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Abstract

An example is constructed of a locally finite variety of non-associative algebras which satisfies
the maximal condition on subvarieties but not the minimal condition. Based on this, counter-
examples to various conjectures concerning varieties generated by finite algebras are constructed.
The possibility of finding a locally finite variety of algebras which satisfies the minimal
condition on subvarieties but not the maximal is also investigated.

Subject classification (Amer. Math. Soc. (MOS) 1970): 08 A 15, 17 A 30.

1. Introduction

One method that has often been used in the proof that a finite algebra has a finite
basis for its laws is to embed that algebra in a Cross variety (see, for example,
Macdonald, 1973). Recall that a. proper section of an algebra A is Hip, where H is
a subalgebra of A, p a congruence on H and H/p is not the whole of A, and that a
critical algebra is a finite algebra which is not contained in the variety generated
by its proper sections. Then a Cross variety has to satisfy three conditions; it must
be locally finite, contain, up to isomorphism, only finitely many critical algebras,
and have a finite basis for its laws. As is well known (Birkhoff, 1935), the variety
generated by a finite algebra is locally finite, but the relationship (if any) between
the second and third conditions has not been clear. All the well-known types of
finite algebras with finite bases for their laws turn out to generate Cross varieties
(even those such as lattices, in which the Cross variety method of proof was not
used) so it seemed possible that these two conditions were not independent.
However, in this paper we shall construct examples of varieties generated by
finite algebras:

(i) with a finite basis for its laws, but containing infinitely many critical algebras;
(ii) with an infinite basis for its laws, but containing only finitely many critical

algebras,
thus showing that the two conditions are in fact independent (R. E. Park, 1976,
also has an example of type two, a four-element upper bound algebra.)
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[2] Varieties that make one Cross 369

The algebras involved all have modular congruence lattices, and this enables us
to produce a counterexample to the following conjecture (given in Macdonald,
1973):

CONJECTURE I. If SB is a variety of algebras whose congruence lattices are modular,
then every finite algebra in 93 has a finite basis for its laws (and, a fortiori, a counter-
example to the even more optimistic conjecture of S. Burris reported in the same
paper). Polin (1976) produced the first such example and it was news of this that
motivated our construction.

In Section 2 we prove a theorem which gives several equivalents to the existence
of only finitely many critical algebras in a locally finite variety, one of these being
that the variety satisfies both the maximal and minimal condition on subvarieties,
and again one might wonder if both chain conditions are necessary. The major
part of the paper is devoted to constructing an example of a variety generated by
a finite algebra which satisfies Max but not Min. It is on this example that the
other examples mentioned above have been based.

Unfortunately, we have not succeeded in constructing an example of a variety
generated by a finite algebra which satisfies Min but not Max. There is some
evidence to suggest that the variety generated by the three-element algebra proved
by Murskii (1965) to be infinitely based may have this property. This is discussed
in Section 4.

2. Equivalents to finitely many critical algebras

Clearly a critical algebra belongs neither to the variety generated by its proper
subalgebras, nor to that generated by its proper quotient algebras, in other words
it is both S-critical and Q-critical. Q-critical algebras are the easiest to work with
as they are subdirectly irreducible; unfortunately Q-criticality is not a sufficiently
strong condition, indeed (as can be deduced from Example 51.33 of Neumann,
1967) any finite group with non-abelian Sylow subgroups generates a variety
containing infinitely many Q-critical groups. As condition (a) of the following
theorem shows, it is S-criticality that is important.

2.1 THEOREM. If 93 is a locally finite variety then the following conditions are
equivalent.

(a) 93 has only finitely many S-critical algebras.
(b) 93 has only finitely many critical algebras.
(c) 93 has only finitely many subvarieties.
(d) 93 satisfies the maximal and minimal conditions on subvarieties.
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Before we prove the theorem we make some comments on condition (d). The
minimal condition on subvarieties of 93 is equivalent to the condition that every
subvariety of 93 has a finite basis for its laws as a subvariety. This means that
every subvariety of 93 is determined by the laws of 93 together with a finite additional
set of laws. It does not mean that 93 is itself finitely based, and indeed we shall see
that there exist locally finite varieties which are not finitely based, but which
satisfy the conditions of the theorem. If 93 is a locally finite variety then the
maximal condition on subvarieties of 93 is equivalent to the condition that every
subvariety of 93 (including 93 itself) is generated by a finite algebra. To see this
suppose that 93 is a variety which satisfies the maximal condition on subvarieties
and let 933 be a subvariety of 93. For each n— 1,2,... let 3Bm be the subvariety of
SB generated by its n generator algebras. Then

