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Abstract

A construction is given for a non-desarguesian projective plane P and an
absolute-point free polarity on P such that the group of collineations of P
which commute with the polarity is isomorphic to an arbitrary preassigned
finite group.

Sabidussi (1957), in extending the fundamental work of Frucht (1949), proved that
every finite group G (of order at least 2) may be represented as the automorphism
group of a regular graph of degree 5. Schrag (1971, 1976) showed how to parlay
this result into a representation of G as the automorphism group of some ortho-
modular lattice L. In this paper we show that L may be chosen to be an irreducible
orthocomplemented modular lattice of height 3, herein called an orthocomple-
mented projective plane. In fact we shall prove the following result.

THEOREM. Let G be a finite group. There exists a non-desarguesian projective plane
P and an absolute-point free polarity ' on P and an injection <p: G->coll(P) of G
into the collineation group ofP such that image (<p) = {a e coll (P) | a' = 'a}.

The idea of the proof is to look at Schrag's orthomodular lattice L with
Aut±(£)=G and observe that Aut±(L) = Aut(Z,), that is, every lattice auto-
morphism of L preserves the orthocomplementation. We then construct a wide
cubic structure space (see Greechie (1974)) from the elements of L of height 1 or 2.
We extend this to a larger such structure which is also a confined configuration
(see Greechie (1974)) by adjoining a wide cubic structure space with no auto-
morphisms. By embedding the final result in a tight cubic structure space (see
Greechie (1974)) and passing to the lattice we obtain the desired result. Until the
last paragraph we shall assume that |G|> 1.

This paper was presented at the Lattice Theory Conference, Ulm, Germany, July 1975,
under the title, "Every Finite Group is a Subgroup of the Collineation Group of some
Projective Plane".
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LEMMA 1. Let G be a finite group of order at least 2 and let La be the lattice
constructed in Schrag (1971, 1976) such that Autx(LG)sG. Then

PROOF. We begin by recalling the construction of La. Schrag begins with the
finite regular graph HQ of degree 5, given by Sabidussi (1957), such that
Aut(ffo)^(j. He then takes the subdivision graph Hx of Ho obtained by splitting
each edge in HQ in two and for each pair of new edges adding one new point which
is the common vertex of the two new edges which replace the old one (for example,
a triangle becomes a hexagon). (The vertices of Hx have degree 5 or degree 2.)
Schrag then considers the graph H2 given in Fig. 1. He manufactures a family of
disjoint copies of H2—one for each element of Hx of degree 2. Let Hy be the copy
H2 corresponding to y in Hx of degree 2. Now he identifies the unique element
(called x in Fig. 1) of each Hy of degree 2 with the corresponding y in Hx forming a

FIG. 1. Schrag's graph H2 having a one-element automorphism group.

larger graph having elements of degrees 3, 4 and 5. Call this new graph H3. Then
Aut(H3)^ G. The dual incidence structure H\* has the same automorphism group.
So does its logic SC{Hf) which is Schrag's La.

Figure 2 represents the graph H2 of Fig. 1. The point x has degree 2; all other
points have degree 3 and are represented by triangles.

In Fig. 3 we depict the graph H3. The circles represent the elements of degree 5
from Ho. The squares represent the elements of degree 4 obtained by identifying the
element x of degree 2 of Hy with the element y of degree 2 of Hv The triangles
represent the elements of H2—{x} of degree 3.

The edges of H3 are the points of H%* and the atoms of ^C(H^). The five edges
on a point of degree 5 in H3 determine a copy of 25 in ^(H^). These are the only
sublattices of 3?(Hf) isomorphic to 25. Hence, a lattice automorphism <p of
£P(Hf) permutes these copies of 25 among themselves. Similarly, such p's permute
the copies of 24 in £?(!!$), corresponding to the vertices of degree 4 in H3, among
themselves. However, as we shall see, there are copies of 23 in £?(Hf) which do
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FIG. 2. An abstract version of the graph H2.

FIG. 3. A local view of the graph H3.
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not correspond to sublattices obtained from the dual of points of degree 3. We must
therefore prove separately that there are no non-trivial lattice automorphisms of
each of the sublattices determined by a single Hy which fix the two edges adjacent
to y in H3. The orthogonality space diagram for this lattice Lo is given in Fig. 4.

nN©

FIG. 4. The orthogonality space determined by the atoms of £0.

LQ has one sublattice j3 isomorphic to 24; all sublattices of Lo of height 4 are sub-
sets of the lattice j8. We must show that Lg contains no lattice automorphisms
which fix n and m. Since the lattice automorphisms need not preserve the ortho-
complementation a priori, we must use the full force of the diagram. The reader
should visualize two copies of the diagram one on top of the other. Think of the
small letters as representing the elements of the bottom copy Xo; these are the
atoms of LQ. Think of the capital letters as representing elements of the top copy Xx;
these are the coatoms of Lo. (To complete the picture the reader should mentally
visualize the six 2-element subsets of the set {a, b, m, n} but this will not be necessary
for our argument.) Lo is an orthomodular lattice with A = a', B = b', etc. However,
we shall ignore this fact and treat it simply as a lattice. Note that r, S, t, U, z, Q,
together with 0 and 1 is lattice isomorphic to 23 but not a "block" of Lo. Herein
lies the problem. There may exist lattice isomorphisms which are not ortho-lattice
isomorphisms. The following remark states that this is not the case.

