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The geography of phylogenetic paleoecology: integrating data and
methods to better understand biotic response to climate change

A. Michelle Lawing

Abstract.—Deeper knowledge about how species and communities respond to climate change and envir-
onmental gradients should be supported by evidence from the past, especially as modern responses are
influenced by anthropogenic pressures, including human population growth, habitat destruction and
fragmentation, and intensifying land use. There have been great advances inmodeling species’ geographic
distributions over shallow time, where consideration of evolutionary change is likely less important due to
shorter time for evolution and speciation to occur. Over these shallow time periods, we have more
resources for paleoclimate interpretation across large geographic landscapes. We can also gain insight
into species and community changes by studying deep records of temporal changes. However, modeling
species geographic distributions in deep time remains challenging, because for many species there is
sparse coverage of spatial and temporal occurrences and there are fewer paleoclimate general circulation
models (GCMs) to help interpret the geographic distribution of climate availability. In addition, at deeper
time periods, it is essential to consider evolutionary change within lineages of species. I will discuss a
framework that integrates evolutionary information in the form of phylogenetic relatedness from clades
of extant closely related species, where and when there are associated fossil occurrences, and the geo-
graphic distribution of paleoclimate in deep time to infer species past geographic response to climate
change and to estimate where and when there were hotspots of ancient diversification. More work is
needed to better understand the evolution of physiological tolerances and how physiological tolerances
relate to the climate space in which species occur.
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Introduction

We are enduring a biodiversity crisis (Myers
et al. 2000; Pimm and Raven 2000; Brook et al.
2003; Thomas et al. 2004; Barnosky et al.
2011), and harnessing all possible data to
inform on biodiversity patterns through space
and time is critical to better understand the his-
tory of life and to be able to set and accomplish
conservation goals (Dietl and Flessa 2011; Rick
and Lockwood 2013; Hunt and Slater 2016).We
know that species and communities move and
reorganize in response to climate change and
habitat alterations (Walther et al. 2002; Parme-
san 2006; Walther 2010). With increasing
anthropogenic pressures, including human
population growth, habitat destruction and
fragmentation, and intensifying land use,
there will be less habitat and climate

connectivity for species movement and bio-
logical community reorganization in the future
(Rosenzweig et al. 2007; Ryberg et al. 2013;
McGuire et al. 2016). Habitat composition is
also an important consideration for sustaining
metacommunity dynamics (Ryberg and Fitz-
gerald 2016). Species have perished and will
perish locally or entirely, and species loss due
to extinctions will take millions of years for
recovery (Davis et al. 2018). Because the eco-
logical and evolutionary processes leading to
adaptation, movement, and extinction occur
over long time periods and because the Earth
has experienced major alterations to geo-
graphic ranges and composition of flora and
fauna in the past, it is critical to draw on a
deep time perspective to investigate species
and community response to climate and envir-
onmental change.
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The current geographic arrangement of spe-
cies distributions and community composi-
tions have been significantly influenced by
humans (Sinclair et al. 2002; Kampichler et al.
2012; Newbold et al. 2015; Pineda-Munoz
et al. 2021). In fact, it has been shown that
human pressures on a landscape predict spe-
cies geographic ranges better than species
own biological traits (Di Marco and Santini
2015). Thus, incorporatingmultiple lines of evi-
dence from field and laboratory experimenta-
tion, as well as observation and modeling
studies, is particularly important to better
understand the response of species and com-
munities to climate and environmental change
(Louys et al. 2012). Carefully designed eco-
logical experiments over local to regional geo-
graphic extents reveal ecological processes
important for determining ecological commu-
nity composition, dominance, and abundance
structures, such as stochastic ecological drift,
priority effects, and filtering due to niche selec-
tion (Chase 2007; Ryberg et al. 2012; Fukami
2015). Coordinated distributed experiments
over larger geographic extents are positioned
to address global ecological and environmental
problems and contribute to a better under-
standing of basic ecological theory (Fraser
et al. 2013). Physiological experimentation
reveals other global change drivers relevant to
understanding species geographic range shifts,
such as oxygen- and capacity-limited thermal
tolerance as a way to link biological levels of
organization from cells to ecosystems (Bozino-
vic and Pörtner 2015). Furthermore, advances
in modeling species ecological niches and geo-
graphic distributions have made good use of
observational data to evaluate past and poten-
tial species range shifts, demographic changes,
lineage diversification, and extirpation of species
(Maguire et al. 2015). Taken together, the model-
ing advances allow us to better understand how
and why species and communities move and
reorganize in response to climate and environ-
mental change, and we can begin to anticipate
future responses due to impending climate,
land use, and land cover change.
Another important line of evidence to better

understand the response of species and com-
munities to climate and environmental change
comes from the fossil record (Pardi and Smith

2012). Fossils show where and when species
occurred in the past, as well as aspects of past
species’ morphology and which species
occurred together within a community or
regional species pool. Ecological information
from fossils have been derived from their
morphology, chemical composition, and
depositional setting of associated sedimentary
deposits (Damuth et al. 1992; Croft et al.
2018). This information has allowed paleoecol-
ogists to answermany relevant questions about
the response of species and communities to cli-
mate and environmental change, because they
have been able to track species through space
and time (Jablonski et al. 2003; Stigall 2008);
evaluate the geographic shifts of species
(Enquist et al. 1995; Rödder et al. 2013; Gavin
et al. 2014), ancient invasion dynamics (Jackson
1997; Dudei and Stigall 2010), and change in
ancient ecosystem functioning using functional
traits (Polly and Head 2015; Polly et al. 2016;
Lawing et al. 2017); and inform conservation
decision making (Dietl and Flessa 2011;
Barnosky et al. 2017).
It can be informative to incorporate informa-

tion from studies on modern flora and fauna
into paleontological studies (Fritz et al. 2013;
Lawing and Matzke 2014). Taxonomic reso-
lution, time-averaging, transport, and age
uncertainty in data associated with fossils
sometimesmake it difficult to integratemodern
and fossil occurrence data, but these useful
pieces of information can be combined to
make inferences beyond what each data type
will allow on its own. For example, using a
phylogenetic framework with randomization
procedures would allow one to anchor and
extract important clues from the fossil record
that can be bolstered by more abundant and
taxonomically resolved data from the modern
record (Hunt and Slater 2016). This is not to
say that fossil occurrence data are not useful
on their own. There are hundreds of studies
that make use of fossil occurrence data that
revealed important biological insight into eco-
logical and evolutionary processes, biogeo-
graphic history, and community assembly.
However, designing methods that integrate
modern and fossil occurrence data bolster our
ability to make inferences using information
from multiple taxonomic and phylogenetic
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scales (Hunt and Slater 2016), strengthen our
ability to use findings from paleontological
studies as past anchoring points to investigate
ongoing ecological and evolutionary processes
(Lawing and Matzke 2014), and help us trans-
late findings from paleontological studies to
inform conservation practices (Dietl and Flessa
2011; Barnosky et al. 2017).
My intention for this paper is to provide an

