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Abstract: Observational evidence indicating that the expansion of the universe is accelerating has surprised
cosmologists in recent years. Cosmological models have sought to explain this acceleration by incorporating
‘dark energy’, of which the traditional cosmological constant is just one possible candidate. Several cosmo-
logical models involving an evolving equation of state of the dark energy have been proposed, as well as
possible energy exchange to other components, such as dark matter. This paper summarizes the forms of the
most prominent models and discusses their implications for cosmology and astrophysics. Finally, this paper
examines the current and future observational constraints on the nature of dark energy.
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1 Introduction

The observed acceleration of cosmic expansion is a land-
mark discovery in modern cosmology.We don’t know why
the universe is accelerating, but it is reasonably clear that
the explanation will require new fundamental physics —
beyond our current understanding of particle physics,
gravitation, and the quantum vacuum. Cosmologists are
now in the fortunate position of being able to ask the ques-
tions that will provide insight into ultimate physics beyond
the reach of particle accelerators, as well as understanding
the history and fate of the universe.

The present best-fit cosmological model, known as
the concordance model, combines data from many com-
plementary sources including the Wilkinson microwave
anisotropy probe (WMAP) and other observations of
the cosmic microwave background (CMB; Spergel et al.
2003), large-scale structure surveys such as the two-degree
field galaxy redshift survey (2DFGRS; Hawkins et al.
2003), and the Sloan digital sky survey (SDSS; Abazajian
et al. 2003) and supernovae data (Knop et al. 2003; Riess
et al. 2004). The accelerated expansion of the universe is
modelled via the ‘cosmological constant’�, an entity that
has been introduced, removed, and re-introduced since
Einstein’s original introduction into his field equations.
The cosmological constant has some special properties
that make it a natural choice for inclusion into our mod-
els, however there are many plausible alternatives also
permitted by current data. The purpose of this paper is to
review cosmological model basics and then explore some
general unheralded implications of the many cosmologi-
cal models that utilize a generic ‘dark energy’ rather than
assuming, a priori, a cosmological constant.

While there is good agreement between current obser-
vational data and cosmological models incorporating a
non-zero cosmological constant, its introduction has not
been without problems. The first is known as the coinci-
dence problem. The energy density of matter decreases as
the universe expands, proportional to the cube of the scale
size of the universe. However, the energy density associ-
ated with the cosmological constant remains constant as
the universe expands. Thus, that we should be observing
at an epoch when the energy density of matter and the
cosmological constant are of the same order of magnitude
seems very unlikely.

The second problem is the infamous cosmological con-
stant problem, discussed in detail in Weinberg (1989) and
Carroll (2001). In short, the fact that the energy density
of the cosmological constant is unchanged by the expan-
sion of the universe suggests that it can be identified as a
property of spacetime itself — a vacuum energy density.
Such a zero-point energy can be calculated from quantum
field theory. However the theory predicts that if the vac-
uum energy is not zero, then it should be a value that is
120 orders of magnitude greater than the energy density
required for the cosmological constant.

The problems with the cosmological constant, as well
as the relative lack of observational constraints, have lead
to a flurry of alternative explanations in recent years. A
component that causes the expansion of the universe to
accelerate is referred to as dark energy, with a cosmolog-
ical constant being just one possibility. Another popular
candidate is a primordial scalar field, or ‘quintessence’.
This is the generic name for a time-varying, spa-
tially inhomogeneous component with negative pressure.
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The prime example is a scalar field Q slowly rolling
down a self-interaction potential V(Q) (Ratra & Pee-
bles 1988; Steinhardt & Caldwell 1998; Steinhardt 2003).
Unlike the cosmological constant, which is ascribed to
vacuum energy, the quintessence field has no expected
value and the 120 orders of magnitude problem can dis-
appear. However, it is a much more ad hoc approach as
there is no ‘natural’ reason (besides possible connections
with early universe inflation) to postulate the existence
of a quintessence field, unlike the more comfortable vac-
uum energy interpretation of the cosmological constant.
Many and varied quintessence models have been proposed
(Chimento et al. 2003; Besprovansy 2005; Barenboim &
Lykken 2005). The evolution of the properties of the scalar
field may solve the coincidence problem, as described in
Section 5.2. There are also alternative models of gravity
that seek to explain the observed data (for instance see
Carroll et al. 2004, 2005 and references therein) as well as
explanations other than accelerated expansion. If distance
supernovae were dimmed by some kind of ‘grey dust’ then
this would give the false impression cosmic acceleration,
however see Riess et al. (2004) for a discussion of the
problems with the grey dust model. More exotic dimming
processes such as photon–axion mixing in magnetic fields
(Csaki et al. 2004) have been proposed, though calcula-
tions show that this cannot alone account for the observed
acceleration. Observational data are currently insufficient
to cull the field of alternatives. The solution of this critical
problem in modern cosmology will require a great deal of
observational effort.

