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Minimal Separators
Norbert Polat

Abstract. A separator of a connected graph G is a set of vertices whose removal disconnects G. In this paper we
give various conditions for a separator to contain a minimal one. In particular we prove that every separator
of a connected graph that has no thick end, or which is of bounded degree, contains a minimal separator.

Introduction

A set S of vertices of a graph G is a separator of G if G − S has at least two components.
Obviously every finite separator contains a minimal one; the case is different, however,
with infinite separators. In [2] Sabidussi proved that a separator (isthmoid in [2]) contains
a minimal one if it contains a separator S such that G−S has only finitely many components
and S is equal to its boundary with one of them. In this paper we continue this study by
characterizing those separators which contain a minimal one, and by showing in particular
that if a separator S of a graph G contains no minimal separator, then S has an infinite
intersection with some ray which belongs to a thick end of G. An immediate consequence
of this result is that, if a graph G has no thick end, thus a fortiori if G is rayless, then every
separator of G contains a minimal one.

1 Preliminaries

The graphs we consider are undirected, without loops and multiple edges. If x ∈ V (G), the
set V (x; G) := {y ∈ V (G) : {x, y} ∈ E(G)} is the neighborhood of x, and its cardinality
d(x; G) is the degree of x. A graph is locally finite if all its vertices have finite degrees. For A ⊆
V (G) we denote by G[A] the subgraph of G induced by A, and we set G− A := G[V (G)−
A]. The union of a family (Gi)i∈I of graphs is the graph

⋃
i∈I Gi given by V (

⋃
i∈I Gi) =⋃

i∈I V (Gi) and E(
⋃

i∈I Gi) =
⋃

i∈I E(Gi). The intersection is defined similarly. If (Gi)i∈I is
a family of subgraphs of a graph G, the subgraph of G induced by the union of this family
will be denoted by

∨
i∈I Gi .

A path P = 〈x0, . . . , xn〉 is a graph with V (P) = {x0, . . . , xn}, xi 6= x j if i 6= j, and
E(P) = {{xi , xi+1} : 0 ≤ i < n}. A ray or one-way infinite path 〈x0, x1, . . . 〉, and a double
ray or two-way infinite path 〈. . . , x−1, x0, x1, . . . 〉 are defined similarly. A graph is rayless
it if contains no ray. A path P := 〈x0, . . . , xn〉 is called an (x0, xn)-path, x0 and xn are its
endpoints, while the other vertices are called its internal vertices. For A,B ⊆ V (G), an
(A,B)-path of G is an (x, y)-path of G such that V (P) ∩ A = {x} and V (P) ∩ B = {y};
an (A,B)-linkage of G is a set of pairwise disjoint (A,B)-paths of G. For x ∈ V (G) and
A ⊆ V (G), an (x,A)-linkage of G is a set of ({x},A)-paths of G which have pairwise only
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x in common. If there exists an infinite (A,B)-linkage (resp. (x,A)-linkage) in G, then we
say that A and B (resp. x and A) are infinitely linked in G.

2 Separators

2.1

The set of components of a graph G is denoted by CG, and if x is a vertex of G, then CG(x)
is the component of G containing x. If S is a subset of V (G) and X a subgraph of G− S, the
boundary of S with X in G is the set BG(S,X) := {x ∈ S : V (x; G) ∩V (X) 6= ∅}. The set
BG(S) := BG(S,G− S) is the boundary of S in G. Finally we define

FG(S) := {BG(S,X) : X ∈ CG−S}.

If no confusion is likely, then we will write B(S,X), B(S) and F(S) for BG(S,X), BG(S) and
FG(S), respectively.

2.2

A subset S of V (G) is a separator of G if |CG−S| ≥ 2. A separator S of G is minimal if
no proper subset of S is a separator of G. Clearly a separator S is minimal if and only if
F(S) = {S}; moreover we then have B(S) = S.

Not every infinite separator contains a minimal one. We will recall two classic examples
in order to illustrate our main results.

Example 2.3 Let R = 〈0, 1, . . . 〉 be a ray, and let (Rn)n∈N be a family of pairwise disjoint
rays which are disjoint from R and such that Rn = 〈xn

0 , x
n
1 , . . . 〉 for every non-negative

integer n. Finally let G := R ∪
⋃

n∈N(Rn ∪
⋃

p∈N〈x
n
p, n + p〉). Then the set N = V (R) is a

separator of G, but it contains no minimal separator since, for every non-negative integer
n, the set {p : p ≥ n} is also a separator of G.

