi-analytical 2PMF with pre-fitted power
and momentum loss coefficients fcooling, fmom-loss (Stangeby 2018). Benchmark between our
data-driven model, UEDGE simulation and 2PMF are also performed. Two fitting curves
(from Stangeby 2018) are proposed for both power and momentum loss coefficients in
2PMF:
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(a) (b)

FIGURE 15. Upstream density scan of (a) Jsat
‖ and (b) Te,u for UEDGE (blue), ML data-driven

model (orange) and 2PMF (black lines) with Pinj = 2.66 MW and fZ = 0.02.

Stangeby fitting formula 1,

1 − fcooling = [1 − exp(−Te,t/2.4)]1.9 (6.1)

1 − fmom-loss = [1 − exp(−Te,t/0.8)]2.1; (6.2)

Stangeby fitting formula 2,

1 − fcooling = 0.9[1 − exp(−Te,t/6)]1.7 (6.3)

1 − fmom-loss = 1.3[1 − exp(−Te,t/1.8)]1.6; (6.4)

where UEDGE observed Te,t is used to estimate fcooling and fmom-loss. Figure 15 displays
upstream density scan of Jsat

‖ and Te,t for the three models. The results from 2PMF
compare with UEDGE simulation results better than those from the basic 2PM. All
three models show two common features: (1) the ion saturation current density rollover
and (2) temperature cliff at the onset of detachment. Once again, our data-driven model
prediction matches UEDGE simulation results very well. Although there is no qualitative
disagreement between our data-driven model/UEDGE and 2PMF, quantitatively the
predictions between data-driven model/UEDGE and 2PMF can be off by an order of
magnitude. This is because 2PMF prediction depends heavily on the choice of fitting
curves for the power and momentum loss coefficients which may simplify the nonlinear
dynamics setting the divertor plasma conditions. As illustrated in figure 15, fitting formula
1 does a better overall job than fitting formula 2 for this test case as Te,t predicted by fitting
formula 2 is nearly an order of magnitude lower than UEDGE result when divertor plasma
is detached (ne,u > 2.4 × 1019 m−3).

7. Model applications

As mentioned in the introduction, the main motivation of developing such a surrogate
model is to enable reliable and fast detachment prediction for integrated machine design,
scenario development and real-time plasma control. Heat exhaust is not a severe issue
for current tokamaks due to the overall limited power output. Therefore, the SOL
and divertor plasma dynamics is less of a concern and most of the effort so far
has been focused on exploring operation scenarios with improved fusion performance,
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equilibria and plasma stability control inside the separatrix, e.g. core–edge integration.
However, for future high-power fusion devices such as reactors, their operation space
must also fulfill constraints posed by divertor’s material and engineering limits.
Likewise, fusion burn control needs to incorporate divertor heat and particle exhaust
solutions such as detachment. In other words, designing and operating future devices
require core–edge–SOL/divertor integration. SOL/divertor modelling suffers from the
accuracy–speed trade-off similar to many other research. Current SOL/divertor transport
codes such as UEDGE and SOLPS, are too slow for these applications as they are
designed for physics investigations, whereas the basic 2PM and 2PMF are fast but perhaps
over-simplify the problem. Our data-driven model overcomes this accuracy–speed gap
with some room to prioritise one factor over another depending on the application. For
instance, speed is the top criterion for plasma control (either in a simulator or in the actual
plasma control system). Real-time or even faster than real-time prediction is required in
order to activate actuators in time. On the other hand, accuracy is likely weighted more
than speed for device design and scenario development.

The accuracy of the proposed data-driven approach relies on the quality and quantity
of the training data set. We remark that tokamak edge plasma contains very rich
physics with many factors have influence on the detachment onset or threshold, such
as 2D/three-dimensional (3D) effects, divertor plate geometry, multi-species and/or
multi-charge-state impurity and wall condition. Owing to the 1D flux-tube mesh
simplification, 1D UEDGE simulations under-estimate the detachment onset temperature
Te,t and over-estimate the peak radiation amplitude, our current model unsurprisingly
picks up these unfavourable predictions. One would expect that the performance of the
model improves in terms of matching real experimental measurement when the training
data are extended to incorporate richer physics in a more realistic experiment setting,
i.e. once trained upon higher-quality data sets either from higher-fidelity numerical
models such as 2D UEDGE/SOLPS-ITER or experiments. Even though the underlying
methodology will be the same, the architecture of neural networks likely needs to be
modified. Notably, synthetic or real diagnostic measurements will have a complicated
format with 2D simulations or experiments. In a realistic tokamak, both Langmuir probe
and Thompson scattering are multi-channel; therefore, Jsat

‖ , Te,u, ne,t and Te,t become
sparse 1D arrays in space (point data), spectroscopic and bolometer diagnostics provide
radiation power/strength at certain wavelength or over the entire spectrum (e.g. 1D
volume-averaged data), visible and infrared (IR) cameras give image (i.e. 2D data with
projected volume and certain range of wavelength averaged quantity). Moreover, there
are likely some discrepancies between model produced synthetic diagnostic data and
real experimental measurements due to various reasons such as model simplification
and inherent instrumentation noise. Handling these multi-modal diagnostics together in
a consistent manner, as well as bridging the gap between simulation and experimental
data will be addressed in our future study.

Even though the data-driven detachment prediction model presented here is based on
1D UEDGE simulations, it could be readily integrated for detachment control application.
At first glance, current model is similar to the analytical basic 2PM which has recently
been implemented in KSTAR tokamak detachment control system (Eldon et al. 2022) as
both models are meant to predict divertor or downstream plasma state. Compared with the
basic 2PM, our model features additional detachment front prediction. In addition, owing
to fewer simplifications made in the UEDGE model such as B variation, local flux-limited
thermal transport and impurity radiation effects, our model should give more reliable
predictions than 2PM in certain circumstances, resulting improved control performance
of detachment and overall plasma confinement.

https://doi.org/10.1017/S002237782200085X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200085X


Data-driven model for divertor plasma detachment prediction 21

8. Summary

In this paper, we explore a new physics model-based approach to predict divertor
detachment by leveraging the ‘latent feature space’ concept in ML research. As a proof
of concept study, a highly efficient 1D UEDGE model which contains the crucial physics
ingredients of detachment is used to simulate the plasma and neutrals along the open
magnetic field lines in the SOL and to generate our training and validation data sets.
Over 160 000 simulations with 3 varying UEDGE model inputs x (e.g. different upstream
density, injection power and carbon fraction) are performed to cover the normal DIII-D
tokamak operation parameter region; and 5 synthetic diagnostic measurements such as
upstream temperature, electron density, temperature and saturation current at divertor
target, as well as radiation profile are collected as the diagnostic set y. The latent space
as well as the LSR of plasma state z are then identified by compressing y through an AE.
Sequentially, a forward surrogate model is trained to make predictions of z from UEDGE
model inputs x; then the trained decoder is used to reconstruct diagnostic measurement y
back in configuration space. We find that a 6D latent space is good enough to closely
yield a match for the true system in configuration space (i.e. the synthetic diagnostic
measurements), and the forward detachment prediction model (x → z → y) also produces
quite accurate predictions (relative error on the order of a few per cent statistically) with
at least 104 speed-up compared with the UEDGE simulations.

Our pilot study demonstrates that the complicated divertor/SOL plasma state has
a low-dimensional representation in latent space. Therefore, this new latent space
description of plasma state can be used to not only construct a fast and robust surrogate
model for steady-state detachment prediction as revealed in this paper, but also has the
potential to be used for dynamical control once the critical plasma nonlinear dynamics (in
latent space) was identified successfully.
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