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Abstract. Thispaperdealswithgroup actionsofone-dimensional formalgroups de¢nedover the
ring of integers in a ¢nite extension of the p-adic ¢eld, where the space acted upon is the maximal
ideal in the ring of integers of an algebraic closure of the p-adic ¢eld. Given a formal group F as
above, a formal £ow is a series F�t; x� satisfying the conditions F�0; x� � x and
F
ÿ
F �s; t�; x� � F

ÿ
s;F�t; x��.With this de¢nition, any formal group will act on the disk by left

translation, but this paper constructs £ows F with any speci¢ed divisor of ¢xed points, where
a point xof the open unit disk is a ¢xed point oforder W n if �xÿ x�njÿF�t; x� ÿ x

�
. Furthermore,

if g is an analytic automorphism of the open unit disk with only ¢nitely many periodic points,
then there is a £ow F, an element a of the maximal ideal of the ring of constants, and an integer
m such that the m-fold iteration of g�x� is equal to F�a; x�. All the formal £ows constructed here
are actions of the additive formal group on the unit disk. Indeed, if the divisor of ¢xed points
of a formal £ow is of degree at least two, then the formal group involvedmust become isomorphic
to the additive group when the base is extended to the residue ¢eld of the constant ring.
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This paper extends the investigations begun in [L] in which iterations of analytic
transformations of the p-adic open unit disk �m were studied. In both this paper
and the preceding, �m denotes the set of elements z of a ¢xed algebraic closure
of Qp for which jzj < 1, and the transformations to be considered all are de¢ned
over a ¢nite extension k of Qp, with ring of integers o and maximal ideal m.
The difference between the two papers is principally that the ¢rst dealt only with
transformations of �m with a ¢xed point, and concentrated on those that have
in¢nitely many preperiodic points; this paper emphasizes instead transformations
with no ¢xed point and those with only ¢nitely many preperiodic points. Another
distinction between the two papers is that this one concentrates on continuous,
and indeed analytic, families of transformations of �m, while most of the
transformations dealt with in the previous paper could never be members of analytic
families. The study of these maps leads naturally to investigation of group actions by
formal groups on the p-adic open unit disk: these are the `£ows' of the title of the
paper.
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This paper could as well have been entitled `p-adic time in non-Archimedean
dynamics': the work here was stimulated in great degree by ideas of D. Arrowsmith
and F. Vivaldi's paper [AV]. The other principal sources of inspiration have been
the thesis of M. Zieve [Z] and numerous conversations with their author, when
he was visiting Brown University.

One of the main results of this paper is Theorem 3.2, according to which an
invertible transformation j of the open unit disk having only ¢nitely many periodic
points will have, belonging to it, a £ow obtained by exponentiating a suitable scalar
multiple of the derivation Dj that is associated to the Lie logarithm ej of j. The
way that the results of this paper relate to those of [L] is as follows. We denote
the ring of integers of k by o, and its maximal ideal by m. For a series
f �z� 2 o��z�� with f 0�0� 2 m, the only iterates of f that we expect to give any meaning
to are f �n for n 2N; these maps f are noninvertible, and have a unique ¢xed point
in �m. (I use here the notation in which f �1 � f and f ��m�n� � f �m � f �n.) For an
invertible transformation u�z� of the open unit disk, u�n makes sense when
n 2 Z, but if u0�0� 2 1�m, the pm-iterates of u approach the identity, so we may
de¢ne u�a for a 2 Zp. If, moreover, u has only ¢nitely many periodic points, then
Theorem 3.2 will show that we may de¢ne also u�p

mt for a ¢xed m but with t allowed
to run through �m, and the coef¢cients of the resulting series are themselves power
series in t with coef¢cients in o.

The foundational background necessary for studying this situation is slightly more
extensive than required for [L]. So after a short review of notations in Section 0, there
is an outline given of the requisite p-adic analysis in Section 1. The new material of
the paper begins properly in Section 2.

0. Notational Conventions and Elementary Analytic Considerations.

For the full list of notations used here, we refer the reader back to [L], Sections 0
and 8. We use k to denote a ¢nite algebraic extension ¢eld of the ¢eld Qp of p-adic
numbers; the integral closure in k of Zp will be denoted o and its maximal ideal
m. We de¢ne Gm�o� to be the set of all series u�x� in o��x�� with u�0� 2 m and
u0�0� 62 m. This is a necessary and suf¢cient condition for u to be an o-analytic
automorphism of the p-adic open unit disk �m:� fz 2 k: jzj < 1g, where k is an
algebraic closure of k and j � j is the unique extension of the p-adic absolute value
to k. Thus Gm�o� is a group under composition of series. In contrast to the situation
with the subgroup G0�o� of all such series with constant term 0, substitution and
calculation of the inverse are analytic rather than algebraic operations. That is,
in G0�o� degree-by-degree methods may be used for calculating both u � w and
uÿ1, whereas in Gm�o� the calculation of u � w involves a limiting process, and to
verify the existence of uÿ1 or to calculate it requires the application of Hensel's
Lemma or the Weierstrass Preparation Theorem.

