THE RELATIONSHIP BETWEEN POLAR AND AC OPERATORS

JULIE WILSON

Department of Mathematics, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland

(Received 7 January, 1998)

Abstract. This paper gives examples to show that a polar operator is not necessarily AC and an AC operator is not necessarily polar.

1. Introduction. Well-bounded operators are the building blocks of polar and AC operators. First introduced by Smart in 1960, well-bounded operators were originally studied by Smart and Ringrose [6], [7], [8]. These operators admit a spectral decomposition which is, in some sense, analogous to that for self-adjoint operators on Hilbert space. The spectral decomposition is simplified when we consider well-bounded operators of type (B).

By their definition, well-bounded operators have real spectra. In order to extend the concept of well-boundedness to operators with complex spectra, we consider trigonometrically well-bounded, polar and AC operators. The relevant facts about well-bounded, polar and AC operators are outlined in the next section. For a detailed account of the theory well-bounded operators see [4].

2. Background and notation. Throughout the following X will denote a complex Banach space with dual space X^* and $\mathcal{B}(X)$ will denote the algebra of all bounded linear operators mapping X into itself. Given a compact interval J = [a, b] of the real line, let BV(J) denote the Banach algebra of complex-valued functions of bounded variation on J with norm

$$\left\|f\right\|_{BV(J)} = \left|f(b)\right| + \operatorname{var}_{I} f$$

where $\underset{J}{\operatorname{var}} f$ represents the total variation of f on J. Similarly, using **T** to represent the unit circle, let $BV(\mathbf{T})$ denote the Banach algebra of complex-valued functions of bounded variation on **T** with norm

$$||f||_{BV(\mathbf{T})} = |f(1)| + \operatorname{var}_{\mathbf{T}} f,$$

where $\underset{\mathbf{T}}{\operatorname{var}} f$ is the total variation of f on **T**. Furthermore, the notation AC(J) (respectively $AC(\mathbf{T})$) will denote the closed subalgebra of BV(J) (respectively $BV(\mathbf{T})$) consisting of the absolutely continuous functions on J (respectively **T**).

DEFINITION 2.1. An operator $T \in \mathcal{B}(X)$ is said to be *well-bounded* if there exists a constant *K* and a compact interval $J \subseteq \mathbf{R}$ such that

$$\left\|p(T)\right\| \le K \left\|p\right\|_{BV(J)},$$

for all polynomials *p*.

JULIE WILSON

Note that, in this case, the spectrum of T must be a subset of J.

DEFINITION 2.2. Let *J* be a compact interval of the real line. An AC(J)-functional calculus (respectively an $AC(\mathbf{T})$ -functional calculus) for an operator $T \in \mathcal{B}(X)$ is a norm-continuous algebra-homomorphism γ of AC(J) into $\mathcal{B}(X)$ (resp. $AC(\mathbf{T})$ into $\mathcal{B}(X)$) which sends the identity map v(t) = t to *T* and the function identically 1 to *I*, the identity operator of $\mathcal{B}(X)$. In addition, γ is said to be weakly compact if, for each $x \in X$, $\gamma(\cdot)x$ is a weakly compact linear mapping of the domain of γ into *X*.

Since the polynomials are dense in the set of absolutely continuous functions [7, Lemma 10], we can say that an operator T is well-bounded if there exists a compact interval J for which T has an AC(J)-functional calculus.

DEFINITION 2.3. An operator T is said to be *well-bounded of type* (B) if, for some compact interval J, T has a weakly compact AC(J)-functional calculus. (Note that if X is a reflexive space then every well-bounded operator on X is automatically of type (B). See [5, p. 68].)

DEFINITION 2.4. A spectral family in X is a projection-valued function $E(\cdot) : \mathbf{R} \to \mathcal{B}(X)$ satisfying the following conditions:

- (i) $\sup\{\|E(\lambda)\| : \lambda \in \mathbf{R}\} < \infty;$
- (ii) $E(\lambda)E(\mu) = E(\mu)E(\lambda) = E(\min\{\lambda, \mu\})(\lambda, \mu, \in \mathbf{R});$
- (iii) $E(\cdot)$ is strongly right continuous;
- (iv) $E(\cdot)$ has a strong left-hand limit at each point of **R**;
- (v) $E(\lambda) \to 0$ (respectively $E(\lambda) \to I$) in the strong operator topology of $\mathcal{B}(X)$ as $\lambda \to -\infty$ (respectively $\lambda \to +\infty$).