This paper examines the general form of several of
the currently proposed models, including those involv-
ing energy transfer between dark energy components, and
examines their influence on the past and future expansion
of the Universe. Section 2 gives a general background
on cosmology, introducing the notation and important
equations as well as outlining the current observational
evidence. Section 3 introduces the equation of state (EOS)
and examines models where it is allowed to evolve with
time. Section 4 introduces models with an interaction
between dark energy density and matter density. Section
5 discusses the implications of the models presented in
Sections 3 and 4.

2 Background

Modern theoretical cosmology is built on two pillars — the
cosmological principle and general relativity. The cosmo-
logical principle states that we do not occupy a special
position in the universe. This allows our observation that
the universe is isotropic to be extrapolated to the global
property of homogeneity. Homogeneity dramatically sim-
plifies our cosmological theories, as it means that any
parameter that describes the universe as a whole can only
depend on time.

From the assumptions of homogeneity and isotropy, a
metric can be derived that tells us how to measure dis-
tance and time in the universe. This metric is known as

the Robertson–Walker (R-W) metric (see Weinberg 1972
for more details), and has the line element

ds2 = c2dt2 − R2(t)(dχ2 + S2
k (dθ2 + sin2 θ dφ2)) (1)

where c is the speed of light (hereafter c = 1) and

Sk(χ) =





sin χ closed universe (k = +1)

χ flat universe (k = 0)

sinh χ open universe (k = −1)

(2)

where (χ, θ, φ) are the spherical comoving coordinates,
which for an object moving with the Hubble flow do not
change as the universe expands. R is the scale factor of the
universe, which is the key prediction of any cosmological
model. It contains information about evolution and fate
of the universe, and is simply related to the observable
redshift z by

R(z)

R0
= 1

1 + z
(3)

The subscript 0 refers to the present epoch. We also define
the Hubble parameter H , which measures the rate of
expansion of the universe

H ≡ Ṙ

R
(4)

Differentiating Equation (3) gives

H = − 1

1 + z

dz

dt
(5)

In the curved, expanding spacetime of the R-W metric,
not all methods of measuring distance are the same (see
Linder 1997 for details and Hogg 1999 for a summary).
The comoving radial distance (rp) between the origin
and (χ, θ, φ) is defined as a simultaneous (dt = 0) radial
measurement (dθ = dφ = 0) at time t0 and is given by

rp = R0χ (6)

Light travels along null geodesics, defined by ds = 0. Since
we have placed ourselves at the centre of the coordinate
system, light moves radially (dθ = dφ = 0). Noting that all
the quantities are positive, the R-W metric reduces to

cdt = R(t)dχ ⇒ χ(tem) = c

∫ t0

tem

dt′

a(t′)
(7)

Note that this is not simply multiplying the speed of light
by the light travel time (t0 − tem). To convert Equation (7)
in terms of the observable redshift, we use Equation (5)

χ(z) = c

∫ z

0

dz′

H(z′)
(8)

where we have used the fact that t0 corresponds to z = 0
and tem to z.

Proper transverse distance rm and angular diameter dis-
tance rd both relate the transverse proper size l of an object
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at χ to the angular size �θ. For rm, all measurements are
done simultaneously (dt = 0) at time t0 giving

rm = R0Sk(χ) (9)

For rd, measurements are done using photons which travel
along geodesics (ds = 0). Thus, the angular diameter dis-
tance to an object which emits light at time tem as measured
by an observer at t0 is the proper transverse distance at tem

rd = R(tem)Sk(χ) (10)

Luminosity distance rl to a source of intrinsic luminos-
ity L from an observer who measures its flux S is defined
by L = 4πr2

l S. The distances rm, rd, and rl are related by

rl = (1 + z)rm = (1 + z)2rd (11)

The field equations of general relativity allow us to
relate the metric of the universe, Equation (1), to its energy
content. The result is the Friedmann equations

H2 = 8πG

3
ρ − k

R2
(12a)

ρ̇ = −3H(ρ + p) (12b)

R̈

R
= −4πG

3
(ρ + 3p) (12c)

where an overdot refers to differentiation with respect
to time, G is Newton’s gravitational constant, ρ is the
total energy density, p is the pressure, H is the Hubble
parameter, and c = 1 for convenience.

Equation (12a) is known as the expansion equation,
Equation (12b) is the adiabatic equation, and Equation
(12c) is the acceleration equation. Any of these equations
can be derived using the other two, although all three
equations are produced separately from the Einstein field
equations of general relativity (and are related through the
Bianchi identity).