Instead of using the (multiplicative) p-adic absolute value, we use its negative
logarithm v, the additive valuation normalized so that v�p� � 1.
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As in [L], we use the notation f �n for the n-fold iteration of f , but in the case when
n � ÿ1 we will usually denote the inverse mapping of f , if it exists, simply as f ÿ1.

We recall the de¢nition, if r > 0, of the valuation wr on the ring of power series
o��x�� 
o k: if f �x� �

P
aixi, then wr�f � � mini

ÿ
v�ai� � ir

�
. We de¢ne:

A�r� � A�r�k:� completion of o��x�� 
o k with respect to wr

A � Ak:�
\
r>0

A�r�:

Another way of saying the same thing is that A is the completion of o��x�� 
o k in the
topology of uniform convergence on proper subdisks of �m. The elements of A are
precisely the series

P
aixi 2 k��x�� for which lim inf i

ÿ
v�ai�=i

�
X 0.

To make clear the relationships among these concepts, we state without proof the
following:

PROPOSITION 0.1. Let r > 0 and let ffjg and F be series in A�r�. Then fj ! F
uniformly on the disk fa 2 �m : v�a� > rg if and only if fj ! F in the topology de¢ned
by wr.

PROPOSITION 0.2. Let r > 0 and f �x� �Pi aix
i 2 k��x��. Then f 2 A�r� if and only if

limi
ÿ
v�ai� � ir

� � 1. In particular, if r > r0 > 0 and wr0 �f � > ÿ1, then f 2 A�r�.

PROPOSITION 0.3. Let r > r0 > 0. Then A�r0� � A�r�, and if limj fj � F with respect
to wr0 , then limj fj � F with respect to wr.

1. Analytic Automorphisms of the Open Unit Disk

Let f �x� 2 Ak, with the property that for every a 2 �m, the equation f �x� � a has
precisely one solution in �m. An examination of the Newton polygon of f �x� ÿ a
for such a shows that the constant term of f must be in m, the ¢rst-degree coef¢cient
of f must be in o�, the unit-group of o, and all other coef¢cients must be in o. Thus
f 2 Gm�o�, and it has not merely a set-theoretical but an analytic inverse.

There are elements of Gm�o� with no periodic points at all. For instance, if
F �x; y� 2 o��x; y�� is a one-dimensional formal group and a 2 m is not a torsion point
of F , then the series u�x� � F �x; a� 2 o��x�� has no periodic points. We will see later on
that this is by no means the only way to ¢nd invertible series without periodic points.

We now de¢ne an important subgroup of Gm�o�, which will turn out to be the
largest subgroup that is pro-p-torsion. Let us call n: o! k � o=m the canonical
map to the residue ¢eld; then the map Gm�o� ! k� by j�x� 7! n

ÿ
j0�0�� is a

homomorphism of groups, and we call its kernel G1m�o�. The series F �x; a�mentioned
above is certainly of this type, since F �x; a� � x �mod m�. If we denote the identity
transformation of the unit disk by id�x� � x, then we will see that the p-power iterates
of any series in G1m�o� approach id uniformly on proper subdisks of �m.
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LEMMA 1.1. If u�x� 2 G1m�o�, with u�x� ÿ x � E�x� and wr�E� � l for 0 < r < l, then
wr
ÿ
u�p�x� ÿ xÿ pE�x��X 2lÿ r.

We show ¢rst that if ui�x� � x� Ei�x� 2 G1m�o�, with wr�Ei�X l for i � 1; 2, then
u1
ÿ
u2�x�

� � x� E1�x� � E2�x� � d�x� with wr�d�X 2lÿ r. Indeed, we have

u1
ÿ
u2�x�

� � x� E2�x� � E1
ÿ
x� E2�x�

�
� x� E2�x� � E1�x� � E01�x�E2�x� � g�x�E2�x�2

for some series g�x� 2 o��x��. Since wr�E01�Xwr�E1� ÿ r, the claim is proved. Under the
hypothesis that r < l, we have wr

ÿ
u1 � u2�x� ÿ x

�
X l, so we see, for each n, that if all

n of the functions being composed are equal to u�x� � x� E�x�, then
wr
ÿ
u�n�x� ÿ xÿ nE�x��X 2lÿ r.