NOTE. If $E(\lambda) = 0$ for all $\lambda < a$, and $E(\lambda) = I$ for all $\lambda \ge b$, then $E(\cdot)$ is said to be *concentrated on* [*a*, *b*].

If $E(\cdot)$ is a spectral family in X concentrated on J = [a, b] and $f \in BV(J)$, then

$$\int_{J}^{\oplus} f(\lambda) dE(\lambda) \equiv f(a)E(a) + \int_{a}^{b} f(\lambda) dE(\lambda)$$

exists as the strong limit of the Riemann-Stieltjes sums

$$\mathcal{S}(f, u) = f(a)E(a) + \sum_{j=1}^{n} f(\lambda_j) \big\{ E(\lambda_j) - E(\lambda_{j-1}) \big\},$$

where $u = (\lambda_0, \lambda_1, ..., \lambda_n)$ is a partition of *J*. Rearranging the above in the style of integration by parts gives

$$\mathcal{S}(f, u) = f(b)E(b) - \sum_{j=1}^{n} \left\{ f(\lambda_j) - f(\lambda_{j-1}) \right\} E(\lambda_{j-1}).$$

The following results concerning well-bounded operators maybe found in [4, Part V].

PROPOSITION 2.5. The mapping

$$f \to \int_{J}^{\oplus} f dE$$

is an identity-preserving algebra homomorphism of BV(J) into $\mathcal{B}(X)$ satisfying

$$\left\| \int_{J}^{\oplus} f dE \right\| \leq \left\| f \right\|_{BV(J)} \sup \left\{ \left\| E(\lambda) \right\| : \lambda \in \mathbf{R} \right\}$$

for every $f \in BV(J)$.

PROPOSITION 2.6. Let $T \in \mathcal{B}(X)$. Then T is well-bounded of type (B) if and only if there exists a spectral family $E(\cdot)$ in X such that

- (i) $E(\cdot)$ is concentrated on a compact interval [a, b], and
- (ii) $T = \int_{[a,b]}^{\oplus} \lambda dE(\lambda).$

In this case $E(\cdot)$ is uniquely determined and is called the spectral family of T.

PROPOSITION 2.7. Let $T \in \mathcal{B}(X)$ be well-bounded of type (B) and let $E(\cdot)$ be its spectral family. Then an operator S commutes with T if and only if S commutes with $E(\lambda)$, for all $\lambda \in \mathbf{R}$.

PROPOSITION 2.8. Let $T \in \mathcal{B}(X)$ be well-bounded of type (B) and let $E(\cdot)$ be its spectral family. Then for each $\lambda \in \mathbf{R}$, $\{E(\lambda) - E(\lambda^{-})\}$ is a projection operator and

$$\left\{ E(\lambda) - E(\lambda^{-}) \right\} X = \left\{ x \in X : Tx = \lambda x \right\},\$$

where $E(\lambda^{-})$ denotes the strong limit of E(s) as $s \to \lambda^{-}$.

Trigonometrically well-bounded, polar and AC operators all arise from wellbounded operators. Their definitions are given below.

DEFINITION 2.9. An operator $T \in \mathcal{B}(X)$ is said to be *trigonometrically well-bounded* if there exists a well-bounded operator A of type (B) on X such that $T = e^{iA}$.

PROPOSITION 2.10. If T is a trigonometrically well-bounded operator on the Banach space X, then there is a unique well-bounded operator A of type (B) on X such that $T = e^{iA}$, $\sigma(A) \subseteq [0, 2\pi]$, and such that $\sigma_p(A)$, the point spectrum of A, does not contain 2π .

DEFINITION 2.11. The unique operator A in Proposition 2.10 is called the *argument* of T and is denoted by argT. For more on trigonometrically well-bounded operators see [3].

DEFINITION 2.12. An operator $T \in \mathcal{B}(X)$ is said to be a *polar operator* if there exist commuting type (B) well-bounded operators R and A on X such that $T = Re^{iA}$. The following results about polar operators will be required in Section 3.