As is consistent with CMB data, including WMAP
(Spergel et al. 2003), we assume throughout that the uni-
verse is flat (k = 0). We consider the universe to contain
a number of components (labelled i), each with a corre-
sponding pressure pi and density ρi that contribute to the
total p = ∑

i pi, ρ = ∑
i ρi. Defining the critical density

to be

ρcrit(z) ≡ 3H(z)2

8πG
(13)

the energy components can then be described relative
to ρcrit

�i(z) ≡ ρi(z)

ρcrit(z)
(14)

where �i is the dimensionless density parameter for com-
ponent i. Then, by putting k = 0 into Equation (12a) the
sum over all the density parameters is unity

� ≡
∑

i

�i(z) = 1 (15)

Details of how the density parameters �i(z) were
calculated in this paper are contained in the Appendix.

As well as energy density, pressure also appears in the
Friedmann equations. We commonly relate the pressure
of a component to its energy density using an EOS

wi ≡ pi

ρi

(16)

If the components of the universe are non-interacting (they
do not exchange energy), then they will each satisfy their
own adiabatic Equation (12b)

ρ̇i = −3Hρi(1 + wi) (17)

For most of the familiar components of the universe, wi

is constant: Ordinary, non-relativistic matter is essentially
pressureless and has wm = 0, radiation has wr = 1/3, a
cosmological constant has w� = −1 (Linder 1988a).

A cosmological model, capable of specifying R(t) for
all times, is described by specifying the components of the
universe, their EOS wi, their densities today �i(0), and the
present value of the Hubble parameter H0. Experimental
uncertainty in H0 is often written in terms of the dimen-
sionless h, defined by H0 = 100h Mpc−1 km s−1. The
dependence of quantities on H0 can then be made explicit,
e.g. �ih

2. The value of h was measured by the Hubble Key
Project team to be h = 0.72 ± 0.08 (Freedman et al. 2001).

2.1 Observational Evidence

Several independent lines of evidence lead to the con-
clusion that the expansion of the universe is accelerating.
Recent observations of the CMB from the WMAP satellite
have confirmed that the universe appears to be flat, with
� = 1.02 ± 0.02 (Spergel et al. 2003). The power spec-
trum of galaxy distributions on the other hand points to
�m � 0.3 (Percival et al. 2002). A key third measurement
is the magnitude–redshift relation of supernovae type 1a
(hereafter SN1a; see Riess et al. 2004 for a compilation of
recent data). These measurements give strong evidence
that the expansion of the universe is accelerating, and
has been accelerating since z ∼ 1. The concordance model
accounts for the missing energy density needed to make
the universe flat via a cosmological constant (w = −1),
however this is by no means the only permitted form of
dark energy. A new generation of cosmological experi-
ments, including the proposed SuperNova Acceleration
Probe (SNAP; Aldering et al. 2004) are expected to mea-
sure more supernovae at higher redshifts. This new data
will be crucial in discriminating between cosmological
models.

SN1a are very bright standard candles, making them
excellent cosmological probes. The distance modulus,
once the appropriate K-correction has been applied is
given by

m − M = 25 + 5 log(H0rl) (18)

where rl is defined in Section 2 and is presented here in
units of Mpc. All three distances previously defined are
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model-dependent and hence the measurement of the mag-
nitude and redshift of SN1a can be used to discriminate
between models. The methods used to compute distances
are described in the Appendix. The results are presented
in the even numbered Figures in this paper. In these Fig-
ures SN1a data compiled in Riess et al. (2004) have been
added in order to illustrate how similar all the models are
in the region z < 0.5 where the data sit. The SNAP probe
(Aldering et al. 2004) is anticipated to reach z � 1.5, where
the models can be seen to diverge much more than for the
current data set (see even numbered Figures), illustrating
the much greater constraints on the models that will be
possible.

The data described above lead to a cosmological model
where

k = 0 (the universe is flat)

h � 0.7 �m0 � 0.3 ��0 � 0.7

Note however that this model makes the assumption
that the dark energy is a true cosmological constant. This
assumption is permitted by existing data, but not strongly
favoured over other possibilities. Despite this untested
assumption this model is used widely. In this paper the uni-
verse is assumed to be flat with �m0 = 0.3 and �X0 = 0.7
as in the concordance model. Note that the subscript X is
used to denote dark energy, leaving � to denote the spe-
cific case of a cosmological constant. H0 is set to unity,
which is equivalent to measuring time in units of H−1

0 .