and so for some n, SBm = SBn for all m^n. This implies that SBn = SB, and so SB
is generated by Fn($B), the free algebra of SB of rank n. If 93 is locally finite then
Fn(W) is finite, and so SB is generated by a finite algebra. On the other hand,
suppose that every subvariety of 93 is generated by a finite algebra, and let

be an ascending chain of subvarieties of 93. Suppose that SBn is generated by the
finite algebra An for n = 1,2,..., and let the variety generated by {An: n = 1,2,...}
be generated by the finite algebra A. Then AeQSC{An: n = 1,2,...} (here C
denotes the cartesian product). Let AeQSB where BeC{An: n = 1,2,...}. Since
A is finite, A is a homomorphic image of a finitely generated subalgebra of B. Since
33 is locally finite this subalgebra is finite, and so is isomorphic to a subalgebra of
a finite Cartesian product of copies of algebras in {An: n — 1,2,...}. So A is in the
variety generated by a finite subset of {An: n = 1,2,...}, which implies that A eSBn

for some n. This implies that SBm = $Bn for m ̂  n.

PROOF OF THEOREM 2.1. Any critical algebra is certainly S-critical and so (a)
implies (b). Any subvariety of 93 is generated by its critical algebras, that is, by
some subset of the critical algebras of 93. Hence (b) implies (c). Trivially (c)
implies (d). The non-trivial part of the proof is that (d) implies (a). Let 93 be a
locally finite variety which satisfies the maximal and minimal conditions on
subvarieties. Suppose that 93 has infinitely many S-critical algebras, and let SB
be a subvariety of 93 which is minimal with respect to containing infinitely many
S-critical algebras. 93 satisfies the maximal condition on subvarieties and so, for
some n, SB is generated by its free algebra of rank n, Fn($B). If It is any proper
subvariety of SB then Fn(U) must be a proper homomorphic image of fn($B),
and so It satisfies some n variable law which is not satisfied by SB. This implies
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that the maximal proper subvarieties of SB are determined by n variable laws
(together with the laws of SB). Since 93 is locally finite it follows that 2B has only
finitely many maximal proper subvarieties. By assumption each of these contains
only finitely many S-critical algebras, and so SB contains infinitely many S-critical
algebras which do not lie in any of its proper subvarieties.

Let A be one of these S-critical algebras. Then the proper subalgebras of A must
lie in some maximal proper subvariety U of SB. As shown above, U is determined
by the laws of SB together with some n variable law. Since /4e3B and A$U,
A must fail to satisfy this n variable law. However, every proper subalgebra of A
lies in U, and so A can be generated by n elements. But 93 is locally finite, and so
has only finitely many n generator algebras. This leads to a contradiction, and so
our assumption that 93 contains infinitely many S-critical algebras is false, and
the theorem is proved.

3. Max but not Min

We now give an example of a locally finite variety 93 of non-associative algebras
which satisfies the maximal condition on subvarieties, but not the minimal
condition. So every subvariety of 93 (including 93 itself) is generated by a finite
algebra, but 93 has subvarieties which are not finitely based. By Zorn's Lemma 93
has a "just non-finitely based" subvariety SB. That is, 93 has a subvariety SB
which is not finitely based, but all of whose proper subvarieties are finitely based.
Since 2B is a subvariety of 93,SB satisfies the maximal condition on subvarieties, and
SB satisfies the minimal condition on subvarieties since all the proper subvarieties
of 2B are finitely based. So, by the theorem, SB is generated by a finite algebra,
SB has only finitely many critical algebras and only finitely many subvarieties, and
all the proper subvarieties of SB are Cross.

Let F be a finite field with q elements. A is a non-associative algebra over F if A
is a vector space over F with a bilinear product. Since F is finite the variety of
non-associative algebras over F is finitely based. If A is any non-associative
algebra we use a left normed convention for products of elements of A. Thus
abc denotes {ab)c. For i = 0,1,2,. . . we define afr inductively by ab°:=a,
abi+1 := (qb^b. Thus ab2 = (ab)b = abb.

