
J. Austral. Math. Soc. (Series A) 58 (1995), 287-297

WEAKLY-INJECTIVE MODULES OVER HEREDITARY
NOETHERIAN PRIME RINGS

S. K. JAIN and S. R. LOPEZ-PERMOUTH

(Received 1 February 1992; revised 21 July 1992)

Communicated by P. Schultz

Abstract

A module M is said to be weakly-injective if and only if for every finitely generated submodule N of the
injective hull E(M) of M there exists a submodule X of E(M), isomorphic to M such that N C X. In
this paper we investigate weakly-injective modules over bounded hereditary noetherian prime rings. In
particular we show that torsion-free modules over bounded hnp rings are always weakly-injective, while
torsion modules with finite Goldie dimension are weakly-injective only if they are injective.

As an application, we show that weakly-injective modules over bounded Dedekind prime rings have
a decomposition as a direct sum of an injective module B, and a module C satisfying that if a simple
module S is embeddable in C then the (external) direct sum of all proper submodules of the injective
hull of S is also embeddable in C. Indeed, we show that over a bounded hereditary noetherian prime
ring every uniform module has periodicity one if and only if every weakly-injective module has such a
decomposition.

1991 Mathematics subject classification (Amer. Math. Soc): primary: 16A14,16A52; secondary: 16A12,
16A33.
Keywords and phrases: bounded hereditary noetherian prime rings, weakly-injective modules.

1. Introduction

The study of hereditary noetherian prime (hnp) rings generalizes that of bounded
Dedekind prime rings and in particular of their best known example, the ring of integers
2. These rings and their modules have been studied extensively; see [3, 2, 4, 8], for
example. McConnell and Robson's book [10] has a nice chapter on hnp and related
rings. In [8], Lenagan proved that an hnp ring is either primitive or bounded. Special
classes of modules over bounded hnp rings (including injective, projective, quasi-
injective and quasi-projective) have been studied in [4, 9, 12, 13, 14]. In this paper
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we discuss weakly-injective modules over bounded hnp rings.
Given an arbitrary ring R and R-modules M and N, we say that M is weakly N-

m/ecftVeifand only if every map £i : N —> E(M) from iV into the injective hull £(M)
of M may be written as a composition a o (p where <p : N -> M is a homomorphism
and a : M —> E(M) is a monomorphism. This is equivalent to saying that for every
map (p : N —> E(M) there exists a submodule X of E(M), isomorphic to M such
that <p(N) is contained in X. In particular, M is weakly /?-injective if and only if for
every x e £(M) there exists X c £(M) such that x e X = M. We say that M is
weakly-injective if and only if it is weakly iV—injective for every finitely generated
module N. Cleary, M is weakly-injective if and only if for every finitely generated
submodule N of E(M) there exists X C E(M) such that N C X = M.

Any weakly N-injective module M satisfies the closely related property that for
every submodule K of N, if N/K embeds in £(M) then N/K embeds in M. Fol-
lowing [5], we refer to any such module as being N-tight. If M is N-tight for every
finitely generated module N, we simply say that M is tight.

Weakly-injective (tight) modules are closed under finite sums and under essential
extensions. However, they remarkably fail to be closed under direct summands
[7]. Furthermore, arbitrary sums of weakly-injective right modules over a ring R
are weakly-injective if and only if R is a right q.f.d. ring (that is, all cyclic right
R-modules have finite Goldie dimension) [1].

Throughout all rings have 1 and all modules are right unital modules unless oth-
erwise stated. If Af is a submodule of M, N d M will mean that N is essential in
M.

2. Preliminaries

The exact relation between weak relative-injectivity and relative tightness is given
in the following lemma from [7].

LEMMA 2.1. Given two modules M and N, M is weakly N-injective if and only if
for every submodule K c N and for every monomorphism <p : N/K -> E(M):
(1) there exists a monomorphism <p' : N/K —> M, and
(2) for every complement L of cp'(N/K) in M there exists K' c E(M) such that

K' n <p(N/K) = 0andK' = L.

PROOF. See [7, Lemma 1.3].