entry-level discussion to various modern and
paleontological data types and methodologies
that can be integrated in analyses that span eco-
logical, evolutionary, and geologic time. The
discussion provided in this paper is not com-
prehensive in reviewing all studies that inte-
grate modern and paleontological data and
methods but will discuss several methods
relevant to understanding how species and
communities respond to climate and environ-
mental change through time. I will frame the
discussion focusing on PaleoPhyloGeographic
species distribution Models (PPGMs) as an
organizing theme that integrates multiple
lines of evidence to infer species past geo-
graphic response to climate change and to esti-
mate where and when there were hotspots of
ancient diversification (Lawing and Polly
2011; Rödder et al. 2013; Lawing et al. 2016;
Rivera et al. 2020). Using PPGMs as an organiz-
ing concept in this paper will allowme to home
in on a few important methods that were inte-
grated in this particular framework and is
intended to help readers get basic information
about how these methods work so they can
think through how they might integrate mul-
tiple modeling techniques with heterogenous
data types. However, this paper is meant to
be useful to readers beyond those only inter-
ested in implementing a PPGM analysis. In an
effort to triangulate species distribution model-
ing, phylogenetic comparative methods, and
paleontological observations, this paper pro-
vides entry-level remarks on each of these
aspects and its required or associated data
types and considerations. I attempt to answer
basic questions about each of the data types
and methods, including (1) what are the data
and methods, (2) how are they related to
other frameworks and methods, (3) how have
they been used in previous work, (4) what are
the basic premises of the methods and how

do they work, (5) why are they useful to further
develop, (6) what are the pitfalls for new
researchers to be aware of, and (7) how can
we move forward in this field of integration?

Paleophylogeographic Species Distribution
Models (PPGMs)

PPGMs are retrodictions of species idealized
geographic distributions based on phylogen-
etic comparative methods, modeled climate
tolerances, and paleoclimate GCMs. This
framework draws on evidence from evolution-
ary information in the form of phylogenetic
relatedness from clades of extant closely related
species, where and when there are associated
fossil occurrences, and deep time paleoclimate.
Thus far, PPGMs have been used to trace spe-
cies range dynamics over shorter geologic
time frames through glacial–interglacial cycles.
These studies found that species ranges prob-
ably move more quickly than species adapt to
new climate conditions (Lawing and Polly
2011; Rödder et al. 2013). Extending PPGMs
over longer geologic time frames back to the
Miocene shows that incorporating evolutionary
history and phylogenetic comparative methods
changes our understanding of deep time range
shifts and helps pinpoint hotspots of ancient
diversification (Lawing et al. 2016). This frame-
work has been supported by deep time projec-
tions of physiological models of climate
tolerance (Lawing et al. 2016). However, it is
clear that more work is needed to better under-
stand the evolution of physiological tolerances
and how they relate to the climate space in
which species occur. Rivera et al. (2020)
honed this framework to investigate lineage-
specific differences among congeners. They
showed that large shifts in the climate system
drove expansion and contraction of suitable
habitat and that geologic events, such as
orogeny, relate to diversification events.
Other frameworks have combined several of

the same data sources and methodologies in
different ways. One of the earlier studies to
use phylogenetic comparative methods in com-
binationwith climate envelopemodeling inves-
tigated factors that may have influenced
speciation in a group of dendrobatid frogs
(Graham et al. 2004). In that study, ancestral
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reconstructions of climate envelopes were cal-
culated and compared with extant climate
envelopes in a principal components space
representing an ordination of all the environ-
mental layers that were used to characterize
species climate envelopes. Phyloclimatic mod-
eling also combines climate envelopes and
phylogenetic comparative methods to recon-
struct the history of climate tolerances of spe-
cies (Yesson and Culham 2006). It extended
the previous framework to include projections
of ancestral node estimates onto past paleo-
climate scenarios.
Another implementation using fossils with

phylogenetic comparative methods and climate
envelope models revealed new information
about the distribution of stem lineages that influ-
ence the interpretations of crown group diversi-
fication and ancient evolutionary history
(Meseguer et al. 2015). This approach used cli-
mate envelope modeling and a scale-invariant
Mahalanobis distance to represent a lineage’s
optimum climate envelope (Varela et al. 2011).
The authors built paleoclimate envelope models
from fossil occurrences and projected those
models onto paleoclimate maps. The paleo-
climate envelope models were not informed by
extant species climate envelopes, but they did
incorporate ancestral area reconstructions, com-
bining multiple lines of evidence to better infer
the biogeographic history of a genus.
The PPGM framework moves these methods

forward in twoways. First, PPGMs incorporated
a simple paleoclimate interpolation alongwith a
phylogenetic climate envelope lineage interpol-
ation to extract concerted reconstructions of
paleoclimate and phylogenetically informed cli-
mate envelopes at multiple coincident time per-
iods of the past (Lawing and Polly 2011). This
allowed for more nuanced phylogenetic recon-
struction of climate envelopes and more
nuanced paleoclimate estimations between
time periods where there are available global
atmosphere and ocean circulationmodels recon-
structing paleoclimate across geographic space.
Second, PPGMs incorporated a method to
include paleoclimate information associated
with fossil localities into phylogenetic climate
envelope reconstructions (Lawing et al. 2016;
Rivera et al. 2020). If the paleoclimate informa-
tion shows that a fossil occurred in a climate

that is outside the distribution of current cli-
mates for a group under evaluation, then that
information can improve our understanding of
the evolution of climate envelopes and the
paleobiogeographic reconstruction of species.

Data for Integration

Multiple data types are available for integra-
tion of paleontological and modern data and
methods (Fig. 1). Data have been made more
readily available through compilation of data-
bases and accessible data portals (Uhen et al.
2013). Some of these data portals include pale-
ontological and modern data, such as the Glo-
bal Biodiversity Information Facility (GBIF;
http://www.gbif.org). Others focus more
closely on the compilation of specific modern
or paleontological datasets. For example, iNa-
turalist is an online social network that com-
piles modern observations of biodiversity
around the world but currently is heavily
biased in observations from Europe and
North America (https://www.inaturalist.org).
The Neotoma Paleoecology Database is a com-
munity database that compiles information
about fossil data from the Pliocene to the Qua-
ternary (www.neotomadb.org). The Paleobiol-
ogy Database compiles data of fossil
occurrenceswithin collections that span all geo-
logic ages (https://paleobiodb.org/#). GBIF
compiles many of these more focused data-
bases, yet not all information associated with
fossil sites and occurrences are processed
through to GBIF. This section explains data
requirements for PPGM, where to find primary
data, how some data are derived, and how
other data are modeled. Each section addresses
associated assumptions and uncertainties.

