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Abstract. The resonant structure near a noble cantorus is found. Islands of stability are located near 
the gaps of the cantorus. The crossing of the gaps of the cantorus by the asymptotic curves of unstable 
periodic orbits is shown numerically (non-schematically). We discuss how these structures influence 
stickiness. 

1. Introduction 

The phenomenon of "stickiness" occurs when a chaotic orbit starting near a last 
KAM torus remains close to this torus for long times before diffusing into a 
surrounding large chaotic sea. Among the first to give examples of stickiness were 
Contopoulos (1971), and Shirts and Reinhardt (1982). 

A theoretical understanding of stickiness was advanced mainly for 2D systems 
(e.g. Greene 1979, MacKay 1983, MacKay et al. 1984; see Meiss 1992 for a 
review). It is now established that stickiness is due to the existence of cantori 
(Aubry 1978, Percival 1979, Mather 1982, Schmidt and Bialek 1982). 

Cantori are the remnants of the KAM tori formed when the latter are destroyed 
by an increase of the perturbation. A cantorus forms a Cantor set of points on the 
surface of section. This set is invariant under the section mapping and has rotation 
number equal to the rotation number of its progenitor KAM curve. 

A cantorus constitutes a partial barrier to local chaotic diffusion. Chaotic orbits 
can cross the cantorus only by passing through the gaps of the cantorus. 

On the other hand, the global chaotic transport is limited by the existence of 
several consecutive cantori in the stickiness region. It is numerically observed that 
in many cases the holes of such cantori are delineated along "chimneys" (MacKay 
et al. 1984), where chaotic transport mainly takes place. 

MacKay (1983) found numerically that the flux through gaps is minimal for 
those cantori having noble rotation numbers, i.e. numbers of which the continued 
fraction 

a = [auai,...] = I/{ax + ( l / a 2 + ...)) (1) 

(where a; are integers) has at = 1 for all i above a certain order N. Thus, only 
noble cantori are important for the stickiness problem. 

MacKay et al. (1984) modelled the flux through a gap of the cantorus as a 
"turnstile" and obtained estimates of transport rates by assuming a simple Markov 
chain model with given transition probabilities between any two successive cantori. 

In order to construct a more accurate model of diffusion through cantori, one 
requires knowledge of the resonant phase space structure in the stickiness region. 
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Fig. 1. The main island of stability and the surrounding stickiness region in the standard 
map for K = 5. 

In particular, we find that the chaotic diffusion through a cantorus is substantially 
influenced by: a) the existence of islands of stability close to the gaps of a cantorus, 
and b) the form of the asymptotic curves (of unstable periodic orbits) crossing the 
gaps of the cantorus. 

In this paper we summarize some of our results based on a numerical study 
of the standard map and some new results that give a better understanding of the 
stickiness problem. The earlier results are presented in greater detail elsewhere 
(Efthymiopoulos et al. 1997, Contopoulos et al. 1998). 

2. The Stickiness Zone 

We take as our model the 2D standard map 

xi+i = Xi + yi+i, 2/i+i =& + — sin(27rx,) (modi) 
Z7T 

(2) 

where K is the nonlinearity parameter. When K = 5 the phase space (unit square) 
is mostly chaotic, but contains two symmetric islands of stability around the stable 
periodic orbit xc « 0.68, yc « 0.36 of period 2. Considering only every second 
iteration, the orbit (xc,yc) can be considered of period 1. The island around this 
stable periodic orbit is shown in Fig. 1. This island is surrounded by a stickiness 
zone consisting of two parts. An inner thin zone (very dark) where the stickiness 
time is large, of order 104 - 107 periods, and a more extended outer zone (less 
dark), where the stickiness time is smaller, of order 102. Outside the stickiness 
region is the large chaotic sea. 
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Fig. 2. A detail of the phase space near the border of the main island for K = 5. We dis
tinguish the islands of stability 9/20,14/31, etc. and the unstable orbits 60/133 (triangles), 
97/215 (squares) 157/348 (circles) and 254/563 (stars). 

3. Cantorus and Islands 

The most important cantorus in the stickiness region of Fig. 1 is the one with the 
noble rotation number [2,4,1,1,...]. This cantorus is formed at the critical value 
Kc ~ 4.9974 and surrounds the main island of stability. 