THEOREM 2.13. See [1, Theorem 1]. Let $T \in \mathcal{B}(X)$ be polar. Then T has a decomposition $T = Re^{iA}$ such that

- (i) *R* and *A* are commuting well-bounded operators of type (B);
- (ii) $\sigma(R) \ge 0$;
- (iii) $F(0)e^{iA} = F(0)$, where $F(\cdot)$ is the spectral family of R;
- (iv) $\sigma(A) \subseteq [0, 2\pi], 2\pi \notin \sigma_p(A).$

This decomposition is unique and is called the *canonical decomposition of* T.

THEOREM 2.14. See [1, Theorem 3.18(i)]. Let T be a polar operator with canonical decomposition $T = Re^{iA}$. Then the commutants of T, R and A satisfy the equality $\{T\}' = \{R\}' \cap \{A\}'$.

Polar operators are discussed further in [1] and [9]. The final definition required is that of an AC operator.

DEFINITION 2.15. An operator $T \in \mathcal{B}(X)$ is said to be an *AC operator* if there exist commuting well-bounded operators *C* and *D* such that T = C + iD. AC operators are studied in [2], from which the following result is taken.

THEOREM 2.16. See [2, Lemma 4]. Let C and D be commuting well-bounded operators of type (B) on X and let $S \in \mathcal{B}(X)$ commute with C + iD. Then S commutes with C and D.

It has been shown [3, Theorem 3.4] that an operator T is trigonometrically wellbounded if and only if there exist commuting well-bounded operators A and B of type (B) such that

$$T = A + iB \tag{1}$$

and

$$A^2 + B^2 = I. (2)$$

With this in mind, it seems natural to pose the following questions.

- (1) If *T* is polar, do there exist commuting well-bounded operators *A* and *B* (of type (B)) such that (1) holds?
- (2) If T = A + iB with A and B commuting well-bounded operators of type (B), does it follow that T is polar?

We shall now give examples to show that the answer to both these questions is negative. We shall use the following definitions and results from [4].

3. Examples. Let $a \in l^2$ and, for $n \in N$, let $P_n : l^2 \to l^2$ be defined by

$$P_n a = \langle a, y_n \rangle x_n,$$

where

$$\begin{aligned} x_{2n-1} &= e_{2n-1} + \sum_{i=n}^{\infty} \alpha_{i-n+1} e_{2i}, \\ x_{2n} &= e_{2n}, \\ y_{2n-1} &= e_{2n-1}, \\ y_{2n} &= \sum_{i=1}^{n} (-\alpha_{n-i+1}) e_{2i-1} + e_{2n} \ (n \in \mathbf{N}), \\ \alpha_1 &= 0, \alpha_n = \frac{1}{n \log n}, \ (n = 2, 3, \ldots), \end{aligned}$$

and ε_n is the element of l^2 with 1 in its *n*th position and 0 elsewhere. Then each P_n is a projection, $P_n P_m = 0$ whenever $n \neq m$, and $I = \sum_{n=1}^{\infty} P_n$, the series converging in the strong operator topology of $\mathcal{B}(l^2)$.

PROPOSITION 3.1. See ([4, 18.5]). Let $\{\lambda_n\}$ be a monotonic bounded sequence in **R** and, for each $n \in \mathbf{N}$, let P_n be as above. Then the series $\sum_{n=1}^{\infty} \lambda_n P_n$ converges strongly in $\mathcal{B}(l^2)$ and its sum is a well-bounded operator.

Note that in the proof of 18.4 in [4] it is shown that

$$\left\|\sum_{j=1}^{n} P_{2j}\right\| \to \infty \text{ as } n \to \infty.$$
(3)

We shall use this result in the example below.

EXAMPLE. Let $X = l^2$, P_n be defined as above, and define sequences $\{\lambda_n\}$ and $\{\mu_n\}$ by

$$\lambda_n = \frac{n+1}{n}$$

and

$$\mu_{2n-1} = \mu_{2n} = \cos^{-1}\left(\frac{4n^2 - 1/2}{4n^2 + 2n}\right),$$

for all $n \in \mathbb{N}$. In addition, define

$$C = \sum_{n=1}^{\infty} \lambda_n P_n$$
 and $D = \sum_{n=1}^{\infty} \mu_n P_n$.