Example 2.4 (Sabidussi [2, Example 1]) Let A = {a0, a1, . . . } and B = {b0, b1, . . . } be
two disjoint countable sets. Define a graph G by V (G) = A∪B and E(G) = {{ai, b j} : i ≥ j}.
Then the set A is a separator of G, but it contains no minimal separator since, for every non-
negative integer n, the set {ai : i ≥ n} is also a separator of G.

2.5

There exist other graphs which contain no minimal separator. The following example is
due to Sabidussi. For every i ∈ N, let Ai = (ai

n)n∈N and Bi = (bi
n)n∈N be two sequences

of pairwise distinct elements such that Ai 6= B j for every i, j ∈ N. Put A :=
⋃

i∈N Ai and

B :=
⋃

i∈N Bi . Define a graph G by V (G) = A ∪ B, and E(G) = {{ai
h, b

j
k} : i ≥ j and

h ≤ k}. One can prove that no separator of G contains a minimal separator; in fact any
separator of G contains the neighborhood of some vertex.
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2.6

Let B ⊆ A ⊆ V (G). We denote by φAB the function from CG−A into CG−B which maps
every component X of G − A to the unique component of G − B containing X. To φAB is
associated the map fAB : F(A) → F(B) such that fAB

(
B(A,X)

)
= B
(

B, φAB(X)
)

for every
X ∈ CG−A. By Sabidussi [2, Lemma 3] φAB, and thus fAB, are onto if B(A) = A.

Lemma 2.7 If S is a separator of G, then every element A of F(S) is a separator of G such that
B(A) = A, and which satisfies the inequality |F(A)| ≤ |F(S)| whenever B(S) = S.

Proof Since A ∈ F(S), A = B(S,X) for some X ∈ CG−S. Due to the fact that S is a
separator of G, there exists a Y ∈ CG−S such that Y 6= X. Let x ∈ V (X) and y ∈ V (Y ).
Then every (x, y)-path of G meets S, and thus A since A ∈ B(S,X). This proves that X and
φSA(Y ) are distinct components of G− A, and hence that A is a separator of G.

Furthermore B(A) = B
(
B(S,X)

)
= B(S,X) = A, and if B(S) = S, then, by 2.6, fSA is

onto, thus |F(A)| ≤ |F(S)|.

Remark 2.8 Note that a separator S can contain a minimal separator, while no element of
F(S) contains a minimal separator, as is shown by the following example. Take the graph
G defined in Example 2.4. Let x be a new vertex, and let H := G ∪ 〈b0, x〉. Then A ′ :=
A ∪ {b0, x} is a separator of H such that F(A ′) = {{ai : i ≥ n} : n ≥ 1}. Furthermore
{b0} is the only minimal separator of H contained in A ′.

Lemma 2.9 (Sabidussi [2, Theorem 1]) Let S be a separator of a connected graph G. If S
contains a separator S0 such that B(S0) = S0 and CG−S0 is finite, then S contains a minimal
separator.

We get the following result immediately which we will generalize later (Theorem 4.8).

Corollary 2.10 Let G be a locally finite connected graph. Then a separator S of G contains a
minimal separator if and only if S contains a separator S0 such that B(S0) = S0 and CG−S0 is
finite.

Theorem 2.11 Let S be a separator of a connected graph G. The following statements are
equivalent:

(i) S contains a minimal separator;
(ii) S contains a separator S0 such that B(S0) = S0 and such that, for every x ∈ S0, there are

only finitely many elements of F(S0) which do not contain x;
(iii) S contains a separator S0 such that B(S0) = S0 and F(S0) is finite.

Proof (i)⇒ (ii). This is obvious since, if S0 is a minimal separator that is contained in S,
then B(S0) = S0 and F(S0) = {S0}.

(ii)⇒ (iii). Let S′ ⊆ S be a separator of G satisfying the properties of (ii). We are done
if S ′ is a minimal separator. Suppose that S′ is not minimal. Then there exist x ∈ S ′ and
S0 ∈ F(S ′) such that x /∈ S0. Put Fx := {F ∈ F(S ′) : x /∈ F}. For every F ∈ F(S ′) − Fx,
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fS ′S0 (F) = B
(

S0,CG−S0 (x)
)

. Hence F(S0) = {B
(
S0,CG−S0 (x)

)
} ∪ { fS ′S0 (F) : F ∈ Fx}.

