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A LAW OF THE ITERATED LOGARITHM
FOR MARTINGALES

MICHAEL VOIT

Using a slight generalisation of Brown's inequality, we show that for martingales the
existence of a weak nonuniform bound on the rate of convergence in the central limit
theorem yields the usual upper bound part of the law of the iterated logarithm.

1. INTRODUCTION

For a given martingale it is frequently difficult or impossible to verify the assump-
tions of abstract martingale central limit theorems or laws of the iterated logarithms.
On the other hand, it is possible to establish central limit theorems for certain martin-
gales directly by using other methods as, for instance, generalised Fourier transforms.
This possibility arises, for example, for some martingales that are needed to study
Markov chains whose transition probabilities are associated with generalised convolu-
tion structures. Details on such martingales can be found in Zeuner [5] and Voit [4].
Thus it seems to be interesting to consider the problem of whether a central limit the-
orem implies a law of the iterated logarithm directly. For sums of independent random
variables this problem was studied by Petrov in [3], Chapter X.3. It is the purpose of
this paper to show by using elementary methods that for martingales the existence of a
nonuniform bound on the rate of convergence in the central limit theorem implies the
part of the law of the iterated logarithm which deals with the usual upper bound for
the rate of convergence in the strong law of large numbers. It should be noted that
the nonuniform bound needed below is very weak in view of the martingale central
limit theorems presented in Chapter 3.6 of Hall and Heyde [1] or in Haeusler and Joos
[2]. Moreover it is clear that further assumptions are necessary in order to establish
a complete law of the iterated logarithm. Complete laws for martingales appearing in
Zeuner [5] and Voit [4] will be presented in a forthcoming paper.

THEOREM 2 . Let ( 2 n ) n 6 N be a real valued martingale with ZQ = 0 and let
(sn)n6(s, C ]0, oo[ be a n on decreasing sequence with lim an = oo, lim sn+i/8n = 1

and liminfn/an > 0 such that (Zn/\/s^) c s . converges in distribution to the normal
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distribution N(0, 1). Moreover, denoting the distribution functions of Zn/y/i^ and
JV(O, 1) by Fn and G respectively, we assume that there exist constants X > 1, S > 1
and C > 0 such that

(1) | F n ( x ) _ G ( a ! ) | < C 7
1 + |3|

for all x G R and n G N. Then

(2) P (limsup | Z n | ^ l) = 1.
V ' V n-oo V 2 3 n l n l n s n /

In particular, taking sn •= <r2n and o2 > 0, we have the following

COROLLARY 3 . Let (Zn)neNo be a martingale with Zo = 0 and let a2 > 0 be

such that [Zn/V<T2n) converges in distribution to N(0, 1). J^rtiermore, defining

Fn and G as above, we assume again that there exist constants X > 1, 8 > 1 and
C > 0 such that (1) is true for all x G R and n G N. Tiien

P (limsup | Z n | < l ) = 1.
\ n-«oo V2ff2n • In In n /

The proof of the theorem is based on the following lemma generalising Brown's
inequality slightly (see Hall and Heyde [1], Theorem 2.4).

LEMMA 4 . Let ( Z n ) n € N o be a martingaJe with Zo = 0. Then for all s,t > 0 and
m, n G N with m < n it follows that

P f max \Zi\ >s + t)^l f (\Zn\ - s)dP + P(\Zm\ > s).

PROOF: Let A := { max Zi > s + t} and let U be the number of upcrossings of

the interval [a, s +1] by (•Z»)m<t<n- Then, using the upcrossing inequality (Hall and
Heyde [1], Theorem 2.3), we have

(3)

^ P(Zm > a) + E{U) < P(Zm > a) + y

Furthermore, by considering the number of upcrossings of [s, 8 + t] by (—Zi)
we derive

(4) p( min Zi<-3-t)
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The desired inequality follows immediately from (3) and (4). U

PROOF OF THE THEOREM: Throughout this proof let C\, C2, . . . be suitable pos-

itive constants.

Take constants b, c, d > I with cy/d < b. Put xn := \ /2an - l n l n s n for sn ^ 3

and xn := 1 otherwise. For r £ N we define nr :— min{n £ N : J B ̂  d*"} and

AT := { max \Zt\ > bxnr}.
nr<t^n

Using the properties of (a n ) n 6 N , we have

Thus lim «T7anr = 1 and lim sn ,./snr = d. Hence, for r sufficiently large,
T—»oo r—»oo x

lnlnanr+1 hi (hi anr + In 2d) r-.oo
lnlnsn r lnlnsnp

In summary, it follows that lim xnT+l/xnr. = s/d. Therefore, using cs/d < b and our
r—>oo

assumptions, we can choose an index TQ G N such that

(5) c ( xn r + 1 + \ A " H T ) ^ bXnr

and

(6)

are true for all r ^ r0. Using the Lemma and formula (5), we have

(7)

f \Zi\ > c(xnr+l + y

P ( | ^ | > e . . ^ + l ) + 7 ^ = . / , _ , (\Znr+1\-cxnr+1)dP

P(\Znr\>c.xnr)-

oo

^P(\Znr\>c-xnT) + C2y/\n\nsnr+lXjPi^^>lcy/2]n\nsnr+1

for all r ^ ro. Furthermore, since by our assumptions

h • —c + 1 - Ulx) ^ G4 •- —r + - e
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for all n G N and x ^ 1, and since (6) implies that ln lnn r +i ^ 1 for r > r 0 , (5) and
(6) ensure that

(8)
oo

P
1=1

f; (innr+1r
A • f; r*+c6 • f; f; (in.nr+1)(in.nr+1)- 'v

1=1 r=PQ 1=1

OO

' r=n> 1=1

_ C J

^ C9 + Cio • ^ J —— _i < oo.
r=r0 1 — ( ( r + 1) hid) °

In a similar but much more obvious way we get

(9) r=ro

Moreover, using symmetry arguments, we also have

(10)

< OO.

oo
In summary, (7), (8), (9) and (10) ensure that £ P{Ar) < oo. Thus, by the Borel-

r=l

Cantelli Lemma,

pflimsup 1^1 ^b) =1.
\ n-»oo Xn /

Since this equation is true for all 6 = 1 + 1/fc (ifegN), and since a countable intersection

of sets of probability one is a set of probability one, the proof is complete. Q
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