The successive rational truncations of the noble number [2,4,1,1,...] are: 

2 ' 9 ' 11 ' 20 ' 31 ' 51 ' 82 ' 133 ' 215 ' 348 ' 563 ' 911 ' " 

and they form a Farey sequence. These rationals correspond to periodic orbits 
surrounding the main island, one inside (closer to the island) and one outside the 
cantorus. They approach the cantorus closer as the order increases. 

Fig. 2 shows a detail of the phase space where several periodic orbits are 
marked. In particular, the periodic orbits 9/20,14/31 and 23/51 are stable and are 
surrounded by islands (the island 32/71 does not belong to the sequence (3)), while 
the periodic orbits 97/215, 254/563 (inside the cantorus), and 60/133, 157/348 
(outside the cantorus) are unstable. These unstable orbits are very close to each 
other and they define essentially the gaps of the cantorus. 

In Fig. 2, the island 23/51 is outside but very close to a cantorus gap. Such 
islands close to the gaps pose limits to chaotic diffusion. 

The existence of islands close to the gaps, for K slightly above Kc, is guaranteed 
by the fact that the critical value Kc is the minimum of the critical values of 
destabilisation of the periodic orbits (3) (Contopoulos et al. 1987). 

For every rational n/m of the sequence (3) correspond two periodic orbits, one 
stable and one unstable, which bifurcate from the central periodic orbit (of period 
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Fig. 3. The critical value Kn/m of destabilisationof the orbit n/m versus its corresponding 
order i in the sequence (3). 

1) at particular values of the perturbation K. As K increases, both orbits move 
from the center outwards. At some particular perturbation value Kn/m, the stable 
periodic orbit n/m becomes unstable by a single or double period bifurcation. 

According to Greene's criterion (Greene 1979), the series of the critical values 
Kn/m of the successive orbits n/m has as its limit the critical value Kc at which 
the noble torus [2,4,1,1,..] turns to a cantorus. 

In Fig. 3 we give the critical values Kn/m versus the order of the orbits in 
the sequence (3). As the order increases, the values Kn/m converge to a limit 
Kc = 4.9974... (horizontal line). The convergence follows two different lines, 
when the numerator n is even (upper line) or odd (lower line). Thus the deviations 
of Kn/m from the limiting value Kc are larger for n = even than for n = odd (for 
the same order of n). The value Kc = 4.9974.. is the critical value of destruction of 
the noble torus [2,4,1,1,...]. It is clear that the critical value Kc is the minimum of 
the critical values Kn/m. Thus, for any particular orbit n/m, there is a finite interval 
of values Kc < K < Kn/m for which the orbit is stable while the corresponding 
cantorus is already formed. Such stable orbits are surrounded by islands which 
limit diffusion through the gaps of the cantorus. 

In Figs.4a,b the evolution of Henon's stability index an/m is given for each of 
the initially stable orbits n/m of the sequence (3). For all orbits the stability index 
starts from an/m = 1 at the perturbation value K of their generation from the 
center. As K increases, the stability index an/m initially decreases slowly and later 
abruptly. Then there are two possibilities: a) the stability index an/m crosses the 
line a - -1 at the critical perturbation Kn/m where the orbit becomes unstable. 
This happens when the numerator n of the periodic orbit is odd. b) the stability 
curve an/m becomes tangent to the line a = - 1 and is reflected. Then the orbit 
becomes unstable at the value Kn/m when an/m crosses the line a = +1. This 
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Fig. 4. The H6non stability index as a function of K for the orbits of the sequence (3). The 
vertical line is at the critical value Kc of destabilisation of the noble torus [2,4,1,1,...]. a) 
Orbits with n = odd. b) Orbits with n = even. 

happens when the numerator n is even. 
In any case, the transition to instability is more abrupt as the order of the periodic 

orbit increases. In Fig.4a, we show the evolution of the stability index of the orbits 
with odd numerator5/l 1,9/20,23/51,37/82,97/215,157/348, and 411/911 as 
a function of the perturbation K. The stability index curves, near destabilisation, 
are more abrupt for the higher order periodic orbits. The same phenomenon occurs 
for the periodic orbits with even numerator 14/31,60/133, and 254/563 (Fig.4b). 
At the limit of infinite order (cantorus), the stability index curve takes the form of 
a step function changing slope from zero to oo abruptly at K — Kc. 