It follows easily from the previous lemma that a uniform module U is weakly-
injective if and only if it is tight. As a matter of fact, for any module M, if E(M) is a
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direct sum of indecomposables, M is tight if and only if it is weakly injective. This is
the subject of our next proposition.

PROPOSITION 2.2. Let M be an R-module such that the injective hull E(M) ofM is
a direct sum of indecomposables. Then M is tight if and only if it is weakly-injective.

PROOF. Let M be a tight right fl-module such that E(M) equals a direct sum of
indecomposables, say E(M) = ®,6 / £,-. Let Wbea finitely generated submodule of
E(M). Then there exists a finite subset / C / such that N C ©,e y £,-. Without loss of
generality we may assume that E(N) = ®,g 7 Et. Let <p : N —> M be an embedding
of N into M as is guaranteed by the tightness of M. Then E(M) — E((p(N)) © K, for
some submodule K C E(M). It follows from the Azumaya-Krull-Schmidt theorem
that K = 0 , e / _ y £,. Let A - M n K. Then A c! K and hence <p(N) © A may be
embedded in E(M) via a map a such that N = a((p(N)). By the injectivity of E(M)
and the essentiality of the inclusion <p(N) ® A c' M, we obtain a monomorphism
a : M —> E(M), extending a, such that N C a(M), as desired.

Proposition 2.2 has the following immediate corollary.

COROLLARY 2.3. For a right noetherian ring R, a right R-module is weakly-
injective if and only if it is tight.

PROOF. Obvious.

The following lemmas, due to Singh, are listed here without proof for easy refer-
ence.

LEMMA 2.4. Let Rbea boundedhnp ring and let E be an indecomposable injective
torsion right R-module. Then E has a unique chain of submodules

0 = x0R C XjR C x2R C • • • C xnR C ...

whose union is E such that

(1) each xi+iR/XjR is a simple R-module;
(2) the members of the chain are the only submodules of E different from E; and
(3) there exists a positive integer n such that for any i, j , xi+\ R/Xj R = JC;+1 R/xj R

if and only ifi = j(modn).

PROOF. See [12, Theorem 4] and [14, Corollary 2.9].
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DEFINITION 2.5. Let £ be an indecomposable injective torsion right R-module
over a bounded hnp ring R. The unique infinite ascending chain of submodules of ?̂
described in Lemma 2.4 is called the composition series of E and the positive integer
n is referred to as the periodicity of E. Furthermore, for any uniform module U over
R, the periodicity of U is defined to be the periodicity of E(U).

LEMMA 2.6. For any uniform right R-module over a bounded Dedekindprime ring
R the periodicity of U is 1.

PROOF. See [12, Corollary 1].

DEFINITION 2.7. Let R be a bounded hnp ring. Two indecomposable injective
torsion right R-modules are equivalent if they are homomorphic images of each other.
Due to the finite periodicity, this is indeed equivalent to requiring that one of them be a
homomorphic image of the other. Two torsion uniform modules are equivalent if their
injective hulls are equivalent. Furthermore, two uniform elements x and v in a torsion
right R-module are said to be equivalent if xR and yR are equivalent uniform right
/?-modules. A torsion right R-module M is said to be primary if every pair of uniform
elements of M is equivalent. Given a uniform element x in a torsion R-module M,
the submodule N of M generated by all the uniform elements of M equivalent to x is
primary. Such an N is called a (the) primary component of M (corresponding to x).

LEMMA 2.8. Every torsion module over a bounded hnp ring is the direct sum of its
primary components.

PROOF. See [13, Lemma 9].

We believe that the following result must be well-known but we have not been able
to find it anywhere in the literature. We include it here without a proof.

LEMMA 2.9. Let A be a submodule of a module B, and let n e 1+. Then Soc"A =
A n Soc"fl and SocM/Soc""1 A is embeddable in Soc"B/Soc"-1B.