3.1. THEOREM. Let 93 be the variety of non-associative algebras over F determined
by the laws

x1(xix3) = 0,

Then 93 is a locally finite variety satisfying the maximal condition on subvarieties but
not the minimal condition.
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Theorem 3.1 is an immediate consequence of Theorems 3.2, 3.4 and 3.10. We
give the proofs of these in the case when q = 2, that is, when F = Z2. The proofs
in the general case are essentially the same but the details are more complicated.

3.2. THEOREM. 33 is locally finite.

PROOF. Let A be an algebra in 93 and suppose that A is generated by alt a2,...,an.
Then using the law xx(x2x3) = 0 we see that A is spanned by elements of the form

aUl) aU2) • • • aUm)

with m^\ and i(l),i(2), ...,/(w)e{l,2,...,«}. Using the law

we see that if m ^ 5 then we may assume that

Using the law x ^ x ^ — x1x2x3xi in the case q = 2 we see that we may assume
that

/(3)</(4)<...</(iw-l).
Now there are only finitely many sequences (/(l),/(2), ...,i{m)) such that
/(l),/(2),...,/(w)e{l,2,...,«} and i(3)</(4)< ... <i(m-1), and so A is finite
dimensional as a vector space over F. Since F is finite this implies that A is finite.

3.3. THEOREM. 93 is generated by a finite algebra.

PROOF. Let A be the non-associative algebra over F defined as follows.
A is generated by elements a, b, c, d.
A has basis a, b, c, d, ab, abc, abd, abcb, abed, abdb, abdc, abedb as a vector space

over F.
If x and y are members of this basis then xy = 0 unless

x e {a, ab, abc, abd, abcb, abed, abdb, abdc, abedb}

and ye{b, c, d). These products are given by the following table.

a
ab
abc
abd
abcb
abed
abdb
abdc
abedb

b

ab
ab
abcb
abdb
abcb
abedb
abdb
abedb
abedb

c

0
abc
abc
abdc
abc
abdc
abdc
abdc
abdc

d

0
abd
abed
abd
abed
abed
abd
abed
abed
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It is routine to check that A satisfies the laws of 93. Now let F(23) be the free
algebra of 93 generated by x1,x2,.... As in the proof that 93 is locally finite we see
that F(93) is spanned (as a vector space) by monomials of the form

XUD XU2) • • • xUm)

with m ̂  1, i(3) < i(4) <...< i(m — 1). Let S be the set of finite sequences of positive
integers of the form (i(l),i(2),...,i(m)) with m^l, i(3)<i(4)<...<i(m-l). If
s = (i(l),i(2),...,i(m))eS let w(s) = xm)xm)...xiim). Then F(93) is spanned by
{w(s): seS}. We show that if s1,s2,...,sk are distinct elements of S and if
aj.ojj, ...,ockeFthen

is a law of A only if ax = a2 = ... = ak = 0. This proves that A generates 93.
It also proves that if s and t are distinct elements of S then w(s)^w(t), and that
{w(s): seS} is a basis of F(93) as a vector space over F. First we need to establish
some notation. If s = (/1,i2> •••>im)eS a nd z ' s a positive integer then we say that
s has degree r in / if / occurs r times in the sequence Ox, 4. •y'm)- Note that r
can be at most 4. We say that s involves / if it has degree at least 1 in /. The degree
of s is defined to be m. For each positive integer i we let Ŝ  be the endomorphism
of .F(93) which maps xt to 0 and maps X; to Xj fory^/. HseS and s involves i then
w(s) 8t = 0. If s does not involve i then w(s) 8f = w(s). Now suppose that A satisfies
a law

<x1w(si) + <x2w(s^)+ ... + ockw(sk) — 0

for some non-zero elements <x1,<x2,...,cxkeF and some distinct elements
slts2,...,skeS. Since F= Z2) ax = ô  = ... = <xk = 1. So we can write this law in
the form

where P is a non-empty finite subset of S. We show that this implies that A satisfies
a law of the form above where, for some m > 0, P consists of elements which are
of degree 1 in each of 1,2, ...,m, and which involve no other integers. Then we
obtain a contradiction by showing that A cannot satisfy a law of this form.