Therefore, as Fx is finite by (ii), and as fS ′S0 is onto by 2.6, F(S0) is also finite.
(iii) ⇒ (i). Let S0 ⊆ S be a separator of G satisfying the properties of (iii). For each

S ′ ∈ F(S0) let X(S ′) be a component of G − S0, such that S ′ = B
(
S0,X(S ′)

)
. Then S0 is a

separator of the connected graph H := G[S0]∨
⋃

S ′∈F(S0) X(S ′) such that BH(S0) = S0 and
H−S0 has only finitely many components. By Lemma 2.9, S0 contains a minimal separator
S1 of H. If X and X ′ are components of G−S0 such that B(S0,X) = B(S0,X ′), then clearly
B(S1,X) = B(S1,X ′). Hence S1 is also a separator of G such that FG(S1) = S1, thus which
is minimal.

3 Ends of a Graph

For the next results we need the concept of an end.

3.1

The ends of a graph G are the classes of the equivalence relation∼G defined on the set of all
rays of G by: R ∼G R ′ if and only if there is a ray R ′ ′ whose intersections with R and R ′ are
infinite. We will denote by [R]G the end of G containing the ray R.

A vertex x is said to dominate an end τ if x is infinitely linked to the vertex set of some
(hence every) ray in τ . If there exists an infinite set of pairwise disjoint rays in τ , then τ
is said to be thick; otherwise it is said to be thin. By [1, Proposition 2.13], an end which is
dominated by infinitely many vertices is thick.

3.2

An infinite subset A of V (G) is concentrated (in G) if there exists an end τ such that A −
V
(
CG−S(τ )

)
(where CG−S(τ ) is the component of G − S that contains a ray belonging to

τ ) is finite for every finite S ⊆ V (G) (A is said to be “concentrated in τ”).
Clearly, if A is concentrated in τ , then any vertex that dominates τ is infinitely linked

to A.

3.3

A set A of vertices of a graph G is fragmented (in G) if its elements are pairwise separated in
G by a finite S ⊆ V (G), i.e., CG−S(X) 6= CG−S(y) for every pair {x, y} of elements of A− S.

In particular any finite set of vertices is fragmented, and every subset of a fragmented
set is fragmented. Furthermore, if an infinite set A is fragmented in G, then there exists a
vertex of G that is infinitely linked to A in G.

4 Main Results

Theorem 4.1 If a separator S of a connected graph G contains no minimal separator, then
there exists a ray whose intersection with S is infinite, and which belongs to a thick end of G.

Proof (a) Construct a sequence S0, S1, . . . of subsets of S such that Sn is a separator of G,
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B(Sn) = Sn and Sn+1 ∈ F(Sn) − {Sn}. Let S0 be some element of F(S). By Lemma 2.7,
S0 is a separator of G such that B(S0) = S0. Suppose that S0, . . . , Sn have already been
constructed. Since Sn is a separator of G and is contained in S, it contains no minimal
separator. Then there exists an element Sn+1 of F(Sn) which is different from Sn.

Now, for every non-negative integer n, let an ∈ Sn − Sn+1, and let Xn ∈ CG−Sn−1 (with
S−1 := S) be such that B(Sn−1,Xn) = Sn. The graphs Xn are clearly pairwise disjoint
since, for n < p, B(Sp−1,Xn) = Sp−1 6= Sp = B(Sp−1,Xp). Finally, for every non-
negative integer n, let Pn be an (an, an+1)-path of G such that Pn − {an, an+1} ⊆ Xn. Then
R :=

⋃
n∈N Pn is a ray of G since the Xn are pairwise disjoint.

(b) Denote by τ the end of G which contains R, and put A := {an : n ∈ N} and
An := A ∩ Sn. For each n, An is infinite, and thus is concentrated in τ . Hence, since
Sn = B(Sn,Xn), we have two cases:

– There exists a vertex bn of Xn which is infinitely linked to An in G, thus which domi-
nates τ .

– No vertex of Xn is infinitely linked to An in G. Then there exists an infinite
(
An,V (Xn)

)
-

linkage L. Denote by Bn the set of endpoints in Xn of all elements of L. The set Bn is then
concentrated in τ in the graph G. Furthermore, no vertex of Xn is infinitely linked to Bn;
otherwise it would be infinitely linked to An. Hence Bn contains no infinite subset which
is fragmented in Xn; thus, by [1, Theorem 3.8], Bn contains an infinite subset Cn which
is concentrated in Xn. Therefore, there exists a ray Rn of Xn such that Cn is concentrated
in [Rn]Xn . This proves that Rn ∈ τ since Bn, thus Cn, are concentrated in τ in the graph
G.

Consequently, since the graphs Xn are pairwise disjoint, we get a set of vertices that
dominate τ , and a set of rays that belong to τ ; and at least one of these sets is infinite. In
either case, this means that the end τ is thick.