3 Equation of State of Dark Energy

In this Section the effect of different forms of the dark
energy EOS (as defined by Equation (16)) on the expan-
sion history and distance measurements are examined. We
take a phenomenological view of the EOS, rather than
speculating on the physical processes behind any particu-
lar form. This is a common approach given the mysterious
nature of dark energy and current data being unable to
constrain complex models. It was shown in Linder & Jenk-
ins (2003) that any term other than matter in Equation
(12a) can be modelled by an effective EOS of dark energy,
regardless of the physical origin of the term. If we write
Equation (12a) as

H2 = �mR−3 + δH2 (19)

with H0 set to unity, then by comparison to the case of
dark energy with some EOS w

H2 = �mR−3 + (1 − �m)R−3(1+w) (20)

and

w = −1 − 1

3

d(ln δH2)

d(ln R)
(21)

For any arbitrary mechanism that causes δH2, there is a
corresponding function w (not necessarily constant, as in
Equation (20)) that can be calculated. This allows a wide
variety of different models and mechanisms to be com-
pared within a single parameter space (see Linder 2004).

3.1 Constant Equation of State

Current data are insufficient to constrain wX to more than
one parameter (Linder & Miquel 2004); in other words, a
constant wX. Using CMB, large-scale structure, and SN1a
data, Wang & Mukherjee (2004) found the constraint on
a constant dark energy EOS to be −1.24 < wX < −0.74.
We present a wider range of possibilities than this, in order
to exaggerate the effects for clarity. When wi is constant,
Equation (17) can be easily integrated to give ρi = ρi(z)

using Equation (3)

ρi(z) = ρi(0)(1 + z)3(1+wi) (22)

Equation (22) gives the familiar results that, as we look
back into the universe, ρm ∝ (1 + z)3 and ρr ∝ (1 + z)4,
whilst ρ� remains constant as the universe expands. From
Equation (22) we can see that as the universe ages, the
component with the most negative w will come to dom-
inate the total energy of the universe. Consider Equation
(12c) in the case where the component with the most
negative w has come to dominate the total energy of the
universe. If w < − 1

3 , then R̈ will be positive and the uni-
verse will accelerate. We can therefore divide components
into accelerating (w < − 1

3 ) and decelerating (w > 1
3 ). If

w = − 1
3 then the expansion coasts: ȧ is constant.

Thus, if the universe has any accelerating components,
the universe will eventually begin to accelerate, indepen-
dent of its geometry1. Only if all the components are
decelerating will the universe decelerate, and its fate be
decided by its geometry.

Things get interesting when w < −1. If we consider an
equivalent form of Equation (22)

ρi(R) = ρi0

(
R

R0

)−3(1+wi)

we see that w < −1 implies that the energy density of the
component will increase as the universe expands. Such a
component has been dubbed ‘phantom energy’and its con-
sequences have been studied in Caldwell, Kamionkowski,
& Weinberg (2003). In short, phantom energy causes the
scale size of the universe to approach infinity in finite time.
The resulting ‘R = ∞’ singularity has been dubbed ‘the
big rip’. Before the end, the expansion of the universe will
overpower all other forces — first gravity, as the Milky
Way, the Solar System, and finally the Earth are pulled
apart, followed by the weak, electromagnetic, and strong
nuclear forces as matter is torn into its components.

In Figures 1(a) and 1(b) we consider models identical
to the concordance model (matter + dark energy) except
that we allow the EOS for dark energy to vary. Figure 1
shows the expansion history and density parameters while
Figure 2 shows the measurable distance properties with the
current SN1a data overlaid.

The pink model (w = −4/3) is an example of a phan-
tom energy model. The ‘big rip’ behaviour as time

1The exception is where the energy density in the decelerating com-
ponents is high enough that the universe begins to contract before the
accelerating components come to dominate the total energy density.
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Figure 1a Cosmological evolution for a constant EOS. The top two
panels show the energy parameter for the dark energy component
��, the middle two panels are for matter �m and the bottom two
plot the scale factor. The left panels show evolution with respect to
time (in units of 1/H0), while the right panels are with respect to
redshift. The bottom right panel plots an identity (Equation (3)) and
is shown for consistency.

Figure 1b Distance measurements for a constant EOS. The top
two panels show the effective magnitude as defined by Equation (18),
using the angular diameter distance in units of Mpc using an arbitrary
value of h = 0.72. The gold and silver data sets as in Riess et al.
(2004) are shown in corresponding colours. The bottom two show
the angular diameter distance in units of 1/H0. The left side panels
show evolution with respect to time (in units of 1/H0), while the
right panels are with respect to redshift.

increases can be seen in the bottom left panel of Fig-
ure 1(a). The light blue model (w = −1) is the concor-
dance model. For the light green model (w = −0.33),
we see from Equation (12c) that as dark energy begins
to dominate, the acceleration goes to zero. Thus, R(t)

approaches a linear function as time increases. The red
model (w = 0) is the Einstein–de Sitter model (flat, matter
only), which decelerates as time increases but never turns
around and begins to contract. The black model (w = 0.33)
contains a radiation component whose energy density falls
quickly as the universe expands.

Figure 2a Cosmological evolution for an EOS linearly varying
in redshift. The layout is the same as Figure 1(a). Note that this
parameterization breaks down for z � 1.