So suppose that A satisfies the law SsepwC*1) = 0, where P is some non-empty
finite subset of S. Then for each positive integer i

2>(y)_ 2^(5)8^ = 0
seP seP

is a law of A. Now w(s) 8t = 0 if s involves i, and otherwise w(s) St = w(s). So A
satisfies the law SggQW^) = 0, where Q is the subset of P consisting of elements
which involve i. By repeated use of this argument we see that if / is any finite
subset of the positive integers then 2 S 6 B W ( J ) = 0 is a law of A, where R is the
subset of P consisting of elements which involve the integers in / and no other
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integers. So we may assume that A satisfies a law of the form 2 S e p w(s) = 0 where
P is a non-empty finite subset of 5 whose elements all involve precisely the same
set of integers. There is no loss in generality in taking this set of integers to be
1,2,..., n. Let m be the maximum of the degrees of the elements of P, and let t eP
have degree m. If m>n then t cannot be of degree 1 in all of 1,2,..., n. We suppose
that t has degree r in i with r > 1. Let 0 be the endomorphism of /"(SB) which maps
Xi to Xi+xn+1 and which maps xt to xt for j<£i. Then

= 2 >"(*)

where Q is a 2r element subset of S consisting of elements of degree m, and where
2 r - 2 of the elements in Q involve l,2,...,/i + l. If ueP and w^f then

M<«I)0= M 4
se/J

where R is a finite subset of S whose elements have the same degree as u and
where, importantly, QnR = 0 . So (SsepHO) 0 = 'ZseTwis)> w n e r e ^ is a finite
subset of S which contains Q and which consists of elements of degree at most m.
This implies that J^SeTw(s) = 0 is a law of A, and hence that Tiseuw(s) = 0 is
a law of A, where U is the subset of T consisting of elements involving 1,2,..., n +1 .
By repeated use of this argument we see that A satisfies a law of the form
SsepN'CO = 0 where P is a non-empty finite subset of S consisting of elements of
degree m which involve 1,2, ...,m. Such a law is of the form

2 Xla
x2ir ••• xm<r = "»

<ren

where n is a non-empty set of permutations of {1,2,...,m} with the property that
if CT6TT then 3a<4a<. . . <(m— l)a. We obtain a contradiction by showing that
vl cannot satisfy a law of this form.

If TM^4 and ren let 95 be the homomorphism from F(93) to .4 which maps
xlT to a, X2T to b, xmT to c, and x̂  to */ for j ^ IT,2T, mr. Then

(xlTx2T...xmT)<p =
and if a err, CT^T then

(x1<Tx2<T...xm<T)<p = 0 or
So

Or

Since a ^ c and abdc+abcd&rt both non-zero this shows that Yia^v
x\dx%a ••• xmiT = 0

is not a law in A.
If m = 3 and TETT we let 9? be a homomorphism from F(93) to /4 which maps

xlT to a, X2T to 6, x3r to c. Then
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and if a en, CT^T, then

So

(Y,X x x U -

which implies that T,vevx1(rx2(rx3<r = 0 is not a law in A.
If m = 2 and TGTT we let $? be a homomorphism from F(93) to y4 which maps

xlT to a and JC2T to b. Then

and if <T^T then je1<r.x2o.9? = 0. So (Y,^eirx1(Tx2(r)<p = ab=^0, which implies that
So-eTr^io-^ = 0 is not a law of A.

Finally, if m = 1 then S f £ , % % ••• V must be JC1; and clearly xx = 0 is not a
law of /4.

This completes the proof that A generates 93.

3.4. THEOREM. If IBS is any subvariety o/93 then SB is generated by a finite algebra,
and hence 93 satisfies the maximal condition on subvarieties.

PROOF. First we show how the result will follow from the existence of a well
order < and a quasi order ^ on 5 with appropriate properties. The definitions
of these are given later.