COROLLARY 1.1.1. If u 2 G1m�o�, then in A, limn u�p
n � id.

For any u 2 G1m�o�, the Weierstrass degree of u�x� ÿ x (the ¢rst degree in which a
unit coef¢cient occurs) is at least 2, so that wr

ÿ
u�x� ÿ x

�
X min�2r; 1=e�, where e

is the rami¢cation index of k over Qp. So by restricting our choice of r to values
less than 1=2e, we see that in A, the sequence of p-power iterates of u has
wr u�p

n ÿ id
ÿ �!1.
Because of the preceding, we will call series in G1m�o� analytically unipotent.

COROLLARY 1.1.2. If u 2 G1m�o�, then the homomorphismZ! G1m�o� by n 7! u�n is
continuous when Z has the p-adic topology, and hence extends to Zp! G1m�o�. In
particular, if p n, u�1=n is de¢ned, and hence any ¢nite orbit in �m under the action
of u is of cardinality a power of p.

The preceding Lemma and Corollaries correspond, in the slightly more dif¢cult
situation that we are now dealing with, to Proposition 4.1 of [L]. The fact that
Gm�o�=G1m�o� � k�, a ¢nite group of order prime to p, justi¢es the claim made earlier
in this section that G1m�o� is the greatest subgroup of Gm�o� that is pro-p-torsion.

We now construct the Lie logarithm eu of a series u 2 G1m�o�: we de¢ne

eu�x� � lim
n!1

u�p
n �x� ÿ x
pn

:

It still remains to show that the sequence is convergent in A. As before, we ¢x a
positive r and show that the limit exists with respect to the valuation wr on A.

PROPOSITION 1.2. Let u�x� 2 G1m�o�. Then limn
ÿ
u�p

n ÿ id
�
=pn exists as an element of

Ak.
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In [L], the proof was accomplished by showing that a coef¢cientwise limit existed,
and then verifying that this limit was an element of Ak. The proof here is much more
direct and natural, but the expression of the Lie logarithm as an in¢nite product,
which was a byproduct of the proof in [L], will need to be veri¢ed separately.

Let r be ¢xed, 0 < r < 1. By Lemma 1.1, we may take m so that
wr
ÿ
u�p

m ÿ id
� � lX 2. We will show, for iX 1, that

wr
u�p

m�i ÿ id

pi
ÿ u�p

m�iÿ1 ÿ id

piÿ1

 !
!1:

We put ai :� u�p
m�i ÿ id, so that wr�a0� � l and since r < lÿ 1, we get wr�ai�X l� i

by using Lemma 1.1. We need wr
ÿ
ai=pi ÿ aiÿ1=piÿ1

�!1. To see this, we set
Ei :� ai ÿ paiÿ1 for iX 1, and again by Lemma 1.1, we have wr�Ei�X
2wr�aiÿ1� ÿ r � 2�l� i ÿ 1� ÿ r. Since ai=pi ÿ aiÿ1=piÿ1 � pÿiEi, the desired result
follows and the proof is done.

We need to show that, just as in the more special situation of [L], the roots of the
Lie logarithm of u are the periodic points of u.

LEMMA 1.3. Let g�x� 2 o��x��, with g�0� 2 m, and let nX 1. Then in o��x��, g�x� ÿ x
divides g�n�x� ÿ x.

PROPOSITION 1.4. Let u�x� 2 G1m�o�, and let Fn � �upn ÿ id�=�upnÿ1 ÿ id� 2 o��x��.
Then eu has the convergent in¢nite product expansion

eu�x� � ÿu�x� ÿ x
�Y1
n�1

Fn�x�
p

:

As in the proof of Proposition 4.3 of [L], we need only show that limn Fn � p.
Using the notation of Proposition 1.2, we have Fn � anÿm=anÿmÿ1 �
p � Enÿm=anÿmÿ1. This shows that Enÿm=anÿmÿ1 2 o��x��, and the computation of
wr-values in the previous Proposition shows that for n > m,

wr�Fn ÿ p� �wr�Enÿm� ÿ wr�anÿmÿ1�
X 2wr�anÿmÿ1� ÿ rÿ wr�anÿmÿ1�
X l� nÿmÿ 1ÿ r;

which is enough to complete the proof.
The reader should note that in the product expansion foreu, the factor outside the

product sign accounts for the ¢xed points of u, and the factor Fn accounts for
the periodic points of u of period precisely pn.