Figure 2b Cosmological evolution for an EOS linearly varying
in redshift. The layout is the same as Figure 1(b). Note that this
parameterization breaks down for z � 1.

3.2 Evolving Equation of State

While current data are insufficient to constrain wX(z) to
any more than one parameter (Linder & Miquel 2004),
next generation data, such as the Planck Surveyor (Tauber
2004) and the SNAP satellite (Aldering et al. 2004) will
be able to constrain possible evolution of wX(z). This Sec-
tion presents two different first order parameterizations of
wX(z) and demonstrates the effects of several values of
the parameters. Since an evolving EOS will only be con-
sidered for the dark energy component (i = X), we omit
the subscript on w in this Section. Again using Equations
(5) and (12b)

ρX(z) = ρX(0) exp

(

3
∫ z

0

1 + ω(z′)
1 + z′ dz′

)

(23)

While a two parameter evolving EOS w(z) could take
many forms, two are most common in the literature.
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Figure 3a Cosmological evolution for the linear parameterization
of the EOS detailed in Section 3.2.2. The layout is the same as
Figure 1(a).

Figure 3b Cosmological evolution for the linear parameterization
of the EOS of detailed in Section 3.2.2. The layout is the same as
Figure 1(b).

3.2.1 Old Linear Parameterization

The simplest first order expansion of the EOS gives
w(z) = w0 + w1z. While obsolete (see 3.2.2), this form
has been used widely in the past. In this case, Equation
(23) becomes

ρX(z) = ρX(0) (1 + z)3(1+ω0−ω1)exp(3ω1z) (24)

In Figures 2(a) and 2(b) we show the effects of a modi-
fied concordance model by using a linear parameterization
of the dark energy EOS.

The first thing to note in Figure 2(a) is the bizarre
behaviour of the energy densities at early time (i.e. large
redshift). This shows the inadequacy of this simple param-
eterization — it is inappropriate for z � 1 because w(z) is
unbounded as z → ∞ (as is ρX(z) for w1 > 0).

As we model into the future, further problems arise. For
a universe that is always expanding, forward modelling is
done by allowing z → −1. In this case, w(z) → w0 − w1.
If w0 − w1 < −1, then eventually w < −1 and the universe
will end in a ‘big rip’.

3.2.2 Linear Parameterization

In Linder (2003), a parameterization is used of the form
w(z) = w0 + w1(1 − R/R0) = w0 + w1z/(1 + z). Then
the equation for the density becomes

ρX(z) = ρX(0)(1+z)3(1+w0+w1)exp

(

−3w1
z

1 + z

)

(25)

The advantages of this parameterization are given in
Linder (2003), in short the old parameterization clearly
becomes problematic at high z, while this parameteriza-
tion has a bounded behaviour as z → ∞. The results of
several values of the parameters in this model are shown
in Figures 3(a) and 3(b).

The energy densities for the parameters shown in Fig-
ure 3(a) are remarkably similar throughout the lifetime of
the universe. The past history of R(t), too, is very similar.
However, the parameterization is unsuitable for model-
ing the future, z → −1, since w(z) becomes unbounded.
Note by contrast that a parameterization linear in redshift
is unbounded in the past — where all the data is! Models
such as the ‘e-fold’ case of Linder & Huterer (2005) and
the ‘kink’ case of Corasaniti et al. (2003) can smoothly
handle both the past and future.

4 Interacting Components

In the previous Section we assumed that dark energy does
not interact with matter or radiation. However, as we have
no knowledge of the microphysics of dark energy, it is
worth considering what the effects of interacting dark
energy might be. Studies of such models are ongoing (see
Zimdahl 2005 for a recent example). Much of this work
has been presented in physics rather than astronomical
journals, as the interest centre of the nature of the fields
involved in the interaction. Here we focus the general form
of such models and highlight the consequences that may
be of interest to astronomers and cosmologists.

The Friedmann equations do not restrict energy com-
ponents to be non-interacting and can be easily modified
to model an energy exchange. Equation (17) is true in the
case where the component i is not exchanging energy with
any other components. We now return to Equation (12b)
and relax this assumption. Consider the case where there
are only two components in the universe — pressureless
matter and dark energy. Then Equation (12b) can be split
into its components (Szydlowski 2005)

(ρ̇m + 3Hρm) + (ρ̇X + 3HρX(1 + wX)) = 0 (26)

At this point, a phenomenological parameter γ can
be introduced to represent the interaction between dark
energy and matter. Then

ρ̇m + 3Hρm = γ (27)

ρ̇X + 3HρX(1 + wX) = −γ (28)

γ has units of energy per unit time per unit volume, and
represents the rate at which energy is transferred from the
dark energy component to matter (γ > 0) or vice versa
(γ < 0).
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Figure 4a Cosmological evolution for a constant interaction
between matter and dark energy. The layout is the same as
Figure 1(a).