Every non-zero element of ir(93) can be written uniquely in the form

W(J1) + W(J2) + ... + w(sk)

with svsi,...,skeS and st >s2 >... >sk. We define the weight of this element to be
sv The quasi order =̂  has the property that if veF(3i) has weight b and if a ^ b
then there is an element of weight a in the fully invariant ideal generated by v.
We let F(iBS) be the free algebra of 933 generated by yx,y^, •••, and we let n be the
homomorphism from F(93) to F(3B) which maps xt to yt for / = 1,2,.... Then if
weF0BS) and wj^O we define the weight of w to be the minimum with respect to
^ of the weights of elements veF($S) such that w = w. We let T be the set of
weights of non-zero elements of F(W). We show that the quasi order is a well
quasi order, and this implies that there is a finite subset To of T with the property
that if b e T then there is an element aeT0 with a =̂  b. The well order < has the
property that there are only finitely many elements of F(j8) of any given weight,
and so there are only finitely many elements in F(93) whose weight lies in To.
This means that there is an integer N with the property that if the weight of v lies
in To then ve^(93). (^(33) is the subalgebra of F(93) generated by xx,x2, ...,xN.)

Now suppose that v = 0 is not a law in IB. Then vn^O. Let w have weight b,
and let« be an element of weight b in F(93) such that un = tm. Let a be an element
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of To such that a=^b. Then there is an element weF(W) of weight a, and an
element peF(3i) of weight a such that pn = w. Also there is an element u* of
weight a in the fully invariant ideal generated by u. So the elements p and u*
of f(93) both have weight a and it follows that p—u* has weight less than a. Hence
w — u*n = (p—u*) IT has weight less than a which is the weight of w. This implies
that M*TT#0. Now the weight of u* lies in T0 and so 1**6^(23), which implies
that u* IT is a non-zero element of FN(ffi). But «* is in the fully invariant ideal of
F(j8) generated by u and so it follows that u = 0 is not a law in i^(2B). Finally,
the fact that uir = iw implies that u = v is a law of 2B, and so the fact that « = 0
is not a law of FN(%J&) implies that v = 0 is not a law of FN(WS). To summarize: if
v = 0 is not a law of 2B then it is not a law of i^(2B). This implies that 2C is
generated by the finite algebra

3.5. DEFINITION. The well order ^ is defined as follows. Let s, te S and let
5 = (i1} i2,..., im), t = (JiJ& •••Jn)- Let / be the set of integers involved in s, that is
the set ft, /2,..., im}, and let / be the set of integers involved in t. Let s< t if I is a
proper subset of / , or if / < / and / ^ / and max(7\/) < max(/ \ /) , or if / = J and

TM<2 and m<n, or

m = n < 2 and ij </•£, or
?M = « = 2 and fj =jlt /2 </2» o r

m,n>2 and /x</!, or
m,n>2 and /x =7i, h<j'z, or
m,«>2 and ^ =7^ i2 =j2, im<jn, or
m,n>2 and zx =7l 512 =y2, /TO =jn and J has smaller degree in ix than r, or
m,n>2 and ^ =/! , z2 =y2> 'm = A a n d s has the same degree as t in ilt but

smaller degree than t in i2, or
m,n>2 and /x =/ i , i2 =y2, im =7re and s has the same degree as t in /x and i2,

but smaller degree than t in im.

3.6. LEMMA. < is a well order.

PROOF. If s = (iltia, ...,im)eS then s is determined by the set {iui2, . . . , / m } , the
integers it, i%, im, and the degrees of j in ilt i2, im, and so ^ defines an order on S.
Also the first two conditions in the definition of ^ imply that if s e S then there
are only finitely many elements teS with t<s. This shows that < is a well order,
and also shows that there are only finitely many elements in F(93) of any given
weight.

3.7. DEFINITION. The quasi order =̂  is defined as follows. If (il3i2, ...,*,„),
UiJ& -JJeS let 01,/jj, ...,ij ^ (j\,j2, ...,;„) if one of the following conditions
is satisfied.
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1. Both m and n are greater than 2, and there is a map <p from {jltjt, • ••Jn}
onto {ilt 4, • • -, f'm} such that

rep = ix if and only if r =jx,

r<p = i2 if and only if r =j2,

r<p = im if and only if r = ./„,

{73./4> • • • Jn-l) 9> = fe *4> • • •»Jm-l)>

(Note that we do not insist that <p is one-one.)
2. Both m and n equal 2 and there is a one-one order preserving map <p from

OWJtoft./J.
3. Both w and n equal 1. In this case to keep the notation consistent we let p

be the map from {yj to {/J.