Modern Occurrence Data.—Modern occur-
rence data are recorded observations of indi-
vidual organisms often taxonomically
identified to the species or subspecies level at
specific geographic places and times. Occur-
rence data are systematically collected through
surveys or, more often, opportunistically col-
lected through incidental observations. Data
are housed in museum collections with vou-
chered specimens or in online databases.
GBIF is one of the most comprehensive online
databases that collates and stores locality data
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for Earth’s biodiversity obtained from numer-
ousmuseums and observation networks. How-
ever, the often-incidental nature associated
with many observations produce biases in
these primary biodiversity data through space
and time (Boakes et al. 2010; Beck et al. 2014)
and there are notable gaps in distributions glo-
bally (Yesson et al. 2007; Collen et al. 2008).
Methods have been developed that attempt

to account for bias in occurrence data. Those
include subsampling the available occurrence
data in geographic space (Hijmans 2012; Boria
et al. 2014) or in environmental space (Varela
et al. 2014) and weighting occurrences based
on sampling effort (Stolar and Nielsen 2015).
Environmental filtering, systematically sub-
sampling occurrence data based on position
in environmental space, is preferred to geo-
graphic filtering, systematically subsampling
occurrence data based on position in geo-
graphic space, because environmental predic-
tors are typically used to build climate

envelope models, species distribution models
(SDMs), or ecological niche models (ENMs)
for species, and those are the relevant axes to
deal with observation bias. In either case, bin
or pixel sizes used to subsample observations
influence the number of retained samples and
influence model performance (Castellanos
et al. 2019).Weighting subsamples of the occur-
rence data based on sampling effort is known to
improve model predictions (Stolar and Nielsen
2015), so calibrating model evaluation statistics
with a null model (Hijmans 2012), deriving a
proxy variable for sampling effort (Fithian
et al. 2015), or sample weighting as the inverse
probability of sampling (Stolar and Nielsen
2015) are other useful ways forward.
Sampling bias, among other factors such as

biotic interaction and available climate in geo-
graphic space, contributes to the incomplete
characterization of climate envelopes of spe-
cies, and incomplete characterization has been
shown to bias parameter estimates in

FIGURE 1. Example of some data types for integration in paleophylogeographic species distribution models (PPGMs).
A, Example of modern species occurrence data as dark blue points. B, Example of climate envelope in light blue surround-
ing the dark blue occurrence points mapped into a 3D climate space. The gray swath of points represents all other climate
combinations in North America. C, The geographic locations of the points that occur within the light blue climate envelope
mapped onto a paleoclimate model of the last glacial maximum. Light blue points are the occurrences that are within the
light blue climate envelope in B. D, Simple three-species phylogenywith a red and blue point indicating two extant tip taxa
of interest; the purple node is a hypothetical ancestor. E, An example of mapping the climate envelope of the red species
and the blue species in a 3D climate space. F, An example of a reconstructed climate envelope of an hypothetical ancestor
using phylogenetic comparative methods modeling the limits of climate envelopes. (Color online.)
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evolutionary models (Saupe et al. 2018). This
problem is exacerbated by anthropogenic influ-
ences on the ability for species to occupy their
full range of climates (Pineda-Munoz et al.
2021). Correcting sampling bias in occurrence
records has not yet been widely incorporated
in climate envelope modeling, nor in
PPGM-type models. The typical reasoning for
using these simple modeling schemes is to
allow for flexibility in the covariation of cli-
mates within climate envelopes and to attempt
to more completely characterize certain aspects
of a species’ climate niche, in terms of min-
imum and maximum tolerances of climate,
rather than allowing incomplete characteriza-
tion to drive the relationships established
between occurrences and climates. Regardless,
it will be a fruitful path forward to carefully
consider sampling bias and its implications
for climate envelope modeling and PPGM.

Fossil Occurrence Data and Age Ranges.—Fos-
sil occurrence data and age ranges stem from
recorded observations of remains of organisms,
their excrement, or their tracks, documenting
presence at a particular geographic location
and within a particular time range. Fossils
representing occurrences can be fragmentary,
weathered, or morphologically distorted
through death, transport, deposition, and the
fossilization process. However, it has been
shown that fossils are rarely transported out
of their original life habitats. Many species
with robust parts (e.g., bones or shells) are
found in death assemblages with high fidelity
to their rank abundance at which they are
found in life assemblages, and time-averaging
of fossil assemblages prevents short-term sea-
sonality or yearly signals of variation (Kidwell
and Flessa 1995). Thus, fossils provide mean-
ingful information on ecological and evolution-
ary dynamics in shallow and deep time.
Taxonomic assignments of fossils are often

easier to make at the genus level, rather than
the species level, at least for many groups of
vertebrate fossils, so many more fossils will be
included in an analysis if genus-level identifica-
tions are allowed in a dataset. In fact, many
paleontological studies use genera as a unit of
study (Polly and Spang 2002), but it has been
debated whether insights gained from analyses
with genera “trickle down” to the species level

and enhance our understanding of evolution
(Hendricks et al. 2014). At the species or
genus level, information about the paleoenvir-
onment or paleoclimate associated with fossil
occurrences can provide valuable information
about where species lived in the past and can
alter our understanding of the biogeographic
history of a group (Meseguer et al. 2015;
Lawing et al. 2016).
Another piece of critical information gained

from fossil occurrence data is the estimated
geologic time when the organism died or
when the dead organism was deposited into a
depositional environment. There are many
strategies for numerical and relative dating of
fossil deposits (Elias 2015), as well as age–
depth models for inferring age in deposits
that were not directly dated (Blaauwand Chris-
ten 2011). Estimates of geologic age are typic-
ally derived from fossilized organisms or
from the sedimentary deposits where fossils
were found. The sedimentary deposits are
either dated or correlated into a time-calibrated
stratigraphic column. For the purposed of inte-
grating fossil occurrences with modern occur-
rences, it is useful to extract an age range
from fossil occurrences, that is, the maximum
andminimumpossible geologic ages of a fossil.
There are multiple databases hosting infor-

mation about the locality and deposits asso-
ciated with occurrences of fossil specimens. A
review of these sources for vertebrate fossils
documents the history and development of
multiple database efforts and how they inter-
relate and provides information on their nature
and history (Uhen et al. 2013). Some of the data-
bases discussed in that review include other
types of data. For example, the Neotoma Paleo-
ecology Database holds community-curated
data in a data model framework that supports
any type of paleoecological and paleoenviron-
mental data from sedimentary archives (Wil-
liams et al. 2018).