3. Weakly-injective modules over bounded HNP rings

It has been shown that any noetherian prime ring is a weakly-injective ring (i.e. it
is weakly-injective as a module over itself) [7]. Indeed, more is true:

PROPOSITION 3.1. Every torsion-free module over a noetherian prime ring is
weakly-injective.
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PROOF. Over a noetherian prime ring R every torsion-free right module contains
an essential submodule which is a direct sum of uniform submodules. Since weakly-
injective modules over noetherian rings are closed under arbitrary direct sums and
under essential extensions, it suffices to show that every uniform right R-module is
weakly-injective. Let U be a uniform right R-module and let V be a finitely generated
submodule of E(U). Since R is prime and noetherian it follows that V is isomorphic
to a right ideal of R and that therefore it embeds in U. In light of Corollary 2.3, this
completes our proof.

The above proposition has the following corollary.

COROLLARY 3.2. For any module A over a noetherian prime ring R, A is weakly-
injective if and only if its singular submodule Z(A) is weakly-injective.

PROOF. The injective hull of A may be written as E(A) = E(Z(A)) © K, where
Z(A) is the torsion submodule of A and K is some submodule of E(A). If A is
weakly injective and Afis a finitely generated submodule of E(Z(A)) then N embeds
in A. But N is itself torsion and hence N embeds in Z(A). In light of Corollary 2.3
this proves our claim that Z(A) is weakly-injective. On the other hand, if Z(A) is
weakly-injective then A must be also weakly-injective since it contains as an essential
submodule the direct sum of weakly-injective modules Z(A) © (K D A).

Due to the above corollary, in order to characterize weakly-injective modules over
bounded hnp rings it suffices to center our attention on torsion modules.

By Lemma 2.8, any torsion module over a bounded hnp ring can be expressed as
the direct sum of its primary components. While weak-injectivity does not usually
come down to summands, we have the following result.

LEMMA 3.3. A torsion module over a bounded hnp ring is weakly-injective if and
only if its primary components are weakly-injective.

PROOF. Let A be a torsion module over the bounded hnp ring R. By Lemma 2.8,
we may write A = ® i € / A,-, where the A,'s are the primary components of A. Since
sums of weakly-injective modules over noetherian rings are weakly-injective we only
need to show that if A is weakly-injective so is A, for each j e I. Let Af be a finitely
generated submodule of E(Aj) C E(A) = ®, e / £(A,). Clearly, for every i e / ,
E(Aj) is a primary component of E(A). By the weak-injectivity of A there exists
an embedding <p : N -> A. Since <p(N) = N c E(Aj) it follows that the uniform
elements in (p(N) are equivalent to those in Aj. Hence <p(N) c Aj. So Aj is tight and
therefore, due to Corollary 2.3, weakly-injective as claimed.

https://doi.org/10.1017/S1446788700038325 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038325


292 S. K. Jain and S. R. L6pez-Permouth [6]

The above lemma has, as an immediate application, the following characterization
of weakly-injective torsion modules with finite Goldie dimension.

LEMMA 3.4. If a torsion module A over a bounded hnp ring has finite Goldie
dimension, then A is weakly-injective only if it is injective.

PROOF. Let R be a bounded hnp ring and let A be a torsion right fl-module with
finite Goldie dimension n. Assume that A is weakly-injective. Since SocA c ' A,
we may write SocA = S\ © • • • © Sn, where for every / = 1 , . . . ,« , S,- is simple.
For every / = 1 , . . . , « , let 0 C anR C ai2R C - b e the composition series of
E(Si). Then for every m e Z+, SocmE(A) - almR © a2mR © • • • © anmR. It
follows that E(A) = (J^L, SocmE(A). So, in order to prove that A is injective
it suffices to prove that for every m e 2+, Socm£(A) = Sod"A. Since A is
weakly-injective, for every n e Z+ there exists an embedding cp : Socm£(A) -> A.
We will first prove by induction that for every embedding <p : Socm£'(i4) -* A,
<p(SocmE(A)) = SocmA = SocmE(A). The result is clear if m = 1. Suppose it
is true for m = j — 1 and assume that <p : Soc;£(A) —>• A is an embedding. By
the inductive hypothesis, the restriction of <p to SocJ~lE(A) is an isomorphism onto
SocJ-'/\ = Soc>-1£(A). Then