3.8. LEMMA. Ifa = {ix,i2,...Jrr^^(jxJ2,...J^-b and i>eF(33) has weight b
then the fully invariant ideal generated by v contains an element of weight a.

PROOF. Let <p be the map from {Ji,j%, •••Jn}
 t o {'i> '2* •••» 'ml satisfying the condi-

tions of Definition 3.7 and let 6 be a endomorphism of f(93) which maps xt to
*fp for i =Ji,J2fJn- Then, using the law x1xzx3x3xl = x1x2x3xl, we see that
w(b) 0 = w(a).

If v = 28 epw(s) for some finite subset of i5 containing i , then, as in the proof
of Theorem 3.3, we see that the fully invariant ideal of F(33) generated by v
contains the element 2 S 6 Q W ( S ) , where Q is the subset of P consisting of elements
involving the integers A>72> •••>jn

 an<^ n o others. This implies that ^S£QW(S)0 is
in the fully invariant ideal generated by v, and we show that S S 6 Q W(S) has weight a.
Note that beQ and that w(b)6 = w(a). We show that if seQ and s^b then
w(s) 6 = w(t) for some teS, t<a. This is trivial in the case when m = n = 1, or in
the case when m = n = 2, for then 9? is a one-one order preserving map. So suppose
that m,n>2, and let 5 = (^,^2, ...,fcp). Note that {k1,ki,...,kp} = {jx,j2,...,j^
since J e 2- Then w(.s) 0 = w(t) where f = (kx <p, k2 <p, rl3 r2,..., rg, kp <p) with
rx < r2 <... < rg and {rlt r2,..., rQ} = {k3 <p, kt <p,..., k{p_^ ?)• First, since s involves
the integers71,72. —Jn anc^ n o other integers, and since <p maps {ji,h, •••Jn}

 o n t o
{h,i2> •••>'»«} it follows that t involves the integers iY,i2,...,im. This means that /
involves the same integers as a. Next, since r = ix if and only if r =j\, and since
rq>^s<p if r O , it follows that if kx<jx then k^qxj^rp. Similarly if k2<j2 then
k2ip<j2<p, and if kp<jn then kp(p<jn(p. This implies that f < a except in the case
when fcj =71, fc2 =y2 and fcp =jn.

So suppose that fcx =j\, k2 —j2, kp =jn. Since s and 6 involve the same integers
the condition that s<b must imply that b has higher degree than s in one of the
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integers h,j2,jn. However, the condition that r<p = ix if and only if r =j\ implies
that the degree of b in j \ is the same as the degree of a in iv Similarly the degree
of s inyr is the same as the degree of t in iv So if b has higher degree than s mj\
then a has higher degree than t in ix. Similarly if b has higher degree than s inj2

oryn then a has higher degree than t in ia or im (respectively). So t <a in this case
also. This completes the proof that 2 S e Q

 W(S) has weight a.

3.9. LEMMA. =^ is a well quasi order.

PROOF. From Higman (1952), it is sufficient to show that every sequence of
elements of S has a subsequence which is ascending with respect to = .̂ Clearly this
is so if infinitely many terms of the sequence are of the form (/j) or of the form
Oi, 4). So, replacing the original sequence by a subsequence if necessary, we may
suppose that all the terms in the sequence have degree at least 3. Let the sequence
be sltst,... and let sn = («i,«2, ...,«m(n)) for n = 1,2 Now one or more of the
following conditions is satisfied by the sequence.

nx > n2 for infinitely many terms in the sequence.
ni — "2 f ° r infinitely many terms in the sequence.
«! < «2 for infinitely many terms of the sequence.

So, replacing the sequence by a subsequence if necessary, we may suppose that
n1>n2 for all n, or nx = w2 for all n, or nx<n2 for all n. Similarly we may assume
that «i>nm(n) for all n, or nx = nm(n) for all n, or n1<nmU) for all n and that
«2>nm(n) for all n or n2 = nm(n) for all«, or w2<«m(n) for all n. Let us suppose for
example that n1>n2>nm(n) for all n.