Modern Climate Data.—Modern climate data
are derived from weather stations across the
globe. Weather stations systematically record
the minimum temperature, maximum tem-
perature, and precipitation on a daily basis.
The temperature values are averaged within
each month for 12 monthly estimates of min-
imum and maximum temperature, and the
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precipitation values are summed within each
month for 12monthly estimates of total precipi-
tation, resulting in 36 variables representing 1
year of temperature and precipitation mea-
sures. Often these 36 variables are averaged
across multiple years (Hijmans et al. 2005).
Because weather is variable from year to year,
it is useful to derive variables from these 36
measures that summarize the general climate
patterns and that may be biologically meaning-
ful for species (Nix 1986; Booth et al. 2014).
Weather stations are not uniformly distribu-

ted across the globe, so high-resolution inter-
polation has been used to estimate climate
data for points where no primary climate infor-
mation is available (Hutchinson 1991). Biases
are introduced into the dataset from the choice
of interpolation method and from the geo-
graphic bias in placement of weather stations.
Because I am concerned here with comparing
modern climatedatawithpaleontological climate
data, the variation produced from the biases in
the modern climate data is low to negligible
when compared with the variation in modeled
climate data from the paleontological record.
Although the calendar months are a useful

standard to summarize and store climate
data, calendar months are not consistently bio-
logically meaningful to species. For example,
minimum temperature in January in Canada
and Australia do not mean the same thing for
species experiencing their climate environment
(i.e., a minimum temperature value in a cold
month comparedwith aminimum temperature
value in a warm month). Nix (1986) developed
a framework, termed BIOCLIM, to combine the
36 climate variables into 19 biologically mean-
ingful variables. The 19 variables represent
means and extremes of temperature and pre-
cipitation at monthly, quarterly, and annual
temporal scales. They have been used exten-
sively in studies of species distribution model-
ing and as predictor variables for other
biodiversity assessments. See Booth et al.
(2014) for further explanation of deriving BIO-
CLIM variables and Hutchinson et al. (2014)
for climate interpolation.

Paleoclimate Data andModels.—Climate infor-
mation from the geologic record is usually
documented from tree rings, corals, ice cores,
and sediment deposits (Fritts 1991; Evans

et al. 2002; Jones et al. 2009). Just as is the case
for weather stations, many climate proxies
from the geologic record are geographically
unequally distributed. But there are far fewer
primary data extracted from the geologic
record than there are weather stations, so inter-
polation techniques for estimating the geo-
graphic distribution of climate in the past are
not enough. GCMs of the ocean and atmos-
phere model the geographic distribution of
modern, future, and past climates (Randall
et al. 2007). These models use atmospheric
and ocean circulation process modeling com-
bined with knowledge of exogenous forcing
and boundary conditions from the geologic
record to anchor model behavior. Important
forcings include orbital changes, solar irradi-
ance, explosive volcanicity, land surface charac-
teristics, and aerosols (Jones et al. 2009). GCMs
are calibrated over many time steps, and they
often record minimum temperature, maximum
temperature, and precipitation at each tem-
poral step in the model; and thus, those vari-
ables can be summarized as the BIOCLIM
suite of 19 climate variables. See Nix (1986)
and Booth et al. (2014) for an explanation of
how to convert minimum temperature, max-
imum temperature, and precipitation variables
to BIOCLIM variables.
Because GCMs are computationally inten-

sive, we do not yet have comprehensivemodels
of climate through all geologic time and space.
At the global scale, GCMs are typically low
resolution, and finer resolution GCMs have
been developed by downscaling models using
various techniques (Wilby and Wigley 1997).
There are many GCM algorithms and bound-
ary conditions, and each produces a different
estimate of climate, so it is important to incorp-
orate modeled climate data from multiple
sources. There are several initiatives to calibrate
GCMs and paleo-GCMs to make models more
comparable, such as the PaleoclimateModeling
Intercomparison Project (Jungclaus et al. 2017;
Kageyama et al. 2017, 2018; Otto-Bliesner
et al. 2017).
Many of the modeling results describing

modeled spatial and temporal variation in
paleoclimate are provided as part of a publica-
tion. Links to available modeling results are
also compiled on relevant websites, such as
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on the network of websites documenting the
Paleoclimate Modeling Intercomparison Pro-
ject. In addition to searching the web for mod-
eling results, it is important to search through
the literature for GCMs within relevant time
intervals of interest. The results files for the
GCMs may be made available from the corre-
sponding authors. Some recent efforts have
provided fine-resolution paleo-GCMs for time
periods that have been less available to the
research community. One example is the Paleo-
Clim database, providing free, easily accessible,
high-resolution paleoclimate surfaces of global
terrestrial areas (Brown et al. 2018).

Phylogenetic Data.—Phylogenetic informa-
tion provides the hierarchical structure to
cross taxonomic scales and integrate paleonto-
logical and modern occurrence data (Felsen-
stein 2004). In phylogenies, tips and nodes are
linked together by branches, depicting a
hypothesis about the relationship between
tips or their topology. The relationships are
modeled based on molecular or morphological
similarities between tips. Tips are the oper-
ational taxonomic units used in a study; for
studies on modern species, these are typically
species, subspecies, or populations, and for
studies on ancient species, these are typically
species, genera, or even families. Nodes
represent hypothetical ancestral taxa. Ultim-
ately, it is important to understand how closely
related to each other species and genera are and
who is most closely related to whom. That
information can be extracted from phylogenies
in the form of topology and branch lengths.
To obtain phylogenetic information for the

organisms of interest, one can build phylogen-
etic hypotheses or use phylogenetic hypotheses
that have already been established. Baum and
Smith (2013) and Lemey et al. (2009) provide
an introduction to building phylogenies and
phylogenetic analysis. Numerous phylogenetic
studies have been published, and their result-
ing phylogenetic hypotheses are typically
available as supplemental information. Tree-
base is an online database that hosts phylogen-
etic information and is a good resource for
published phylogenies (Piel et al. 2000).
Often there are differing hypotheses from

phylogenies built with different combinations
of molecular and morphological data (Hillis

1987; Shaffer et al. 1997; Larson 1998; Swalla
and Smith 2008), as well as differences in
phylogenetic hypotheses when both modern
and ancient operational taxonomic units are
included in the analysis (Novacek 1992; Eklund
et al. 2004; O’Leary and Gatesy 2008). Because
there often is contention around which phylo-
genetic topology is best supported, it is import-
ant to collect multiple phylogenetic hypotheses
and repeat analyses to gain an understanding
of the range of potentially different results
due to phylogenetic uncertainty. In addition,
within the framework of PPGMs, for integra-
tion with fossil occurrence data and for projec-
tion onto relevant paleoclimate maps, time-
calibrated phylogenies are required.