By Proposition 3.1, each series converges strongly in $\mathcal{B}(l^2)$ and C and D are wellbounded operators (of type (B)). Furthermore, since C and D commute, it follows that Ce^{iD} is polar. Now suppose that $C \cos D$ is well-bounded with spectral family $E(\cdot)$. Then

$$(C \cos D)P_n = (\lambda_n \cos \mu_n)P_n$$
$$= \begin{cases} \left(\frac{n^2 - 1/2}{n^2}\right)P_n & \text{when } n \text{ is even,} \\ \left(\frac{n^2 + 2n + 1/2}{n^2 + 2n}\right)P_n & \text{when } n \text{ is odd.} \end{cases}$$

Fix $x \in l^2$ and suppose that *n* is even. Observe that

$$P_n x \in \left\{ x \in l^2 : (C \cos D) x = \left(\frac{n^2 - 1/2}{n^2}\right) x \right\}.$$
 (4)

Furthermore, if

$$(C \cos D)x = \frac{n^2 - 1/2}{n^2}x,$$

then

$$P_m x = \frac{n^2}{n^2 - 1/2} (C \cos D) P_m x$$

and it follows that $P_m x = 0$ if $m \neq n$. Thus

$$\left\{x \in l^2 : (C \cos D)x = \left(\frac{n^2 - 1/2}{n^2}\right)x\right\} \subseteq P_n X$$
(5)

Combining statements (4) and (5), we see that

$$P_n X = \left\{ x \in l^2 : (C \cos D) x = \left(\frac{n^2 - 1/2}{n^2}\right) x \right\}.$$
 (6)

Also, by Proposition 2.8,

$$P_n X = \left\{ E\left(\frac{n^2 - 1/2}{n^2}\right) - E\left(\left(\frac{n^2 - 1/2}{n^2}\right)^{-}\right) \right\} X.$$

Since

$$\frac{n^2 - 1/2}{n^2} < 1$$

for all $n \in \mathbf{N}$, it follows that $E(1)P_n = P_n$ whenever *n* is even.

When n is odd, an argument similar to that above shows that

$$P_n X = \left\{ x \in l^2 : C \cos Dx = \left(\frac{n^2 + 2n + 1/2}{n^2 + 2n} \right) x \right\}.$$
 (7)

As

$$\frac{n^2 + 2n + 1/2}{n^2 + 2n} > 1,$$

for all $n \in \mathbf{N}$, it follows that $E(1)P_n = 0$ for n odd.

Combining even and odd cases, we see that

$$E(1) = \sum_{n=1}^{\infty} E(1)P_n = \sum_{n=1}^{\infty} P_{2n},$$

with the series converging in the strong operator topology of $\mathcal{B}(l^2)$. Since E(1) is bounded, the partial sums of the series $\sum_{n=1}^{\infty} P_{2n}$ must be bounded in norm, giving a contradiction to (3). Hence $C \cos D$ is not well-bounded.

Now suppose that $T = Ce^{iD} = A + iB$, where A and B are commuting wellbounded operators. Since C and D commute with T it follows that $C \cos D$ commutes with T and, by Theorem 2.16, C cos D commutes with A and B.

Next fix $n \in \mathbb{N}$ and suppose that $y \in P_n X = \{x \in X : C \cos Dx = \lambda_n \cos \mu_n x\}$. Then

$$Ay = (\lambda_n \cos \mu_n)^{-1} A(C \cos D)y = (\lambda_n \cos \mu_n)^{-1} (C \cos D)Ay$$

and hence $Ay \in P_nX$. A similar argument shows that P_nX is invariant under B. It readily follows that A and B commute with P_n .

Now, since each $P_n X$ is one-dimensional (the $P_n X$ are the eigenspaces of $C \cos D$ corresponding to the distinct eigenvalues $\lambda_n \cos \mu_n$), there exist α_n and $\beta_n \in \mathbf{R}$ such that

$$A|P_nX = \alpha_n$$
 and $B|P_nX = \beta_n$

Thus, on $P_n X$, we have

$$T = Ce^{iD} = \lambda_n \cos \mu_n + i\lambda_n \sin \mu_n$$

and also

$$T = A + iB = \alpha_n + i\beta_n.$$

Equating real and imaginary parts gives $\alpha_n = \lambda_n \cos \mu_n$ and $\beta_n = \lambda_n \sin \mu_n$. Thus $A = C \cos D$ on each $P_n X$ and it follows that $A = C \cos D$. This contradicts the fact that A is well-bounded. Hence T cannot be AC.

An example of an AC operator which is not polar now follows.