Then let An be the set of integers involved in sn which are greater than nv

Let Bn be the set of integers which are involved in sn and which lie between n±
and n2. Let Cn be the set of integers which are involved in sn and lie between n^
and nm(n). Let Dn be the set of integers which are involved in sn and are less than
nm(n). Then replacing the sequence by a subsequence if necessary, we may suppose
that An is empty for all n, or that An is non-empty for all n and that | An\ sS \An+1\
for all n. Similarly we may suppose that | Bn \ = 0 for all n, or that 0 < | Bn \ < | Bn+1 \
for all n, and that | Cn \ = 0 for all n, or that 0 < | Cn \ < | Cn+1 \ for all n, and that
I Dn\ = 0 for all n, or that 0 < | Dn\<| Z>n+1| for all «. But then we can find order
preserving maps from An+1 onto An, and from Bn+1 onto 2?B, and from Cn+1

onto Cn, and from Dn+1 onto Dn. Combining these maps we can find an order
preserving map <pn from the set of integers involved in sn+1 to the set of integers
involved in sn which maps (n + lX to nl7 («+l) 2 to n2, («+l)m(n+D to nm(n) and
maps An+1 onto An, Bn+1 onto Bn, Cn+1 onto Cn and Dn+1 onto Dn. The map ?>„
satisfies the conditions in the definition of =̂  and so sx =̂  s2 ^ ••.. This shows that
the original sequence has an ascending subsequence. We obtain ascending sub-
sequences by the same method whatever the relative magnitudes of ni,
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This completes the proof that =̂  is a well quasi order, and also completes the
proof that 93 satisfies the maximal condition on subvariates.

3.10. THEOREM. 93 does not satisfy the minimal condition on subvarieties.

PROOF. We prove this by exhibiting an example of a subvariety of 93 which does
not have a finite basis for its laws. Let 9B be the subvariety of 93 determined by
the laws wn = 0 for n = 6,7,..., where

Consider the fully invariant ideal generated by wn. If « is any element in /"(93)
then uwn = 0 by the law x1(x2x3) = 0. Also wnu = 0 by the law

•*i X2 X3 X± X§ =

So the fully invariant ideal generated by wn is spanned by elements of the form

where v1,v2 vneF^8). Since wn is linear in xx,x2, ...,xn we may assume that
v1,v2,...,vn are monomials. But if any of v2,v3, ...,vn is a monomial which is a
product of two or more of the generators of F0S) then v = 0 by the law xt(x2 x3) = 0.
If vx is a monomial which is a product of two or more of the generators of F(93)
then v = 0 by the law x1x2x3xixs = x1x2xix3x5. Hence we may assume that
vx,v2, ...,vn are generators of F(93), which implies that v is a linear combination of
monomials each of which is a product of at most n generators of F(93). So any
element of the fully invariant ideal generated by wn is a linear combination of
monomials each of which is a product of at most n generators of .F(93). Now
suppose that 9B is finitely based. Then, for some n, wn is in the fully invariant
closure of wlt w2,..., wn_v Hence wn can be expressed in the form

for some <x1,oc2,...,cxkeF and for some monomials m1,m2,...,mk, each of which
is a product of at most n — 1 generators of f(93). For i = 1,2,...,« let St be the
endomorphism of .F(93) which maps x+ to 0 and maps x} to Xj for jjt i. Then
wn8i = Q for i = 1,2,...,«. Also if 1 ^j^k then m} is a product of at most n — \
generators of .F(93) and so mihi = mj for some i ( l<i<n) . Let /* be the map
(l-S1)(l-o"2). . .(l-8B) from F(93) to F(93). (Note that although ju is not an
endomorphism of F(93)as an algebra, it is a linear transformation of F(93) as a
vector space.) Then wnfi = wn, and mjfi = 0 for 1 ^j^k. Hence
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However, if A is the algebra defined above which generates 23 and if 6 is the
homomorphism from /"(23) to A which maps xx to a, x2 to b, x5 to d and xt to c
for yV 1,2,5 then

wn 0 = abcd—abdc^O.

This implies that wn^0, and so 2B cannot be finitely based.
As we have proved above, 93 contains finite algebras which do not have finite

bases for their laws, but which generate varieties with only finitely many sub-
varieties. Here is an example of such an algebra. Let B be the non-associative
algebra over F defined as follows.