Under the Hood

Multiple methods are required for integra-
tion of paleontological andmodern datawithin
the context of PPGM. This section explains how
six methods for integration work. Several of
these methods, such as ecological niche model-
ing, species distribution modeling, and phylo-
genetic comparative methods, are massive
fields and have had many articles and books
written about them. Here, I intend to briefly
introduce each method and highlight the rele-
vant information required and considerations
needed for integration in PPGM.

Modeling Ecological Niches and Species Distri-
butions.—Ecological niche modeling and spe-
cies distribution modeling typically begin
with the practice of compiling information on
species occurrences, associating climate or
environmental datawith occurrences, applying
an algorithm to estimate some suitable climate
or environmental space that is or probably
could be occupied by a species (i.e., estimating
the climate or environmental niche) (Peterson
et al. 2011). One then uses the parameters
from that algorithm to project a potential distri-
bution of a species into geographic space. The
majority of ENMs and SDMs are correlative in
nature, as they are often based on incidental
observation data and associate occurrences
with predictor variables (Elith and Leathwick
2009). Many algorithms have been described
for the association of occurrences to predictor
variables (Elith et al. 2006), multiple algorithm
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projections have been combined to reduce
uncertainty in projections (Hao et al. 2019),
and different algorithms have been shown to
be appropriate in different situations (Elith
and Graham 2009).
There are many good review papers and

books that provide an introduction and review
of species distribution modeling and its asso-
ciated concepts of ecological, environmental,
and climate niches (Austin 2007; Elith and
Leathwick 2009; Franklin 2010; Peterson et al.
2011; Maguire et al. 2015). These overviews
and reviews detail the many considerations
that are required when modeling a species’
niche and its geographic distribution. More
recently, guidelines have been developed to
help researchers evaluate the quality of species
distribution modeling studies and to help sys-
tematically account for all of the steps involved
in building SDMs (Sofaer et al. 2019). I follow
the recommendation of Peterson and Soberón
(2012) and recognize that SDMs are inclusive
of ENMs, but seeWarren (2012) for further con-
sideration of this topic. In this paper, when
referring to a niche (ecological, climate, envir-
onmental, or otherwise), I am using the term
consistent with a Hutchinsonian niche concept,
which recognizes there is an n-dimensional
hypervolume made up of biologically import-
ant axes that quantify where a species can live
(Hutchinson 1957). I will use the term “climate”
or “environmental niche” to explicitly refer to
the type of predictor variables being used in
conceptualizing the niche model. It is import-
ant to point out these practical aspects of ter-
minology because of contention over the use
and misuse of terminology and associated con-
cepts in this field (Jiménez-Valverde et al. 2008;
Peterson and Soberón 2012; McInerny and Eti-
enne 2013).
To integrate paleontological and modern

data in a phylogenetic framework, and specific-
ally for use in PPGM, rectilinear climate enve-
lope models have been used due to their
simplicity and fidelity to the Hutchinsonian
niche concept (Graham et al. 2004; Yesson
and Culham 2006; Lawing and Polly 2011).
The rectilinear climate envelope model is one
way to characterize niche dimensions for use
in projecting potential species distributions
into geographic space. This method extracts a

range from each climate or environmental vari-
able associated with occurrence data, either
maximum and minimum or some subset of it,
such as 5th and 95th percentiles, and considers
the climate within that envelope suitable for
the species being modeled. In geographic
space, any point that fits within the ranges of
all the climate variables included in the climate
envelope model is considered suitable for the
species. One drawback to the climate envelope
method is that it oversimplifies the ecological
niche and potential geographic distribution of
modern species. However, other algorithms
that have been shown to perform well in char-
acterizing the ecological niche and potential
geographic distribution of a species, such as
maximum entropy and boosted regression
trees (Elith et al. 2006), havemultiple parameter
estimates and complicated associations or
breakpoints between occurrences and predictor
variables. So far, it has been unclear how to
model their parameters along a phylogenetic
tree in a phylogenetic comparative methods
framework.
Projecting ENMs forward and backward in

time has now received considerable attention,
as models typically do not perform well
under new conditions, which are known as
non-analogue climate scenarios (Fitzpatrick
and Hargrove 2009; McGuire and Davis 2013;
Davis et al. 2014; Moreno-Amat et al. 2017).
This problem is particularly relevant when pro-
jectingmodels to the past, when therewas quite
a bit of non-analogous climate compared with
modern climates (Fitzpatrick and Hargrove
2009). One method to improve model projec-
tions is to incorporate fossil occurrences into
ENMs along with extant occurrences (Varela
et al. 2009, 2011). This accounts for shifts in
the realized niche of a species through time
and is meant to more closely approximate its
fundamental niche. In addition, directly pro-
jecting niche models built with modern data
does not incorporate the potential for niche
evolution. Thus, PPGMs and other methods
have been developed to take into consideration
the potential evolution of a niche and the vastly
different climates in which the close relatives of
modern species occur.

Phylogenetic Comparative Methods.—Phylo-
genetic comparative methods are typically
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used to correct for non-independence of sam-
ples in comparative studies with multiple spe-
cies (Felsenstein 1985), to study the processes
of evolution and speciation among multiple
species (Harvey and Pagel 1991), or to infer
character states of hypothetical ancestral spe-
cies (Martins 1999; Omland 1999). Biologists
have typically used these methods to learn
about the history of organisms by using mod-
ern information stored in species’ DNA, and
paleontologists have compared model results
with fossil data to demonstrate model reliabil-
ity and uncertainty (Polly 2001).
Brownianmotion has traditionally been used