SocjE(A) _ <p(SocjE(A)) <p(SocjE(A))

<p(SocJ~lE(A))

From the first inequality in (1), ^(Soc^CA)) C SocM. Also by (1), the Gol-
die dimension of SocM/SocJ"'A is at least n, since Socy£(A)/Soc;"1£(A) =
YH=i aijR/aij-iR> a direct sum of n simples. On the other hand, Lemma 2.9 implies
that the Goldie dimension of SocM/Soc;~' A is at most equal to the Goldie dimen-
sion of SocjE(A)/Socj~1E(A), which equals n. So, using (1) once again, we obtain
<p(SocjE(A))/Socj~lE(A) = Socj A/Socj-lA and hence (p(SocjE(A)) = SocM =
Soc;£'(A), as desired. This concludes our induction.

Weakly-injective torsion modules with infinite Goldie dimension will be characterized
in the next lemma but first we need to introduce some notation. Let 5 be a simple
module over a bounded hnp ring R. We define Ns to be the serial module consisting
of the external direct sum of all proper submodules of £(5). Namely,

B.
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LEMMA 3.5. Let A be a torsion module with homogeneous socle and infinite Goldie
dimension. The following statements are equivalent:

(1) A is weakly-injective.
(2) For any simple module S, if S embeds in A then Ns embeds in A.
(3) For every n e Z+, SOC"(J4)/SOC"~'(^) is infinite dimensional.

PROOF. Let 5 be a simple submodule of A. From the hypotheses, the injective
hull of A is a direct sum of infinitely many copies of E(S). By Lemma 2.4, E(S)
has a composition series 0 C S = xtR C x2R C • • • C E(S). Clearly, any finitely
generated submodule of E (A) can be embedded in Ns and therefore (2) implies (1). If
we assume that A is weakly-injective then for every m, n e Z+, the finitely generated
module (xmR)" is embeddable in A. In light of Lemma 2.9 this implies that for every
m, n € Z+, the Goldie dimension of SocmA/Socm~lA is larger than n and hence it
must be infinite. Thus (1) implies (3). So it is only left to show that (3) implies (2).
Let us assume that for every m s Z+, Soc'M/Soc'""1 A is infinite dimensional. We
shall proceed inductively to construct an ascending sequence of submodules of A,
0 = No C N\ C N2 c • • • such that, for every / e Z+, Nt = N,-_i © ytR, for some
v, 6 A such that ytR = xtR. Obviously, N = \J*LX Nt will then be a submodule of A
isomorphic to Ns, proving our claim. For n — 1, since Soc(A) ^ 0 we have a simple
submodule 0 ^ yxR of A. Since the socle is homogeneous, yxR = X\R. Thus, let
Nx = ytR. Suppose Nm_! has been constructed, then Nm^ = xiR®x2R®- • ©xm_i/?.
Since SocmA/Socm~1y4 is infinite dimensional, it has a submodule consisting of a
sum of m simple submodules, say Si ® S2 © • • • © Sm C SocmA/Socm~lA. Let us
write 5, = z,/?, where z, = z, + Socm"'y4 (for some z, e SocmA). The finitely
generated submodule z^R + h zmR of A, being torsion, is equal to a direct sum
t\R ffi • • • ffi tkR of cyclic submodules (See [12, Lemma 1], for example). One can
easily check that (i) k > m , (ii) for each / = 1 , . . . , k there exists 1 < j < m such
that ttR = xjR, and (iii) there exist exactly m tt 's such that ttR = xmR, say, th, th,...
and tim. Among *,-,/?, thR,... and timR there exists at least one whose intersection
with iVm_i is zero (otherwise the socle of iVm_i would contain a direct sum of m
distinct simple submodules). Let ttj R be one such module, then let ym = ttj and define
Nm = Nm_\®ymR. This completes the proof of our lemma.