B is generated by elements a, b, c.
As a vector space over F, B has basis a, b, c, ab, ac, abc, acb, abcb.
If x,y are members of this basis then xy = 0 unless xe{a,ab,ac,abc,acb,abcb)

and y = b or c. These products are given by the following table.

a
ab
ac
abc
acb

abcb

b

ab
ab
acb
abcb
acb

abcb

c

ac
abc
ac
abc
abc+acb

—abcb
abc

The following laws are a basis for the laws of the variety generated by B (as a
subvariety of 93).

. XnX4X5 — (X1 X2Xa — XiX3X%)X6Xi ...XnX5Xi = 0

for n = 6,7,...,

X$ X4 = U,

^ U,

x1x%x§-x1x*x3-x1x2x%+x1x2x3 = 0,

Xj Xg X3 X4 Xj X2 X4 X3 Xj Xg X3 X4 "T Xj Xg X4 X3 = U,

Xj X2 X3 X| — Xj X3 X2 X^ — Xj X2 X3 X4 + Xj Xg Xg X4 = 0.

Every subvariety of the variety generated by B is determined by four variable
laws as a subvariety, and this implies that the variety generated by B has only
finitely many subvarieties.

To summarize, our collection of examples is as follows:
93 is a locally finite variety that satisfies Max but not Min.
93 is a variety generated by a finite algebra which has a finite basis for its laws,

but contains infinitely many critical algebras.
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Var(5), the variety generated by the finite algebra B, has an infinite basis for
its laws, but contains only finitely many critical algebras.

Since all the algebras in S3, being linear algebras, have modular (indeed,
permutable) congruence lattices, B also provides a counter-example to conjecture 1.
(As mentioned in the introduction this was inspired by an example of Polin (1976).)

4. Min but not Max?
Murskii (1965) proved that the three element groupoid M defined by the multi-

plication table shown below has an infinite basis for its laws. (Murskii treated it

0
1
2

0

0
0
0

1

0
0
2

2

0
1
2

as a groupoid with a single binary operation, but his results go through when it is
regarded as a groupoid with zero; we shall regard it thus as this simplifies many of
the calculations.)

4.1 THEOREM. Var(M) contains an infinite ascending chain of critical algebras

PROOF. The Gn are of the form Gn = {0,g1,...,gn}: 0^ = ^ 0 = 0, ?<?< = 0,
= gi OW)- These are constructed as follows:

For n = 1 the subgroupoid {0,1} of M satisfies these conditions.
For n > 1, let Hn be the direct product of n copies of M. Consider the equivalence

relation /> on Hn defined by (ax «n)p(£i> ..-,*«) if

either there exists i,j such that a% — bt = 0

or ai = bi(i=\,...,n).

p is clearly a congruence relation. Let Gn be the subgroupoid of HJp whose
elements are 0,^, ...,gn, where

= [(2,...,l 2)]p.

Then

Oft = ftO = 0, gigi = [(2,...,0, ...,2)]p = 0, gigj = [(2,.... 1, ...,2)] = gi,
i i

so Gn has the required properties.
It remains to show that Gn is critical. First note that there are no proper non-

trivial congruences on Gn; for, if (0,g^)ea, then (0,^)ecr, and if (gi,
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then (0,g{)ea. Thus it is sufficient to show that Gn does not belong to the variety
generated by its proper subalgebras. Since these are precisely 0 and Gm for m<n,
it is sufficient to construct a law w(x±, ...,xn) = 0 which holds in Gm for m<n, but
not in Gn. We define w inductively as follows:

W(*l, • • •,Xn) = Xn(xn_i(.Xn(xn-2 ... (

Now in Gm any right-nonned product will reduce to 0 if one of the entries is 0
or if two adjacent entries are equal. Since in any substitution of elements of Gm

into w(xx xn) for m<n either some JC4 is 0 or xt = Xj for some i^j, we have
that w(xlt ...,xn) = 0 is a law in Gm for m<n. However, in Gn the substitution
Xi = gt gives w(xlt...,xn) = gn¥=0. Hence Gn is critical, as required. (Park (1976)
shows that this variety contains infinitely many subdirectly irreducible algebras,
these are precisely the HJp of the above proof.)

4.2 COROLLARY. Var(M) does not satisfy Max.

PROOF. If Un = var(GJ then Theorem 4.1 shows that

is an infinite ascending chain of subvarieties of var (M).
It remains, of course, to prove that var(Af) does satisfy Min: at present the

best we can do is leave that as a conjecture.
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