to model the amount of expected evolutionary
change, or accumulated variation, over a speci-
fied number of time steps (generations) with
either no selection or randomly varying selec-
tion acting on a phenotype (Harvey and Purvis
1991). This is a one-parameter model that esti-
mates evolutionary rate. Other models of evo-
lution have been described that might more
accurately represent the evolutionary history
of a phenotype (Butler and King 2004; Boucher
et al. 2014). Notably, the Ornstein-Uhlenbeck
model has been used to model selection of a
trait toward an optimum and might be particu-
larly important for climate studies, as Lawing
et al. (2016) showed that much variation in
climate variables among species is best mod-
eled by an Ornstein-Uhlenbeck process. The
Ornstein-Uhlenbeck model is typically a two-
or three-parameter model that estimates the
evolutionary rate and the strength of selection
(also known as the selection coefficient or
alpha) toward afixed optimum. If the optimum
is not in the same location as the mean of the
population, then the third parameter of the
Ornstein-Uhlenbeck model is the location of
the optimum. There are multiple review papers
that introduce phylogenetic comparative meth-
ods and explain their various categories and
uses (Miles and Dunham 1993; Martins and
Hansen 1996; O’Meara 2012; Pennell and Har-
mon 2013; Cooper et al. 2016).
Phylogenetic comparative methods have

been employed to study the evolution of a cli-
mate niche and physiological tolerances of
organisms. To integrate these methods with
ENMs, researchers considered parameters
from ENMs (such as the maximum and

minimum value of a climate envelope meant
to represent a climate niche) as phenotypes
for a species. These climate parameters are trea-
ted as species traits or phenotypes and
regressed along phylogenies according to a
specified model (or models) of evolution. Evo-
lutionary parameters associated with the
model, such as evolutionary rate, the selection
coefficient, and the optimum, are estimated.
These estimates are then used to reconstruct
the histories of a climate niche.
Estimates of the history of a climate niche

using only extant species information and their
phylogenetic relationships will not allow for
reconstructions outside the distribution of cli-
mate parameters among the tip taxa. This is a
problem, becausewe know that even as recently
as the last glacialmaximum (26–19 ka) therewas
a reasonable amount of non-analogous climate,
populations of species closely related to those
that occur now also occurred during that time,
and climate during that time does occur outside
the climate envelopes of extant species. Thus,
PPGMs and othermethods have developed pro-
cedures to incorporate evidence of past climate
that is geographically associated with fossil
occurrence data by incorporating fossil occur-
rences into a phylogenetic reconstruction.

Anchoring Phylogenetic Comparative Methods
with Fossil Occurrences.—There have been
many efforts to incorporate fossil information
to inform phylogenetic methods (Finarelli and
Flynn 2006; Pyron and Burbrink 2012; Hunt
2013; Slater 2013; Slater and Harmon 2013).
These typically focus on time-calibrating trees
with fossil information (Felsenstein 2002;
Pyron 2011; Ronquist et al. 2012; Bapst 2013)
and tree building to incorporate total evidence
from morphological and molecular data into
character matrices to analyze and develop
hypotheses about the relationships between
species, extant and extinct (Williams 1994; Pur-
vis 1995; Ronquist et al. 2012). Incorporating
paleoecological or paleoclimate information
associated with ancient species is an area that
has been less explored, but it is important to
consider, as the information associated with
fossils allows us to anchor models in the past,
as better proxies and GCMs provide more real-
istic reconstructions of the past climates species
would have encountered.
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Ideally, the species or genera associated with
the modern and fossil occurrences being mod-
eled would have one or more time-calibrated
phylogenetic trees that incorporate all extant
and extinct species in the study. In this case,
regular phylogenetic comparative methods
can handle incorporating modern and pale-
ontological information about climate niches.
There are occurrences in the fossil record that
are assigned to extant species or genera. In
the case of fossil occurrences assigned to extant
species, one may incorporate the paleoclimate
associated with the fossil occurrences directly
into the ENM for the extant species. More
often, at least for vertebrate species, fossil
occurrences are assigned to a genus, but the
species affinity is unknown.
One way to deal with the unknown place-

ment of a fossil occurrence within a phylogeny
is to repeat a randomization procedure for its
placement, perform a phylogenetic compara-
tive analysis, evaluate the model, and extract
important parameter estimates (Lawing et al.
2016; Rivera et al. 2020). After this procedure
is repeated many times, a distribution of
important parameter estimates is available for
comparison to the original phylogenetic com-
parative method performed with no fossil
occurrences included. This anchoring proced-
ure can be used to evaluate the usefulness of
anchoring a phylogenetic comparative recon-
struction with fossil occurrences. The fossil
occurrences will only introduce noise in the
analysis if they occur within the range of extant
variation. However, they will provide useful
insight into ancestral reconstructions if they
occur in placeswith paleoclimate estimates out-
side the range of extant climates associated
with modern occurrences (Fig. 2).

Coherent Models for Projection from Lineage
Interpolation.—Ancestral reconstructions for
phylogenetic comparative methods produce
estimates for hypothetical ancestral nodes.
Those nodes are located within the phylogeny
at a place and time that depends on the amount
of similarity between taxa in the study and not
based on particularly important points in the
geologic past. Thus, the estimated time of the
ancestral node reconstructions do not necessar-
ily line up with the time of the available
paleo-GCMs. Matching ancestral climate

estimates through lineage interpolation with
paleoclimate interpolations for projection was
a novel implementation from a PPGM-type
analysis (Lawing and Polly 2011). Lineage
interpolation uses the evolutionary parameters
from best-fit models from a phylogenetic com-
parative analysis to interpolate along a branch
(or lineage) between tips and nodes or between
nodes and nodes. Estimates of a climate niche
can be extracted from the lineage interpolation
for any specified time since the most recent last
common ancestor of a clade. These interpol-
ation methods allow for the production of
coherent time-calibrated models of a past cli-
mate niche to project onto an appropriate time-
calibrated map of paleoclimate (Fig. 3).

Paleoclimate Interpolations.—Paleoclimate
interpolations use linear interpolations
weighted by stable oxygen isotope values
between climate extremes from geologically
interesting end points modeled with
paleo-GCMs, GCMs, or modern climate data