REMARK. The only lattice automorphism ofL0 which fixes m and n is the identity
map.
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PROOF. Let <p: £0->L0 (and hence q>~1) be a bijection preserving v and A with
<p(m) = m and <p(n) = n.

We first note that (i) t v d = V<\ and (ii) t v g = U < 1. By considering the unique
copy of 24 in Z,o we may infer that <p(q) e{a, b}. If <p(a) = 6 then {p(c), p(*0) = {e,/}
and {<p(e), <p(f)} = {c, </} by considering what happens to the elements under A and
B, respectively. Since t<E, <p(t)e{x, w,k,v}; but (i) above is violated unless
<p(d) =• e and <p(t) = v; it follows that <p(E) = D so that p(F) = C and hence
f(f) = c and <p(e) = </. Since h,g<F, {<p{h),<p(g)} = {w,x}; both possible choices of
f{g) violate (ii), since <p(t) = v. Therefore <p(a)^b.

It follows that <p(a) = a, <p(b) = b, <p(A) = A and <p(B) = B. By (i) and the fact
that t^E we conclude that <p(E)=tF so that <p(E) = £ ; it follows that <p(F) = F
and, taking meets, (p(e) = e and ?>(/) = / . Therefore tp(t)e{s,t}; by (i) again the
only consistent choice of f(t) and <p(d) are p(f) = t and p(rf) = d; hence f(C) = C,
<p(D) = D, y(c) = c, <p(s) = J, p ( r ) = 71, p(S') = S. It now readily follows that <p is
the identity function. The remark is proved.

We return to the proof of Lemma 1. Let <p: La^-La be a lattice automorphism.
Let x be a vertex of ^> C H 3 so that x corresponds to a copy of 25 = Bx in
LG = &(H%Y, the elements of Bx of height 2, 3 and 4 are in exactly one copy of
25 in La; hence p | Bx = 5 V for some vertex y of flj,. Similarly, each vertex u e Hx

corresponds to a copy of 2* = Bu in La and p | Bu = 5C for some vertex v in
For each vertex W G H 3 \ ( H 1 U H 2 ) , weHy for some vertex j'Gffa\ff1; and <p maps
the two atoms of By which are also in some 25 to two such atoms in some Bz,
zeH2\H1. Let L% and L% be the copy of Lo corresponding to Hy and Hz. Then
f»|L^:L^->£^ is an ortho-automorphism, by the remark, and therefore q> induces a
graph isomorphism of Hv onto Hz. It follows that <p induces a graph automorphism
95* of Hz. 93* induces an ortho-automorphism 9?** on £P(Hf) = L o and clearly
93 = 95**. Thus <p is an ortho-automorphism and so we have Aut(La)s^Aut±(La).
Since containment certainly goes in the other direction, we have equality.

We shall now prove the theorem. For i = 1,2, let

Xt = {xeLo\ there exists a covering chain from 0 to JC of length /}

so that X1 is the set of atoms of La and X2 is the set of elements which cover atoms.
Let Ar

0 = Ar
1uAr

2 and let S'0 = {{x,y}\xeX1, yeXz and x^y in LG}. Let
(X3, ^3) = 8(X0, <f0) be the Dacification of (Xo, <f0), so that

Jr8 = *ou<?o and ^ = {{x,y,{x,y}}\{x,y}e^.

Since La is a lattice, (X3, «?3) is a wide cubic structure space (see Greechie (1974))
(in other words, a point closed complete Dacey space in which all maximal ortho-
gonal sets have three elements).

Henceforth we shall utilize the definitions and notation of Greechie (1974).
Since I
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Let (Y,1F) be the wide cubic structure space obtained by deleting the point
m (and M) from Fig. 4. Note that (Y,^) has a trivial automorphism group.
Take finitely many disjoint copies of this space, one (call it Y^xy)) for each
{x,y}eX3\X0, and identify the unique point of Y^XiV^ which is in only one block
with {x,y} to obtain a finite wide cubic structure space {X,$). Observe that (1)
x e X implies x is in at least two blocks of § and (2) Aut (X, S^ G. Apply Theorem
2 of Greechie (1974) to embed (X, €) in an on-trivial tight cubic structure space
TT(X, S) SO that ^(TT(X, SJ) is an orthocomplemented projective plane. From (1),
(2) and Proposition 3 of Greechie (1974) it follows that

The orthocomplementation of (£(TT(X, £)) is the absolute-point free polarity of
p = ^(TT(X, $)) mentioned in the theorem. Moreover, K\xtJ^{-n{X, <?))) is precisely
the group of collineations of P which "commute" with this polarity. P is a non-
Desarguesian projective plane by Corollary 2 of Greechie (1974).

The case in which | G\ = 1 is easily handled by ignoring Schrag's Lo (which is
21 in this case) and constructing directly a wide cubic structure space (Yo, &£) wi*n

a trivial automorphism group in which each element is in at least two blocks and
then passing to TT(J0,^ and #(7r(y0, J^)). Such a space (Yo,^) is as easy to
construct as our (Y,^) above. The theorem is proved.

The corresponding result for infinite groups may yield to the techniques of
E. Mendelsohn. See, for example, "Every group is the collineation group of some
projective plane", / . Geom., (1972) 2 (2), 97-106 for a similar result not involving
orthogonality.
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