In this paper we will be interested principally in transformations u of the open unit
disk with only ¢nitely many periodic points, i.e. those for whicheu has only ¢nitely
many roots. When this is the case, there is a constant a 2 k, a Weierstrass polynomial
P�x� (monic, with all roots in �m) in o�x�, and U�x� 2 o��x��� such thateu � aPU . In
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particular, if u has no periodic points, then the Lie logarithm of u is a constant times a
unit o-series. In any case, we will abuse language and call the polynomial P the
divisor of periodic points of u.

Our principal aim for the rest of this section is to show that if two series in G1m�o�,
say u and w, have the same Lie logarithm, then there is a power q of p such that
u�q � w�q. To do this we start with a fact about the commutator of two series
in G1m�o�.

LEMMA 1.5. Let u;w 2 G1m�o�with u�x� � x� lU�x�, w�x� � x� mW �x� for l; m 2 m

and U;W 2 o��x��. Then

�uÿ1 � wÿ1 � u � w� �x� � x� lm
ÿ
U 0�x�W �x� ÿU�x�W 0�x���mod lmm��x���:

We omit the proof, which is perfectly straightforward and predictable. The
Lemma is particularly useful for seeing how a change in u induces a change ineu.
COROLLARY 1.5.1. Under the hypotheses of Lemma 1:5, u and w commute modulo
lm, and in particular �u � w��p � u�p � w�p�mod lmo�.

For the following Proposition, we use the p-adic (in other words,m-adic) valuation
on o��x��, which corresponds to the topology of uniform convergence on the whole
open disk. We say that v

ÿ
f �x�� � h if f �x� � ag�x� where a 2 o with v�a� � h and

g 2 o��x�� is a series with at least one unit coef¢cient: in other words, the Weierstrass
degree of g is ¢nite. Recall that v is normalized so that v� p� � 1.

PROPOSITION 1.6. Let u;w 2 o��x�� be series such that v�uÿ id�X 2 and
v�wÿ id�X 2. Then v�uÿ w� � v�u � wÿ1 ÿ id� � v�u�p ÿ w�p� ÿ 1 � v�euÿew�.

The ¢rst equality is immediate, having nothing to do with the special hypothesis on
the closeness of u and w to the identity. We may assume without loss of generality
that v�uÿ id�W v�wÿ id�; let us suppose now that u � id� lU and
u � wÿ1 � id� dD, both U and D being series over o of ¢nite Weierstrass degree,
and l; d 2 p2o. We get:

u�p � w��ÿp� � ÿu � wÿ1��p�mod ld�
� id� pdD�mod d2�;

where the ¢rst congruence comes from Corollary 1:5:1 and the second comes from
Lemma 4:2:1 of [L]. Having chosen u to be not closer to the identity than w, we
can say that ljd, and thus that v

ÿ
u�p ÿ w�p

� � v�pd�, which veri¢es the second
equality.
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For the Lie logarithms,

euÿew � lim
n!1

u�p
n ÿ id

pn
ÿ w�p

n ÿ id

pn

� �
� lim

n!1
u�p

n ÿ w�p
n

pn
;

and by our second equality, the approximants all have v-value equal to v�uÿ w�.

THEOREM 1.7. Let u;w 2 G1m�o� witheu � ew. Then there is n such that for q � pn, we
have u�q � w�q.

The proof uses techniques developed in this paper and [L], dividing the proof into
three cases depending on the nature of the ¢xed points of u, if any.

In the ¢rst case, u�x� ÿ x has a multiple root, which we may assume (after making a
¢nite extension of k) to be at the origin, so that u has the form x� a1x2 � a2x3 � � � �,
what we called a unipotent series in [L]. The discussion at the end of Section 4 of [L]
shows that eu has the form A1x2 � A2x3 � � � � where each Ai is a polynomial
expression in the aj's that is isobaric of weight i, if each aj is endowed with the weight
j; and that Ai contains the monomial ai with coef¢cient 1. The ¢rst few terms ofeu areÿ

x� a1x2 � a2x3 � a3x4 � � � �
�e

� a1x2 � �a2 ÿ a21�x3 � �a3 ÿ 5a1a2=2ÿ 3a31=2�x4 � � � �
The form ofeu shows that eu determines the unipotent series u completely. If ew �eu
then some p-power iterate of w has a ¢xed point of multiple order at 0 as well,
so we may replace u and w by their iterates of this order, when w is now seen to
be equal to u.