The resonant structure near the noble torus or cantorus can be shown very 
efficiently by use of the recent method of angular dynamical spectra (Voglis and 
Efthymiopoulos 1998). Starting from the main center (period-1 orbit), we define the 
position vector Ri of any point of an orbit around the island, and the infinitesimal 
deviation vector f ,• found by solving the variational equations of the map (2). Then 
we define the rotation angle 0, as the angle between two successive vectors Ri and 
Ri+i, and the twist angle 4>i as the angle between two successive vectors f ,• and £t+i. 
Both angles are defined in appropriate intervals (see Voglis and Efthymiopoulos 
1998 for details). Finally, we define the distributions of the rotation angles and 
twist angles (angular dynamical spectra S(0) and S(<f>)). The angular moments are 
defined as: 

ve 2?r 
I es(9)de, v* = ~ I <f>s(</>)d<f> (4) 

and they correspond to the angular frequencies of rotation of the vectors R and £. 
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0.4511 -

Fig. 5. The curves ve{x) (solid) and v${x) (solid with dots) for K = 4.997 (Dx is given 
in units of 3.75 x 10-9, starting from x = 0.64364). The point A where the two curves 
coincide marks the position of the noble torus [2,4,1,1,...]. 

Then the following relations hold (Voglis and Efthymiopoulos 1998): 

ve = v<j> (5) 

for a closed KAM curve and 

V^-VQ- vk (6) 

for higher order islands of stability, where i>k is the mean angular frequency of 
epicyclic motion around the local center (stable periodic orbit) of the island. 

In Fig. 5 we calculate the curves vg(x) and v<j>{x) for K = 4.997 < Kc. The 
U-shaped parts of the curve v$ correspond to islands of stablility marked with their 
rotation numbers.The point A, where both curves VQ{X) and v</>(x) coincide on the 
horizontal line VQ = v$ — [2,4,1,1,..], gives the position of the corresponding 
noble torus. The curves i>o(x) and v^(x) coincide in a small segment around 
A, indicating that the noble torus [2,4,1,1,..] and nearby tori still exist. The 
coincidence of the curves vg(x) and v^x) in a segment around [2,4,1,1,..] means 
that the volume of tori in the very close neighborhood of the noble torus tends 
to unity. This can be understood by a recent theorem of Morbidelli & Giorgilli 
(1995). Further away we distinguish many islands of stability. The islands 60/133, 
157/348 and 254/563 belong to the sequence (3), while the rest of the islands 
belong to other Farey sequences. 

The size of the islands for K = 4.997, as a function of their multiplicity, is 
given in Fig. 6. We see that the islands with n = even are larger than those of 
the same order with n — odd. The sizes of the islands for n = even and n = odd 
follow two parallel lines that correspond to the power law 

DS = Am-2'15 (7) 
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multiplicity 

Fig. 6. The size of the islands as a function of the multiplicity m for K = 4.997. The 
sizes DS are measured along a line joining the periodic orbits 14/31 (x = 0.6438327, 
y = 0.3593945) and 23/51 (x = 0.6437657, y = 0.3631837), and are given in units of 
1.267 x 10-7. The sizes for n — even and n = odd follow the power law (7) with different 
constants A. The islands that belong to the Farey tree (3) are marked. 

with A = 2.8 x 108 for n = odd and A = 1.7 x 109 for n = even. 
When K grows beyond Kc the higher order periodic orbits become unstable 

and the corresponding islands are replaced by chaotic regions. This can be seen in 
Fig. 7 that gives the values of ve(x) and v^{x) for K = 4.9975 > Kc. In this case 
the noble torus [2,4,1,1,...] has been destroyed and transformed into a cantorus. 
Then, the diference vg — v^ is no longer equal to zero, but it is minimum near the 
cantorus (Voglis et al. 1998). In Fig. 7 we see still some islands of lower order 
around the cantorus. These islands act as partial barriers for the diffusion of the 
orbits, and contribute to the stickiness in their neighbourhood. Even for K = 5 the 
low order orbits 4/9, 5/11, 9/20, 14/31 and 23/51 are still stable. Some of the 
corresponding islands of stability are shown in Fig. 2. 