Figure 4b Cosmological evolution for a constant interaction
between matter and dark energy. The layout is the same as
Figure 1(b).

We cannot simply integrate Equations (27) and (28) in
the same way we did to obtain Equation (23). To find ρm,
ρX, and R(t) we need to solve Equations (27) and (28)
simultaneously with the expansion Equation (12a). This
represents a coupled set of (potentially) non-linear ordi-
nary differential equations which are solved numerically
(see Appendix).

Note that in this Section we take wX = −1 for all the
models, though this is not a cosmological constant. We do
this to isolate the effects of the interaction on the evolution.
Energy transfer between matter and other forms of dark
energy could also be computed, however we are interested
in examining the broad consequences of energy transfer,
which will be qualitatively similar for other forms of dark
energy. Future work will generalize this; see also Linder
(2005).

4.1 Constant Interaction

The first form of interaction considered was a constant
transfer of energy, γ = constant. We considered only the

Figure 5a Cosmological evolution for a decaying dark energy
model. The layout is the same as Figure 1(a).

Figure 5b Cosmological evolution for a decaying dark energy
model. The layout is the same as Figure 1(b).

case where γ is non-negative, where energy is being trans-
ferred from dark energy into matter. Concordance models
with this modification are shown in Figures 4(a) and 4(b).

In these models, the energy density in dark matter peaks
before decreasing and eventually becomes negative, at
which point the models were stopped. The density of a
component crossing through zero violates either the Big
Bang condition or the continuity equation (Linder 2004)
and therefore a simple constant γ , while it may give insight
into the qualitative effects of energy transfer, cannot model
an interaction suitably over the full range of cosmic time.

4.2 Dark Energy Decay

To avoid the problem of negative dark energy density, we
considered a decaying dark energy model with a similiar
form as in Turner (1985). Here γ has the form

γ = λρX (29)

where λ is a decay constant. This situation is analogous to
radioactive decay, with dark energy decaying into matter.
This model is shown in Figures 5(a) and 5(b).

https://doi.org/10.1071/AS05031 Published online by Cambridge University Press

https://doi.org/10.1071/AS05031


322 L. Barnes et al.

�1 0 2 4 6 8 10

 �1

�0.5

0

0.5

Time (1/H0)

g(t) � 0.50 rX(t)

g(t) � 1.00 rX(t)
g(t) � 0.75 rX(t)

q(
t)

g(t) � 0.25 rX(t)
g(t) � 0.00 rX(t)

Figure 6 The deceleration parameter for a decaying dark energy
model. The light blue model is the concordance model, where the
universe has started accelerating in the recent past and will always
accelerate in the future. By contrast, the models with decaying dark
energy only experience a finite period of accelerated expansion,
beginning and ending like an Einstein–de Sitter universe.

In these models, the dark energy density peaks before
decreasing asymptotically to zero. Thus, dark energy only
dominates the energy density of the universe for a finite
period of time, and in the future will be negligible, just as
it was in the past. To illustrate this point, we can calcu-
late the deceleration parameter q(t) for these models. The
deceleration parameter is given by

q(t) ≡ −
(

R̈

R

) (
R

Ṙ

)2

(30)

=
(

1

2

) (
ρ + 3p

ρ

)

(31)

by Equations (12a) and (12c) with k = 0. q(t) is defined
so that a decelerating universe has q > 0. An Einstein–
de Sitter universe has q = 1/2, a cosmological constant
dominated universe has q = −1, and, in general, a uni-
verse dominated by an energy component with EOS w

has q = (1 + 3w)/2.
A plot of q(t) is shown in Figure 6. In the early uni-

verse, matter dominates and the universe is decelerating.
The energy density of matter quickly drops as the universe
expands, and the dominance of dark energy causes the uni-
verse to accelerate. However, the decay of dark energy into
matter eventually sees matter dominate and the universe
decelerates again. Such a model would begin and end like
an Einstein–de Sitter universe, but would experience an
epoch of accelerated expansion.

4.3 The Thermodynamics of Dark Energy

This paper has approached dark energy phenomenologi-
cally, parameterizing its effects on the expansion history of
the universe without worrying about their physical inter-
pretation. However, the ultimate goal of the study of dark
energy is physical understanding, where dark energy mod-
els are motivated by a deeper understanding of particle

physics. Of particular interest is the physical meaning of
the interaction parameter γ .

To this end, consider the adiabatic Equation (12b). It
can can be derived from the first law of thermodynamics
for a closed, constant entropy system

dE = d(ρV) = −pdV (32)

In our interacting models, we assumed that energy was
being exchanged between components. Thus we consider
the first law of thermodynamics as it applies to two open
systems of Ni particles (or quanta), which are exchanging
particles. We introduce the chemical potential µ

dEi = −pidV + µidNi (33)

Comparing this Equation to Equations (27) and (28),
we find that our phenomenological parameter γ can be
written as

γ = µm

R3

dNm

dt
= −µX

R3

dNX

dt
(34)

As would be expected, γ is proportional to the rate
of exchange of particles per unit volume, and can be
considered the rate of exchange of energy density.