In the second case, u�x� ÿ x has a simple root, which we again may assume is at the
origin, so u�x� � ax�mod x2 with a 6� 1. In case a is a root of 1, a suitable p-power
iterate of u will fall into the ¢rst case; otherwise, u is what was called in [L] a stable
series, in which case we have the fundamental identity of Proposition 4:5 of [L] thateu�x� � log

ÿ
u0�0��Lu�x�=Lu

0�x�. But because the logarithm Lu of u has ¢rst-degree
coef¢cient 1, and the characteristic of k is zero, this differential equation determines
Lu completely. Thus ifew �eu, we have w0�0� � zu0�0� for z a p-power root of 1, and so
for a suitable q � pn, w�q and u�q have the same Lie logarithm, and thus the same
logarithm, and because they have the same ¢rst-degree coef¢cient, they are equal.

The third case uses the machinery that we have developed in this paper so far. It is
the case where u�x� ÿ x has no roots whatever. For u�x� ÿ x to have no roots in �m it
must be a constant times a unit series, and that constant will necessarily be in
m, since the ¢rst-degree coef¢cient of u�x� ÿ x is in m. In other words,
u�x� ÿ x 2 m��x��. Then a suitable p-power iterate of u has v�uÿ id�X 2, and similarly
for any given series w that hasew �eu, by Lemma 1:1 of this paper or Lemma 4:2:1 of
[L]. But Proposition 1:6 says that these iterates of u and w are equal.
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To speak more conceptually, the mapping u 7!eu must surely be an analytic
morphism from one in¢nite-dimensional p-adic Banach space to another, and a close
study of the nature of this morphism would presumably prove the result easily and
directly.

We close this section with a simple computation showing what the Lie logarithm is
when j�x� � F �a; x� for a formal group F de¢ned over o and a is in m, but not a
torsion point of F . We use the notation F1�x; y� for @

@x F �x; y�, and LF �x� for the
the logarithm of F , which is the unique k-series for which LF

ÿ
F �x; y�� �

LF �x� � LF �y� and LF
0�0� � 1. Recall that LF 2 Ak and that the roots of LF in �m

are the torsion points of F .

EXAMPLE 1.8. Let F �x; y� 2 o��x; y�� be a one-dimensional formal group, let a 2 m

be a nontorsion point of F , and let j�x� � F �a; x�. Then ej�x� � F1�0; x�LF �a�.

Calling �n�F �x� the endomorphism of F corresponding to multiplication by n, we
see that j�n�x� � F

ÿ�n�F �a�; x�. Calculating the Lie logarithm, we get

ej�x� � lim
n

F
ÿ�pn��a�; x�ÿ x

pn

� lim
n

F
ÿ�pn��a�; x�ÿ x
�pn��a� � �p

n�F �a�
pn

� �
� lim

E!0

F
ÿ
E; x

�ÿ F �0; x�
E

� lim
n

�pn�F �a�
pn

�F1�0; x� � LF �a�

2. Formal Flows

In this section we de¢ne formal £ows and introduce some of their elementary
properties.

DEFINITION. LetA be a commutative ring, and F a formal group law of dimension
n de¢ned overA. Anm-tupleF of power series inA��t1; � � � ; tn; x1; � � � ; xm�� is a formal
action of F on formal af¢ne m-space de¢ned over A if

(i) F�0; x� � x; and
(ii) F

ÿ
F �s; t�; x� � F

ÿ
s;F�t; x��.

When m and n are both equal to 1, we will say simply that the pair �F ;F� is a formal
£ow on the formal af¢ne line, and when the base is the ring of integers o in a ¢nite
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¢eld extension of Qp, we will call �F ;F� a formal £ow on the p-adic open unit disk
de¢ned over o.

If F is an n-dimensional A-formal group and F is a formal action of F on formal
af¢ne m-space de¢ned over A, and if R is a noetherian A-algebra with a complete
topology de¢ned by the powers of the ideal I � R, and if moreover J is a closed
subideal of I , then J�n has the structure of group de¢ned by the group law F , often
denoted F �J�, and this group acts on the set J�m, by the law

�a1; � � � ; an� ? �x1; � � � ; xm� � F�a1; � � � ; an; x1; � � � ; xm�:
Wemay specialize to the case where the ring A is the ring o of local integers in a local
¢eld k, a ¢nite extension of Qp, and where I � J is the maximal ideal m of o. But in
this case, the set �mn has the structure of a group, furnished by F , since each ¢nite
subset of �m is contained in some ¢nite (and therefore complete) extension of k;
we denote this group F � �m�. Similarly �mm takes on, from F, the structure of a
set acted upon by F � �m�.