4. Stickiness and Asymptotic Curves 

The asymptotic curves of unstable periodic orbits inside a cantorus cross the gaps 
of the cantorus and act also as barriers to chaotic diffusion. A numerical (non-
schematic) example of such crossing of the cantorus by an ustable asymptotic 
curve is given in Fig. 8. The unstable asymptotic curve starting at the point O 
of the unstable periodic orbit 87/215 (inside the cantorus [2,4,1,1,..]) is plotted 
until the time when it crosses the cantorus for the first time (Fig.8). This happens 
after 4 iterations of an initial segment of size A5b = 10~10 along the asymptotic 
curve near the unstable periodic orbit. The unstable asymptotic curve first moves 
downwards and makes four oscilations inside the cantorus. Then it moves upwards 
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Fig. 7. Same as Fig.5 but for K = 4.9975 (Dx starts at x = 0.643583). The two curves do 
not coincide anywhere, i.e. the noble torus no longer exists. 

and crosses a gap of the cantorus. After its exit from the gap, the asymptotic curve 
moves almost parallel to the cantorus. If we iterate for longer times, we find that 
the asymptotic curve makes several oscillations crossing the cantorus successively 
inwards and outwards, before going to the large chaotic sea outside the island. The 
size of the asymptotic curve is approximately AS = A5o| A|n at the nth iteration, 
where A is the larger eigenvalue of the periodic orbit. In the present case A « -190 
and the escape to the large chaotic sea occurs after n = 6 iterations. 

The unstable asymptotic curve of Fig. 8 moves for some time almost parallel to 
the cantorus because the islands of stability close to the gaps of the cantorus (e.g. 
the islands 23/51) do not allow large excursions of the asymptotic curve in the 
transverse direction to the gaps. Furthermore, the asymptotic curve itself acts as a 
partial barrier to chaotic diffusion, since it cannot be intersected by the unstable 
asymptotic curve of any other unstable periodic orbit further inside the cantorus. 
Thus, for the latter to cross a gap of the cantorus, it necessarely has to move 
following a parallel path to the one of the unstable asymptotic curve of Fig. 8. 

We conclude that the diffusion of any chaotic orbit inside the cantorus follows 
essentially the same path as defined by the unstable asymptotic curves which 
emanate from unstable periodic orbits inside the cantorus. 

If we decrease the value of K the stickiness time increases and becomes infinite 
when K is smaller than the critical value Kc. In fact, as K decreases, the sizes of the 
gaps of the cantorus decrease and become zero for K — Kc. However the decrease 
of the size of the gaps is not the only reason forthe increase of the stickiness time. In 
Fig. 9 we show part of the asymptotic curve of die unstable periodic orbit 254/563 
which starts inside the cantorus [2,4,1,1,...] for K = 4.998. This asymptotic 
curve passes through the gaps of the cantorus and finally reaches the large chaotic 
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Fig. 8. Crossing of the cantorus [2,4,1,1,...] by the unstable asymptotic curve of the orbit 
97/215 for K = 5. The stars and the squares represent the periodic orbits 97/215 (inside 
the cantorus) and 157/348 (outside the cantorus), and they define approximately the gaps 
of the cantorus. 

0.3741 

0.6466 

Fig. 9. The structure of the phase space near the cantorus [2,4,1,1,...] for K = 4.998. 
The cantorus is approximated by the periodic orbits 157/348 (stars, outside the cantorus) 
and 254/563 (squares, inside the cantorus). A part of the asymptotic curve of the periodic 
orbit 254/563 is also plotted (solid line), corresponding to the 11th iteration of an initial 
segment AS0 = 10~10. 
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sea. 
In this case the eigenvalue of the periodic orbit is about A « 8. The first 

crossing of the cantorus occurs at the 9th iteration (starting with an initial segment 
A5b = 10-10). This is only a little over double the time required for crossing the 
same cantorus in the case K = 5. However for larger times the behaviour is very 
different. In Fig. 9 we see that after 11 iterations the asumptotic curve surrounds the 
islands 60/133 outside the cantorus, but there is no indication of a further diffusion 
outwards. In fact, we have found that an orbit requires a much longer time (of the 
order of 107 iterations) in order to reach the outer chaotic sea. 

We conclude: 
(a) that the stickiness is much more pronounced in the case K = 4.998 than 

in the case K = 5. This is related to the fact that K = 4.998 is quite close to the 
limiting value Kc = 4.9974, 

(b) that the stickiness is not due only to the cantorus [2,4,1,1,...]. Other cantori, 
outside the island 60/133, plus the higher order islands in this region produce an 
important barrier for the diffusion of the orbits in this neighboorhood. A further 
study of this phenomenon is in progress. 
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