We now consider the relationship between γ and the
dark energy EOS. By taking γ over to the left hand side,
Equations (27) and (28) become

ρ̇m + 3Hρm

(

1 − γ

3Hρm

)

= 0 (35)

ρ̇X + 3HρX

(

1 + wX + γ

3HρX

)

= 0 (36)

This suggests that we can simply consider interaction
as a particular example of evolving EOS for dark energy
and matter. That is, we can define the effective dark energy
EOS to be wX,eff = wX + γ/3HρX and the effective EOS
of matter to be wm,eff = −γ/3Hρm.

But is it a good idea to consider interacting component
models to be a special case of evolving EOS? Phenomeno-
logically, the answer is yes. In studying the expansion
history of the universe, this strategy will allow us to
examine both kinds of models in a common parameter
space, knowing that it has no effect on the solution of the
Friedmann equations for a(t).

However, from the standpoint of physical understand-
ing the answer is no. There is a marked difference
between physical processes that create matter and those
that change its EOS. Matter with a non-zero EOS has
pressure comparable to its energy density. Pressure is
related to momentum, so matter with a non-zero EOS
is matter moving at relativistic speeds2. Thus reducing
interacting components to a special case of evolving EOS
blurs the distinction between creating pressureless mat-
ter and accelerating matter to relativistic speeds. While

2Recall E2 = (pc)2 + (mc2)2. The (mc)2 term is so large for matter that
only matter with v → c has non-negligible momentum.
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this has no effect on expansion history (a(t)), it will
undoubtedly affect structure history, namely the growth
of inhomogeneities.

One final point can be made from thermodynamic con-
siderations of dark energy. Conservation of energy in
General Relativity is not well understood. Some are happy
to say that energy is simply not conserved (Harrison 1995);
Einstein introduced the gravitational stress energy tensor
(tµν) to represent the energy of the gravitational field
to restore energy conservation (Einstein & Grossmann
1913), but this leads to problems because it is a pseudo-
tensor: non-localizable, non-unique, and non-covariant
(Misner, Thorne, & Wheeler 1973). Other approaches
include altering Einstein’s equations to include tµν,
(Yilmaz 1982), sparking refutation and counter-refutation
(Alley et al. 1995; Misner 1999), and using path groups
to formulate Gaussian flux integrals in curved spacetime
(Mensky 2004).

In light of this we must be careful in applying the first
law of thermodynamics in a cosmological context. We
previously assumed that energy leaving the dark energy
component will appear in the matter component. This is
equivalent to saying that the universe as a whole is a closed
system

µdN = µmdNm + µXdNX = 0 (37)

This seems very reasonable, but the same does not apply
to the work term (pdV 	= 0). The work done by pressure
in an expanding universe does not reappear in any other
form, which is generally interpreted as non-conservation
of energy in an expanding universe (Harrison 1995). Thus,
we should keep in mind that it may be possible to construct
plausible dark energy models where Equation (37) does
not hold.

5 Cosmological Implications

We have discussed cosmological models that explore
alternatives to a cosmological constant in explaining the
accelerated expansion of the universe. The testing of dark
energy models by observational data is a crucial challenge
for cosmology in the coming years. We now outline some
consequences of the range of presently allowed models.

5.1 Age of the Universe

Dynamical dark energy models will give a different expan-
sion history R(t) than the concordance model for the same
present day values of the density parameters. While con-
straints from analysis of the CMB and other measures,
such as galaxy distributions, need to be carefully con-
sidered (see Olivares, Atrio-Barandela, & Pavón 2005),
dynamical dark energy may indicate that the age of the
universe is different than expected from the concordance
model. This highlights what should be obvious: The age
of the universe is model-dependent. Care must be taken in
this area, for instance in Besprosvany (2005), the param-
eters of a dark energy decay model are constrained by
assuming the age of the universe which is found using
the concordance model, a different model from that being

constrained. Self-consistency in treatment of dark energy
cosmologies is essential. This demonstrates the way in
which the value of 13.7 ± 0.2 Gya has become broadly
applied — this value is often quoted without acknowl-
edging the assumption of a cosmological constant. To
illustrate the increased uncertainty in the age of the uni-
verse when this assumption is relaxed, we find, using
the zeroth order constraint on the dark energy EOS, wX

of −1.24 < wX < −0.74 as found in Wang & Mukherjee
(2004), that the derived age of the universe lies between
12.8 and 13.9 Gya, using h = 0.7, wm = 0.3, wX = 0.7 as
throughout this paper. This is not a rigorous analysis, as
degeneracies between wX and �m are likely to narrow this
constraint, but does show the order of the increased uncer-
tainty. Future work will determine a more precise value.