The most familiar examples are those where m � n and F � F , but the purpose of
this paper is to exhibit and construct many more than these in case m � n � 1. Let us
take note here of two one-dimensional examples that are already well known. The
multiplicative formal group M�s; t� � s� t� st acts on the formal af¢ne line via
the multiplicative £ow, Fm�t; x� � �1� t�x, in which f0g is an orbit. And the additive
formal group A�s; t� � s� t acts, via the parabolic £ow, Fp�t; x� �
1=�ÿt� 1=x� � x

P1
0 tixi. Here also, f0g is an orbit. For completeness, we mention

the trivial £ow Ftriv�t; x� � x.

DEFINITION. Let A be a commutative ring, and let �F ;F� and �G;C� be formal
£ows on the formal af¢ne line de¢ned over A. Then a formal morphism from
�F ;F� to �G;C� is a pair �f ;j� where f 2 HomA�F ;G� and j�x� 2 A��x�� is a power
series without constant term, such that j

ÿ
F�t; x�� � C

ÿ
f �t�;j�x��. In case A is com-

plete and separated under the topology de¢ned by the powers of an ideal J, a J-adic
analytic morphism from �F ;F� to �G;C� is a pair �f ;j� satisfying the same identity,
but where j 2 A��x�� has a constant term with some power lying in J.

When k is a ¢nite ¢eld extension ofQp with ring of integers o, it is clear that the set
of formal £ows on the formal af¢ne line over o with formal morphisms, respectively
analytic morphisms, is a category. In particular, if �F ;F� is a formal £ow on the
open unit disk de¢ned over o, the most general o-analytically isomorphic £ow
has the form �G;C�, where

G�s; t� � f
ÿ
F �f ÿ1s; f ÿ1t��;

C�t; x� � j
ÿ
F�f ÿ1t;jÿ1x��

and where f and j are elements of the groups G0�o� and Gm�o�, respectively. Notice
that the trivial £ow is isomorphic to no other £ow than itself.
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DEFINITION. Let �F ;F� be a formal £ow on the open unit disk de¢ned over o, and
let x 2 �m. We say that x is a ¢xed point of the £ow if F�t; x� � x. If F is not trivial, we
say that x is a ¢xed point of order n if �xÿ x�n is the highest power of xÿ x dividing
F�t; x� ÿ x.

By the Weierstrass Preparation Theorem and uniqueness of factorization in
o��t; x��, there is a maximal monic polynomial in x only that divides F�t; x� ÿ x,
so there are only ¢nitely many ¢xed points of F in all of �m if F is nontrivial. It
is certainly possible to have F�a; x� � x without x being a ¢xed point of the £ow.
Indeed, let q be a power of p and consider the q-power multiplicative £ow
Q�t; x� � x�1� t�q. Then if a� 1 is a q-th root of 1, we have Q�a; x� � x for all
x 2 m, but 0 is the only ¢xed point of the £ow.

DEFINITION. If �F ;F� is a formal £ow on the open unit disk, the kernel of F is the
set of all a 2 �m such that F�a; x� � x. The kernel is a subgroup of F � �m�, which we
denote ker�F�.

A more abstract viewpoint de¢nes the kernel as a subgroup scheme of the formal
group scheme associated to F , but the more elementary set-theoretic viewpoint taken
here will suf¢ce for our purposes.

In the following, we use the notation F1�t; x� for the derivative with respect to the
¢rst-named variable.

PROPOSITION 2.1. Let �F ;F� be a nontrivial formal £ow on the open unit disk
de¢ned over o, the ring of integers in a ¢nite extension k of Qp. Then for x 2 �m,
the following are equivalent:

(1) x is a ¢xed point of F;
(2) for all a 2 �m, F�a; x� � x;
(3) for in¢nitely many a 2 �m, F�a; x� � x;
(4) there is a 2 �m with a 62 ker�F� such that F�a; x� � x;
(5) �xÿ x�jF1�0; x�.

Furthermore, the order of x as a ¢xed point of F is equal to the order of divisibility of
F1�0; x� by xÿ x.