4. Bounded HNP rings whose uniform modules have periodicity one

THEOREM 4.1. Let A be a right module over a bounded hnp ring. If all uniform
submodules of A have periodicity one, then the following statements are equival-
ent:

(1) A is weakly-injective.
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(2) There is a decomposition A = B(BC such that (i) B is torsion, injective and has
finite dimensional primary components, (ii) C satisfies that if a simple module
S embeds in C then the module Ns embeds in C, and (iii) B and C have no
isomorphic simple submodules.

(3) There is a decomposition A — B®C such that B is injective and C satisfies that
if a simple module S embeds in C then the module Ns embeds in C.

PROOF. Let A be a right module over a bounded hnp ring R. If A is weakly-
injective, so is Z(A) (Corollary 3.2), and also so are the primary components of Z(A)
(Lemma 3.3). Let B be the (direct) sum of all the primary components of Z(A) with
finite Goldie dimension. By Lemma 3.4, each such primary component is injective
and therefore so is B. It follows that we may write A = B © C, where C is chosen so
that it contains the primary components of Z(A) not already contained in B. If 5 is a
simple module and a monomorphism <p embeds S in C then S actually embeds in the
primary component N (say) of Z(A) corresponding to <p(S). By the weak-injectivity
of N and in light of Lemma 3.5, we conclude that Ns embeds in N and consequently
in C, as claimed. The decomposition A = B © C satisfies conditions (i), (ii) and
(iii) in (2) and therefore we conclude that (1) implies (2). Obviously (2) implies
(3). The conditions in (3) imply that Z{C) is weakly-injective (by Lemma 3.5).
Therefore, by Corollary 3.2, C is weakly-injective and hence A, being the sum of
two weakly-injective modules, is weakly-injective. Thus, (3) implies (1).

COROLLARY 4.2. The statements in Theorem 4.1 about a right module A over the
ring R are equivalent if R is a bounded Dedekind prime ring.

PROOF. Lemma 2.6 guarantees that if R is a bounded Dedekind prime ring, then A
satisfies the hypotheses of the theorem.

Let R be a bounded hnp ring and let £ be an indecomposable injective right R-
module with periodicity > 2. Let 0 C xxR C x2R C • • • C £ be the compositon
series of E. Then xxR ¥ x2R/xxR. We refer to E{x2R/xxR) = E/xxR as E
and, for each x e E, x denotes x + xtR e E. For every j e Z+, let A/,- be the
submodule of E © x2R © • • • © XjR consisting of those elements (oj, d2,..., Xj)
such that d\ = d2 + •• • + dj. Also, let M be the submodule of the infinite sum
E © x2R © x3R © • • • consisting of those elements (au d2, d3,...) such that dx =
22^2 <*'• F°r convenience we shall employ the usual unit vectors (sequences), e, =
(0, 0 , . . . , 0, 1, 0,...) where the only 1 is in the /-th place as a notational device
so that we may write (aud2,... ,dj) = axex + d2e2 + • • • + a,e, in Af, and also
(aud2, d3, ...) = axex + £ ° ! 2 a , e , in M.
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LEMMA 4.3. Let<p : XjR —>• Mj be a monomorphism and let <p(xj) = bxex +b2e2 +
h bjej. Then bxR = XjR = bjR. Moreover, r • ann(fti) = r

PROOF. Notice first of all that <p{xxR) = xxexR. Hence Soc(cp(XjR)) = xxexR.
It follows that nx o (p, the composition of <p with the projection nx of Mj onto E,
is one to one, for if nx o (p(x) = 0, then <p(x) e £ / = 2 * i / ? . If <?(•*) ^ 0 then
Soc(<pO)/?) C X!/=2^'^ ' while o n the other hand (p(x)R C (p(xjR), and hence
Soc(<p(jt)/?) = xi^i/?, a contradiction. We conclude that <p(x) = 0 and therefore,
since <p is one to one, x = 0. Consequently, 7Ti O <p(xjR) = xy/?, which shows that
indeed bxR = XjR, as claimed. Now by definition of Mj, bx = B2 + h bj. We
conclude that bj £ Xj-XR. Thus XjR = bjR. Having shown that nx o <p is one to one,
it follows that r • annC^/?) c [JCX/? : bjR]. So fey7? is a homomorphic image of foi/?
under the map given by bx i-> bj. Since fe;/? is of length j — 1, the kernel of the
above map must be JCI/?. We therefore conclude that r • ann(t>xR) = r • ann(bjR), as
claimed.