EXAMPLE. Let $X = l^2$ and, for $n \in \mathbb{N}$, let P_n be as in the example above. Now define

$$C = \sum_{n=1}^{\infty} \lambda_n P_n$$
 and $D = \sum_{n=1}^{\infty} \mu_n P_n$,

where, for $n \in \mathbf{N}$,

$$\lambda_n = \sqrt{\frac{n+1}{n}}$$

and

$$\mu_{2n-1} = \mu_{2n} = \sqrt{\frac{(2n-1) - (4n-2)^{-1}}{2n}}.$$

By Proposition 3.1, C and D are well-bounded operators (of type (B)). Moreover, as C and D commute, T = C + iD is AC.

Now suppose that *T* is polar with canonical form Re^{iA} . By Theorems 2.14 and 2.16, *R* and *A* commute with *C* and *D*. It is readily checked that, for each $n \in \mathbb{N}$, $P_n X = \{x \in X : Cx = \lambda_n x\}$, $P_n X$ is invariant under both *R* and *A*, and P_n commutes with *R* and *A*.

Now, given $n \in \mathbf{N}$, there exist r_n and $\theta_n \in \mathbf{R}$ such that

$$R|P_nX = r_n$$
 and $A|P_nX = \theta_n$.

Furthermore, on $P_n X$,

$$T = Re^{iA} = r_n e^{i\theta_n}$$

and

$$T = C + iD = \lambda_n + i\mu_n.$$

Hence $r_n e^{i\theta_n} = \lambda_n + i\mu_n$ and $r_n = (\lambda_n^2 + \mu_n^2)^{1/2}$, for all $n \in \mathbb{N}$. Observe that

$$r_n = \begin{cases} \left(2 - \frac{1}{2n(n-1)}\right)^{1/2} & \text{for } n \text{ even,} \\ \left(\frac{2n^2 + 2n + 1/2}{n^2 + n}\right)^{1/2} & \text{for } n \text{ odd,} \end{cases}$$

so that $r_n < \sqrt{2}$ if *n* is even and $r_n > \sqrt{2}$ if *n* is odd. Notice also that

 $P_n X = \{x \in X : Rx = r_n x\}.$

If $E(\cdot)$ is the spectral family of R then $E(\sqrt{2})$ is a bounded projection on X and, by Proposition 2.8 and 2.4(ii),

$$E(\sqrt{2})P_n X = E(\sqrt{2}) \{ E(r_n) - E(r_n^-) \} X$$
$$= \begin{cases} \{ E(r_n) - E(r_n^-) \} X & \text{for } n \text{ even,} \\ 0 & \text{for } n \text{ odd.} \end{cases}$$

It follows that

$$E(\sqrt{2})P_n = \begin{cases} P_n & \text{for } n \text{ even,} \\ 0 & \text{for } n \text{ odd.} \end{cases}$$

This gives

$$E(\sqrt{2}) = \sum_{n=1}^{\infty} E(\sqrt{2})P_n = \sum_{n=1}^{\infty} P_{2n}$$

where the series converges in the strong operator topology of $\mathcal{B}(l^2)$. As $E(\sqrt{2})$ is bounded, the partial sums of the series $\sum_{n=1}^{\infty} P_{2n}$, must be bounded in norm. Again we have a contradiction to (3) so that *R* cannot be well-bounded and *T* is not polar.

REFERENCES

1. H. Benzinger, E. Berkson and T. A. Gillespie, Spectral families of projections, semigroups, and differential operators, *Trans. Amer. Math. Soc.*, **275** (1983), 431–475.

2. E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, *J. London Math. Soc.*, **30** (1984), 305–321.

3. E. Berkson and T. A. Gillespie, AC functions on the circle and spectral families. J. *Operator Theory*, **13** (1985), 33–47.

4. H. R. Dowson, Spectral theory of linear operators (Academic Press, 1978).

5. N. Dunford and J. T. Schwartz, *Linear operators Part 1: General theory* (Interscience, 1957).

6. J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc., 1 (1960), 334–343.

7. J. R. Ringrose, On well-bounded operators II, Proc. London Math. Soc. (3), 13 (1963), 613–638.

8. D. R. Smart, Conditionally convergent spectral expansions. J. Austral. Math. Soc., 1 (1960), 319–333.

9. J. Wilson, *Polar and AC operators, the Hibert transform, and matrix-weighted shifts,* Ph. D. Thesis (University of Edinburgh, 1997).