It will be suf¢cient to prove the assertions in the case x � 0. The implications
�1� ) �2� ) �3� ) �4� and �1� ) �5� follow directly. If 0 is not a ¢xed point of
F, then F�t; 0� is a nonzero o-series, which can have only ¢nitely many roots, by
the Weierstrass Preparation Theorem, so �3� ) �1�. Now we show that
�4� ) �3�. If a is not a torsion point of F � �m�, then for every integer n,
F
ÿ�n�F �a�; 0� � 0, and (3) is veri¢ed. In case a is a torsion point, we must appeal

to a different argument. Let b be any nontorsion element of F �m�, and let
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c�x� � F�b; x�. In case 0 is a periodic point of c, say c�m�0� � 0, then
F
ÿ�mn�F �b�; 0

� � 0 for all n, so that (3) is satis¢ed. In case 0 is not a periodic point
of c, we set j�x� � F�a; x� 6� x and use the identity j � c � c � j to see that
c�0� is a ¢xed point of j, as is every c�n�0�. But j can have only ¢nitely many ¢xed
points, so that this case can not occur.

The implication �5� ) �1� depends on the characteristic of the base being zero. To
prove it, let us suppose that xjF1�0; x� and show that xjF�t; x�. We write

F�t; x� � x� tF1�0; x� �
X1
i�2

tigi�x�

and wish to show that for every i, gi�0� � 0. If r is the smallest integer for which this is
not so, say gr�0� � a 6� 0, then we look at the equation F

ÿ
F �s; t�; x� � F

ÿ
s; �F�t; x��

modulo the ideal
ÿ�s; t�r�1; x�. On the left is aF �s; t�r � a�s� t�r while on the right

there is just asr � atr, unequal because r > 1 and the characteristic is zero. The ¢nal
statement is proved the same way, but by reading the fundamental identity modulo
the ideal

ÿ�s; t�r�1; xm� where m is the order of divisibility of F1�0; x� by x.

COROLLARY 2.1.1. If �F ;F� is a nontrivial formal £ow on the open unit disk de¢ned
over o, then the kernel of F is ¢nite.

Nontriviality of the £ow means that there is a point x 2 m that is not a ¢xed point
of F, and so there are only ¢nitely many a 2 �m such that F�a; x� � x. This ¢nite set
clearly contains the kernel of F.

Given a nontrivial formal £ow �F ;F�, then, we may useWeierstrass Preparation to
form from F1�0; x� the associated monic polynomial with all roots in �m, which we
will call the divisor of ¢xed points of �F ;F�.

LEMMA 2.2. Let �F ;F� be a nontrivial formal £ow on the unit disk over o, the ring of
integers in a ¢nite extension k ofQp. Let a be inm, but not a torsion point of F, and let
j�x� � F�a; x� 2 G1m�o�. Then ej�x� � F1�0; x�LF �a�, where LF is the logarithm of F,
the unique k-formal group homomorphism from F to the additive formal group A
for which LF

0�0� � 1.

The proof is exactly the computation already done for Example 1.8.

COROLLARY 2.2.1. Let �F ;F� and a be as in the preceding Proposition. Then every
periodic point of j�x� � F�a; x� is a ¢xed point of j and of F.

Our aim in the next section is to demonstrate a kind of converse to Lemma 2.2,
that if we have a transformation g of the open unit disk with only ¢nitely many
periodic points, then it is almost of the form F�a; x� for some formal £ow F. In
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this case `almost' means that an integral iterate of gwill be of the desired form, even if
g itself is not.

3. Constructing Flows on the Open Unit Disk

In this section, we show that any monic o-polynomial whose roots all are in �m occurs
as the divisor of ¢xed points of a formal £ow.

THEOREM 3.1. Let f �x� 2 po��x�� be a power series. Then there is a formal action
�A;F� of the additive formal group on �m, with F1�0; x� � f �x� 2 o��t; x��.

The proof is standard, though perhaps it takes place in a nonstandard context.
Form the o-derivation D: o��x�� ! o��x�� such that D�x� � f �x�, and de¢ne the map-
ping

G: o��x��ÿ!o��t; x��

G � exp�tD� � id�
X1
n�1

tn

n!
D�n:

The values of G are in o��t; x�� because pn=n! 2 Zp for all n; of course for p 6� 2 a
somewhat weaker hypothesis on the coef¢cients of f than that they all lie in powould
have suf¢ced. Then it is a matter of veri¢cation to see that the mapping G is in fact a
ring homomorphism, and that when we set G�x� � F�t; x� 2 o��t; x��, the relation
F
ÿ
s;F�t; x�� � F�s� t; x� also holds. Thus �A;F� is a formal £ow on �m, and the

construction itself shows that F1�0; x� � f �x�.

THEOREM 3.2. Let g�x� 2 o��x�� de¢ne an invertible analytic transformation of �m

with only ¢nitely many periodic points. Then there is a formal £ow �A;F� on the open
unit disk, an m 2 Z, and a 2 m such that g�m�x� � F�a; x�.