THEOREM 4.4. Let R be a bounded hnp ring having an indecomposable injective
right R-module E with periodicity > 2. Then there exists a weakly-injective module
M which does not admit a decomposition of the type described in Theorem 4.1 (3).

PROOF. We shall prove that M, as defined in the remarks preceeding Lemma 4.3,
is a weakly-injective module, but that E does not embed in M. Consequently, M
does not have a decomposition as described in the statement of the theorem. Notice
first of all that Soc(M) = xxR © x2R © Jc3/? © • • •, since xxex e M and the set
{(x2e2 — x2e^)R, (x2e2 — x2e*)R, (x2e2 — x2e5)R,...} of submodules of M constitutes
an independent family of simple submodules of M each isomorphic to x2R. It follows
that £ ( M ) = £ © £ © £ © • • - . Next, we show that M is weakly-injective. Let N be
a finitely generated submodule of E(M). Then N = yxR © y2R © • • • © ynR, where
each ytR is uniserial. If each v,7? has socle isomorphic to x2R, for i = 1 , . . . n, then
there exists / e Z + such that ytR = Xj.R C E. Let j = max{y,|/ = 1 , . . . , n}. The
submodules of M,

(2) (xhej - Xjxej+X)R = yxR, (xJ2ej+2 - xJ2eJ+3)R = y2R, ...

and (xjnej+2in-X) - xjnej+2n-X)R = ynR,

are an independent family whose sum is isomorphic to N. On the other hand, if
for some /, Soc(v,/?) = xxR, then, for some / e Z + , v,7? = xtR. So, replace the
corresponding submodule of M in (2) by (xiex + xtei)R = xtR. Once again this
yields an independent family of submodules whose sum is isomorphic to N. In light
of Corollary 2.3, this concludes our proof of the weak-injectivity of M. Next we
show that E is not embeddable in M. Assume on the contrary that <p : E -*• M is
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an embedding. We first observe that <p(xxK) = xxexR. Similarly as in Lemma 4.3,
if ix\ is the projection of M onto E, TC\ O <p is one to one. We obtain that for every
j e T+, if cp(Xj) = axex + a2e2 + • • • + akek, with ak ^ 0, then (i) axR = XjR,
(ii) k > j , and (iii) there exists / e 1 such that j < I < k and at £ Xj-XR.
Let cp(x2) = bxex + b2e2 + • • • + bkek, with bk ^ 0 and consider then <p(xk+x) =
C\e\ + c2e2 + • • • + c,e,, say. As observed above, f > k + 1 and there exists / e 2 +

such that k + 1 < / < t and Q ^ xkR. Define a map ^ ' : xk+lR —*• Mk+X via
<p'(xk+ir) = cxrex + c2re2 -\ h ckrek + £ ' = t + 1 c,ret+1. Since 7r, O <p' = 7TI O ^
is one to one, we conclude that <p' is also one to one. Applying Lemma 4.3, we get
that r • ann(J) = r • ann(cO, where d = Yl't=k+i c>r- ^ n t n e other hand, there exists
y e R such that xk+xy — x2. Hence <p'(xk+ly) — <p'(x2). This implies that dy = 0
and therefore cxy e xxR. However, since XiexR c <p'(xk+1R), we would then get that
b2e2 H h fetet = c2e2y H + Qety € <p'(.xk+lR). But Soc(^'(jri+i/?) = Xi^fl
and therefore we get b2e2 H h bkek = 0, a contradiction to the facts that & > 2 and
fet 9̂  0. Thus, we conclude that E is not embeddable in M.

THEOREM 4.5. Let R be a bounded hnp ring. Then the following conditions are
equivalent:

(1) Every uniform R-module has periodicity one.
(2) Every weakly-injective R-module M has a decomposition M = B®C such that

B is injective and C satisfies that if a simple module S embeds in C then the
module Ns embeds in C.

PROOF. Apply Theorems 4.1 and 4.4
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