Remark 4.2 The necessary condition for the non-existence of a minimal separator, given
in Theorem 4.1, is manifest in Examples 2.3 and 2.4.

In Example 2.3, G is a locally finite graph whose only end is thick, since (Rn)n∈N is a
family of pairwise disjoint elements of this end. Furthermore the separator N is the vertex
set of the ray R which also belongs to this end.

In Example 2.4, G is a bipartite graph whose only end is thick since it is dominated by
all elements of the infinite set B. Furthermore the vertex set of every ray of G contains an
infinite subset of the separator A.

The following result is an immediate consequence of Theorem 4.1.

Theorem 4.3 Let G be a connected graph that has only thin ends. Then every separator of G
contains a minimal separator.

Corollary 4.4 Every separator of a rayless connected graph contains a minimal separator.

Remark 4.5 The converse of Theorem 4.3 does not hold, that is, a graph may have a
thick end, while each of its separators contain a minimal separator. In fact consider any
graph H, and let (yx)x∈V (H) be a family of pairwise distinct new vertices. Put G :=
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H ∪
⋃

x∈V (H)〈x, yx〉. Then any separator of G must contain some vertex of H, and more-
over every vertex of H is a separator of G. Hence every separator of G contains a minimal
separator. So we get a counterexample G to the converse of Theorem 4.3 by taking for H
any graph which has a thick end, for example, any infinite complete graph.

4.6

We will say that a set A of vertices of a graph G is end-free (resp. thick-end-free) if the
intersection of A with any ray (resp. any ray belonging to a thick end) is finite.

In particular every dispersed set (i.e., a set containing no concentrated subset), thus
every fragmented set, and a fortiori every finite set, is end-free; and every subset of a (thick-)
end-free set is (thick-)end-free. By Theorem 4.1, every thick-end-free separator contains a
minimal one.

Theorem 4.7 Let p be a positive integer, and let G be a connected graph whose set of vertices
of degree≥ p is thick-end-free. Then every separator of G contains a minimal one.

Proof Assume that G has a separator S that contains no minimal separator. Construct, as in
the proof of Theorem 4.1, a sequence S0, S1, . . . of subsets of S such that Sn is a separator of
G with B(Sn) = Sn and Sn+1 ∈ F(Sn)−{Sn}. Further, as in the same proof, let Xn ∈ CG−Sn−1

(with S−1 := S) be such that B(Sn−1,Xn) = Sn.
Let i ≤ j. Every vertex x of S j is adjacent to some vertex of Xi , since S j ⊆ Si . Hence

d(x; G) ≥ j inasmuch as the Xn are pairwise disjoint. Therefore, in particular, d(x; G) ≥ p
for every x ∈ Sp. Thus Sp is thick-end-free by hypothesis. Hence Sp contains a minimal
separator of G by Theorem 4.1, contrary to the assumption.

This result settles the case of graphs of bounded degree. The more general class of graphs
where only the set of vertices of infinite degrees is thick-end-free is a particular case of the
following weaker result which generalizes Corollary 2.10 about locally finite graphs.

Theorem 4.8 Let G be a connected graph such that each of its end is dominated by at most
finitely many vertices. The following statements are equivalent:

(i) S contains a minimal separator;
(ii) S contains a separator S0 with B(S0) = S0 and which is end-free or such that CG−S0 is

finite;
(iii) S contains a separator S0 with B(S0) = S0 and which is thick-end-free or such that CG−S0

is finite.

Proof (i)⇒ (ii). Let S0 ⊆ S be a minimal separator of G. Then F(S0) = {S0}. Suppose
that CG−S0 is infinite. Then every element of S0 has infinite degree. Assume that S0 is not
end-free. Thus there exists a ray R such that A := S0 ∩ V (R) is infinite. Let τ := [R]G.
Using arguments similar to those in part (b) of the proof of Theorem 4.1, we can prove that
we have the two following cases:

– There exist infinitely many components of G−S0 which contain a vertex infinitely linked
to A. Thus, each of these vertices dominates τ , contrary to the properties of G.
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– There exist infinitely many components of G− S0 which contain a ray belonging to the
end τ . In this case, every element of A, being adjacent to some vertex of each of these
components, cannot be separated from all these rays by the removal of a finite set of
vertices. Hence every element of A dominates τ , once again contrary to the component
of G since A is infinite by assumption.

(ii)⇒ (iii) is obvious.
(iii)⇒ (i) is a consequence of Theorem 4.1 if S0 is thick-end-free and of Lemma 2.9 if

CG−S0 is finite.
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