5.2 Coincidence Problem

It has been proposed that allowing a transfer of energy
from dark energy to dark matter may help resolve the
coincidence problem (see Chimento et al. 2000, 2001;
Zimdahl, Pavón, & Chimento 2001; Cai & Wang 2005;
Zhang 2005). In Figures 4(a) and 5(a) the density param-
eters have a similar value for a far greater range of cosmic
time than in the non-interacting case. With the coincidence
problem in mind, the form of the interaction can be made to
keep closer values of the parameters over a greater range of
cosmic time (e.g. Chimento et al. 2003). Such a ‘solution’
to the coincidence problem allows the fine-tuning of model
parameters to be relaxed far more than in the concordance
model, however it requires that the interaction term in the
model itself be tuned. Wang & Meng (2004) have shown
that a cosmological constant decaying into matter is not
likely to be permitted by even the current data set for any
form of the interaction, though other forms of decaying
dark energy (wX 	= −1) are not so constrained by their
arguments. In any case further knowledge of dark energy
dynamics will be a key to furthering our understanding of
the apparent coincidence observed.

5.3 Astrophysical Consequences

Many astrophysical models, such as CDM models of
galaxy halos, require knowledge of the cosmological
parameters, �m, �X, and H0, usually assumed at present
to be those of the concordance model. However, a uni-
verse with dynamic dark energy will not be satisfactorily
described at all epochs by any values of these parameters
alone. The effects of dark energy–dark matter interactions
on CDM galaxy halo models is discussed in Gromov,
Baryshev, & Teerikorpi (2004) and references therein;
Amendola, Quercellini, & Giallongo (2005) in particu-
lar have investigated several aspects of interaction. Future
observations on cosmological scales that could constrain
the cosmological model may greatly improve the under-
standing of galaxy formation and dynamics and vice versa.
Note however that the models presented in this paper, as
in most cosmological models, assume homogeneity. This
assumption is supported on very large scales by galaxy
surveys. However, while dark energy must be smooth over
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large scales (or else it would show up as an additional �m

in galaxy clustering surveys; see Carroll 2001), dark mat-
ter is clumpy. Our phenomenological interaction between
the dark sectors gives no clue as to how the smoothness of
dark energy evolves to clumpy dark matter as this interac-
tion proceeds. This is an important outstanding issue.
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Appendix: Numerical Model

The numerical model used to generate the results of this
paper consisted of a system of first order, coupled ordi-
nary differential equations which were then integrated in
a Runge–Kutta scheme. The solution of the Friedmann
equations can be tackled in two ways.

We can solve for R in terms of t by solving

H2 = 8πG

3
(ρm + ρX) − k

R2
(38)

ρ̇m = −3Hρm + γ (39)

ρ̇X = −3HρX(1 + wX(z)) − γ (40)

The alternative is to solve for the energy density of the
components in terms of z, using

dρm

dz
= 3ρm

1 + z
− γ

(1 + z)H(z)
(41)

dρX

dz
= 3ρX(1 + wX(z))

1 + z
+ γ

(1 + z)H(z)
(42)

H(z)2 = 8πG

3
(ρm + ρX) − k(1 + z)2

R2
0

(43)

Then, t as function of z could be obtained by integrating

dt = − dz

(1 + z)H(z)
(44)

The present is z = 0, and modelling into the past is done
by allowing z → ∞, and modelling into the future is done
by allowing z → −1. R(t) can then be recovered from z(t).

This second approach makes it easier to calculate the
angular diameter and related distances. This could be done
using the equations in Section 2. However, the equations
for angular diameter distance have been developed in the
case where the universe is ‘clumpy’, that is, where it is
only homogeneous and isotropic on average. The resultant
Equation is the Dyer–Roeder equation, as generalized in
Linder (1988b)

r̈d +
(

3 + q(z)

1 + z

)

ṙd

+
(

3

2(1 + z)

∑

i

(1 + 3wi(z))αi(z)�i(z)

)

rd = 0

(45)

where q(z) is the deceleration parameter, and the initial
conditions are

rd(z0, z0) = 0 (46)

dr(z0, z)

dz

∣
∣
∣
z=z0

= H0

H(z0)(1 + z0)
(47)

where we have deliberately not set z0 = 0 so that angular
diameter distance can be calculated for observers at any
redshift, as is common in situations involving gravitational
lensing. The clumpiness parameter αi, defined to be the
ratio of the amount of component i smoothly distributed to
the total, is set to 1 in this paper, which gives the same solu-
tions for angular diameter distance as Section 2. Our codes
can relax this condition, and future papers may explore the
effect of inhomogeneities in dark energy models.
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