FIGURE 2. Phylogenetic comparative method showing the
change in climate envelope reconstructions when fossils
are included in analyses. Fossils are indicated by the black
points. All blue phylogenies are the maximum of the cli-
mate variable, and the gray phylogenies are the minimum
of the climate variables. Each of 1000 phylogenies is lightly
mapped into the climate variable space, so the darker areas
indicate agreement despite phylogenetic uncertainty. A,
Mean annual temperature without fossil occurrences. B,
Temperature seasonality without fossil occurrences. C,
Mean annual temperature with fossil occurrences. D, Tem-
perature seasonality with fossil occurrences. Figure mod-
eled after analysis from Lawing et al. (2016). (Color online.)
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(Fig. 4). So far, these interpolations have used
one global proxy of climate to proportionally
adjust climate values between two or more
extremes (Lawing and Polly 2011; Lawing
et al. 2016; Gamisch 2019). The adjustment is
applieduniformlyacross the globe.Other proxies
for deep-ocean and surface temperatures include

alkenones (Bard 2001) and Mg/Ca from benthic
foraminifera (Billups and Schrag 2002), which
have been used to successfully reconstruct global
temperatures and could be explored as other
proxies for paleoclimate interpolations.
Without a doubt, GCMs are preferable to

paleoclimate interpolations, because they
account for complex processes of ocean and
atmospheric circulation. However, GCMs are
computationally intensive and so have not
been modeled for all time periods. Stable oxy-
gen isotope ratios from benthic foraminifera
record a global signal of changes in tempera-
ture and are useful proxies for changes in global
climate (Zachos et al. 2001; Lisiecki and Raymo
2005; Cramer et al. 2009). There is a reasonable
amount of variation between the climate esti-
mates produced by some GCMs. The simple
linear interpolationmethod, paleoclimate inter-
polations, shows less variation between an
interpolated paleoclimate and two paleo-
GCMs than between the two paleo-GCMs for
a test period during the Holocene (Lawing
and Polly 2011). A new suite of interpolated
paleoclimate layers is available at 10 kyr time
intervals back to 5.4 Ma at a spatial resolution
of 2.5 arc-minutes (Gamisch 2019). However,
the procedure could be improved by incor-
porating more GCM layers to anchor the

FIGURE 3. Example of a three-species phylogeny with
simulated climate profiles shown as histograms of mean
annual temperature (MAT) at the tips of the phylogeny.
Black arrows indicate the minimum and the maximum of
each of the climate profiles for each of the species. A recon-
structed range is mapped over the hypothetical ancestral
node. There are three climate envelope reconstructions
shown at three time periods along one lineage to indicate
that the climate envelope can be interpolated between the
reconstructed node and any tip taxon.

FIGURE 4. Paleoclimate interpolations use general circulation models (GCMs) to model the geographic distribution of
paleoclimate and the relative changes in stable oxygen isotopes (δ18O) are used to calibrate climate between GCMs. A,
GCM of mean annual temperature modeled for the last glacial maximum. B, Benthic foraminifera stable oxygen isotope
curve showing multiple time periods that can be used to interpolate between GCMs and modern climate. C, Modern
mean annual temperature.
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interpolation to capture deeper time paleo-
climate alterations. Gamisch (2019) also pro-
vides a detailed protocol for the paleoclimate
interpolation procedure.

Multivariate Environmental Similarity Surface
through Time.—Rectilinear climate envelope
models identify whether geographic places
fall within or outside a defined climate niche.
Some studies projecting models built with
only modern occurrences onto climates of the
past find no suitable area for species (Rödder
et al. 2013; Franklin et al. 2015). Instead of
showing that no climate is suitable, it is often
more interesting to determine how close the cli-
mate is to a climate envelope. Elith et al. (2010)
developed a method, multivariate environ-
mental similarity surface (MESS), to calculate
how similar a suite of climate variables is to
suitable. To calculate similarity between a refer-
ence set (here the set of observations occurring
within a climate envelope) and each sample
point in geographic space, the Euclidean dis-
tance is measured from the edge of each vari-
able in the climate envelope to the particular
value of the climate variable at the sample
point and summed. MESS maps highlight the
geographic areas that arewithin a climate enve-
lope and the level of similarity of areas that are
outside a climate envelope. MESS is particu-
larly useful in evaluating PPGM predictions,
because of the non-analogous nature of mod-
eled past climates (Rivera et al. 2020).

Integration with PPGM.—Earlier, I described
the various data types and methods that are
required to build PPGMs for a group of species.
Integrating this information into a framework
to project species climate envelopes onto paleo-
climate maps through time requires multiple
steps. (1) Obtain and clean species occurrence
data for all extant species included in the ana-
lysis. (2) Obtain and clean all fossil occurrence
data for relevant species or genera included in
the analysis. (3) Obtain one or more time-
calibrated phylogenetic trees. (4) Determine
the relevant descriptors of the climate niche
for all species in the analysis. (5) Calibrate
SDMs for each species in the study using a rec-
tilinear climatic envelope model to determine
the maximum and minimum, or 5th and 95th

percentiles, of relevant descriptors of the cli-
mate niche. (6) Add fossils into the

phylogenetic trees according to the described
randomization procedure or constrained to
more appropriate locations in the phylogenies.
(7) Obtain paleoclimate information fromGCMs
for relevant time periods. (8) Extract relevant
descriptors of the climate niche at fossil locations
from paleoclimate maps. (9) Use phylogenetic
comparative methods to estimate climate envel-
opes at hypothetical ancestral nodes. (10) Inter-
polate between node reconstructions and extant
species at relevant time periods. (11) Project cli-
mate envelope reconstructions onto paleo-
climate maps that have been aligned for each
relevant time period for each lineage of the phyl-
ogeny. (12) Conduct post hoc comparisons of the
projections to address biogeographic hypoth-
eses, which might include the use of MESS to
characterize the similarity of an entire paleo-
climate surface to a specified climate envelope.
The circumstances under which this method

is probably most beneficial is when there exist a
reasonable amount of observation data and
phylogenetic information for an extant species
group and at least some fossils identified to
belong within the crown group. In addition,
groups that have good information on their
physiological tolerances to climate will be par-
ticularly fitting. Over shallow time periods dur-
ing the Quaternary, consideration of
evolutionary change in physiological toler-
ances is likely less important due to shorter
time for evolution and speciation to occur, so
it would be less useful to go through the pro-
cess of modeling phylogenetic changes when
they might not influence projections of climate
envelopes into paleoclimate space. This would
be true for species that have time to speciation
occurring over millions of years, but it would
not be true for species that have shorter time to
speciation. At deeper time periods, it is essential
to consider species evolutionary change.
Caveats with this methodology include the

assumption that the climate niche evolves,
that we can capture the evolution of the climate
niche using parameters associated with its dis-
tribution, and that those parameters are related
to physiological requirements of a species
(Meik et al. 2015). Climate data as a proxy for
physiological tolerances are probably not
adequate. Addo-Bediako et al. (2000) found
that although species maintain little variation