We may assume, by replacing g by g�m0 , p m0, that g 2 G1m�o�. Since g has only
¢nitely many periodic points, its Lie logarithm eg has only ¢nitely many roots,
and so the coef¢cients of eg are bounded. That is, there is n such that
pneg�x� 2 po��x��. So there is a formal £ow �A;F� on the open unit disk for which
F1�0; x� � pneg�x�. Using the formula of Lemma 2.2 and the fact that LA�x� � x,
we get g�x� � F�p; x�, satisfyingeg � pn�1eg. Finally, by Theorem 1.7, we may iterate
further so that g�p

r � g�p
n�1�r

, in other words, g�p
n�1�r �x� � F�pr�1; x�.

When F is any one-dimensional formal group over o, there is an associated formal
group F 0 � �1=p�F �ps; pt� if p > 2, F 0 � 1

4F �4s; 4t� if p � 2, which is o-isomorphic to
the additive formal groupA�s; t� � s� t, by the logarithm LF 0 �t� � �1=p�LF �pt�, resp.
1
4LF �4t�. In this sense, every formal group has a neighborhood of 0 isomorphic to the
additive formal group. Similarly, if �F ;F� is a formal £ow on the open unit disk, then
�F 0;F0� is also a £ow, when we de¢ne F0�t; x� to be F�pt; x�, resp. F�4t; x�. And then
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�F 0;F0� is isomorphic to an action of the additive formal group on the disk. If we
think of �F 0;F0� as a restriction of �F ;F�, then we may ask whether the actions
of the additive formal group on the disk that were found in Theorems 3.1 and
3.2 may be the restriction of actions of formal groups F that are not isomorphic
to A. The answer, in a word, is not usually. To make the statement of the following
Theorem a little neater, let us make the nonstandard de¢nition that a formal group
F �s; t� 2 o��s; t�� that becomes isomorphic over o=m to the additive formal group
has height zero. (The standard terminology is that such a formal group has in¢nite
height.)

THEOREM 3.3. Let �F ;F� be a nontrivial formal £ow de¢ned over o.

(a) If F has a ¢xed point of multiplicity greater than one, then the only torsion of F is in
the kernel of F, and in particular the height of F is zero;

(b) If there is more than one¢xed point ofF, then F has only¢nitely much torsion, and in
particular the height of F is zero;

(c) If F has a single ¢xed point of multiplicity one, then the height of F is at most one.

In all cases, we may assume, perhaps after an extension of k, that 0 is one of the
¢xed points of F.

Part (a) is the most direct: if a is a torsion element of F � �m� that is not in the kernel
of F, then F�a; x� � j�x� is not the identity, but has an iterate that is identity:
j�p

m�z� � z for some m. But for 0 to be a ¢xed point of order 2 or more,
j�z� � z�mod z2), and no nonzero iterate of such a series can be identity.

Let 0 and x 6� 0 be two of the ¢xed points of F, let a be a torsion point of F not in
the kernel of F, and let j�x� � F�a; x�. Let pm be the order of a in the group
F � �m�= ker�F�, so that j�p

m
is the ¢rst positive-order iterate of j that is identity. Since

0 and x also are ¢xed points of j, we may write j�x� � x� x�xÿ x�g�x� for some
g�x� 2 o��x��. Differentiating, we get

j0�x� � 1� �xÿ x�g�x� � xg�x� � x�xÿ x�g0�x�;
j0�0� � 1ÿ xg�0�:

Now, since 0 is a ¢xed point of j of multiplicity 1, we see that j0�0� is a primitive
pm-th root of unity, so that

v
ÿ
j0�0� ÿ 1

� � 1
�pÿ 1�pmÿ1 X v�x�:

If F were to have in¢nitely many torsion points a, then the numbers m that occur
above would be unbounded, and v�x� � 0, which is impossible.

Finally, suppose that F has the ¢xed point 0, at which the multiplicity is one, and
that F has height h > 1. In this case, a 7!j�x� � F�a; x� 7!j0�0� � F2�a; 0� de¢nes
a group homomorphism from F � �m� to o�, the group of units of �o, and this
homomorphism factors through F � �m�=ker�F�. The torsion subgroup of F � �m� is
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the sum of h groups isomorphic to Qp=Zp, and the same is true of F � �m�= ker�F�; in
this group the torsion subgroup is mapped to the torsion subgroup of �o�, with a
nontrivial kernel. Thus there is a torsion element a 62 ker�F� with F�a; x� �
x�mod x2), and this cannot happen.
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