A. MICHELLE LAWING190

https://doi.org/10.1017/pab.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2021.14


in upper thermal limits across their geographic
ranges, they have more variable lower thermal
limits that decline with increasing latitude in
insects. Gouveia et al. (2014) show that upper
thermal limits are related to the position of
the climate niche in climate space but do not
relate to the maximum temperature extracted
from the geographic range of anurans.
One way forward is to use principles of bio-

physical or physiological ecology to model
the climate niche of species (i.e., mechanistic
models), instead of the climate envelope mod-
els described here, which is considered a cor-
relative approach to species distribution
modeling. Some researchers have advocated
using mechanistic models derived from species
physiology to build algorithms to estimate the
climate or environmental niche in place of the
first two steps of a correlative SDM of collecting
species occurrence data and associated climate
or environmental data (Kearney and Porter
2009). This is an interesting path forward,
because the physiological parameters might
be considered phenotypes on which natural
selection could act, more directly linking phylo-
genetic models with models of a species’ distri-
bution. However, mechanistic models require
very specific physiological data for organisms,
with extensive validation from the field and
lab, where correlative models based on obser-
vational data will be more readily populated
with much already available data.
Another caveat tangentially related to the

caveats already presented is the incomplete
characterization of the climate niche. Due to
expected biotic influences on species geo-
graphic distributions and the variation in avail-
able climate space through time, occurrences of
species are not expected to capture the full
range of climates in which a species may be
able to survive and reproduce. Saupe et al.
(2018) investigate the effects of incomplete
characterization of climate niches by modeling
the evolution of a couple of climate niche vari-
ables in virtual species. They find that the
incomplete characterization of niches increases
rates of niche evolution and biases in the com-
parisons of evolutionary patterns between
clades. They caution researchers to beware of
these effects and to correct for them by estimat-
ing niche truncation. One way to check for

niche truncation is to test whether species dis-
tributions are in equilibrium with modern cli-
mate (Araújo et al. 2005; Munguía et al. 2012).
However, even if the species distributions are
in equilibrium with modern climate, there
remain potential gaps in climate space not
occupied by available modern climate. If
those gaps occur on the edges of species climate
niches, then niche truncation could occur.
Including younger fossils in the characteriza-
tion of the climate niche might offer a more
complete characterization of a truncated niche
(Varela et al. 2009, 2011).
Evenwith these caveats, thismethod remains

interesting to investigate and improve upon,
because it provides an avenue for developing
models of species potential distributions
through time, while accounting for evolution-
ary and climate change (Rivera et al. 2020).
The results of these models can also be har-
nessed to provide various expectations of past
community composition, which could be com-
pared with observed past communities. These
investigations would improve our understand-
ing of the effects of compositional changes and
non-analogous compositions on our under-
standing of past ecosystem dynamics.

Conclusions

We can gain critical insight into biotic
response to climate and environmental change
by integrating modern and paleontological
data, along with phylogenetic comparative
methods, ecological niche and species distri-
bution modeling, and paleoclimate interpola-
tions. The approach described here could be
broadly applied to integrative studies addres-
sing questions about biota that cross spatial
and temporal scales, including investigating
biodiversity patterns, macroevolution, com-
munity assembly and disassembly, and eco-
logical resilience. Study designs that iterate
through divergent assumptions, such as para-
meters that emphasize niche evolution con-
trasted to niche conservatism, will result in
a suite of possible outcomes that could be
evaluated to gain insight into ecological and
evolutionary processes governing the distri-
bution of species and their responses to envir-
onmental change.
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There are multiple study designs that will
accommodate the integration of paleonto-
logical and neontological datasets. One
approach to evaluate biotic response to envir-
onmental change is to use methods designed
for paleontology and paleontological data to
forecast biotic response and compare it with
modern biodiversity data. Another approach
is to use methods designed for modern obser-
vations and inference, project those back in
time, and compare the projections with pale-
ontological data. Although these are powerful
approaches, especially for model validation,
there are several considerations when making
these comparisons; see Willig (2003) for a dis-
cussion on factors that limit our understanding
of biodiversity in space and time. Importantly,
the modeling procedure and validation dataset
can be mismatched in spatial and temporal
scale, so it may be unclear whether some valid-
ation procedure fails because the modeling
does not accurately capture the important bio-
logical processes or due to the spatial and tem-
poral mismatch of the datasets.
A third approach is focused on integrating

modern and paleontological data into the
same algorithmic procedures for making infer-
ences through newmethods development. This
approach accommodates the inclusion of both
paleontological and neontological data sources
and specifically deals with aligning spatial and
temporal scales for integration. PPGM-type
modeling relies on this third approach, and the
associatedmethods still require multiple aspects
of development. The most pressing develop-
ment needs include understanding how to
better characterize niches of species, how those
relate to genus occurrences in the fossil record,
and how to best incorporate phylogenetic mod-
eling for complicated niche characterization
algorithms. It is also critical to better understand
the link between physiological ecology and cli-
mate tolerances and to further investigate
whether and how climate niches evolve.
Modeling species potential distributions in

deep time also remains challenging due to the
available occurrence data. For many species,
there is sparse coverage of spatial and temporal
occurrences in the fossil record. Kemp and
Hadly (2016) highlight the taxonomic biases
present in available data. Targeted sampling

will be required to gain more comprehensive
coverage for some species. In addition, we
need more paleoclimate general circulation
models to describe distributions of climate
through time and to help interpret the geo-
graphic distribution of ancient climate avail-
ability. So far, PPGM-type modeling has been
applied to only a couple groups of squamate
reptiles and to North American chelonians. It
is important to extend the application of these
methods to species groups with more numer-
ous fossils and with more taxonomically
resolved fossil identifications.
Many of the biological and paleontological

data we rely on for these modeling efforts are
supported by natural history collections
(Cook and Light 2019). But natural history col-
lections are struggling, as they are underfunded
and undersupported, and many important col-
lections have even been closed (Dalton 2003;
Schilthuizen et al. 2015). In addition, there is a
dearth of researchers depositing new speci-
mens into collections (Turney et al. 2015; Salva-
dor and Cunha 2020). We need more support
for natural history collections in the twenty-
first century and more support for new users
and depositors of voucher specimens (Miller
et al. 2020).
Despite the complexities and caveats, it is use-

ful to continue to develop ways to further inte-
grate data and methods across the biology–
paleontology spectrum. These methods allow
us to meaningfully incorporate paleoclimate
data associated with fossils into phylogenetic
comparative analyses to anchor reconstructions
and better gauge the evolutionary tempo and
mode of climate tolerances. They allow us to
test current biogeographic hypotheses and
develop new suites of hypotheses to better
understand geographic shifts in species distribu-
tions in response to past global change events. In
addition to providing insight into ecological and
evolutionary processes that support biodiver-
sity, these past modeled responses may serve
as a comparison to recent, modern, and future
projected responses to global change.
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